Restoring Circuit
Structure From
SAT Instances

Jarrod A. Roy, Igor L. Markov,
and Valeria Bertacco

University of Michigan at Ann Arbor

Outline

e Motivation

e Preliminaries

e A Generic Circuit Detection Algorithm
e AND-OR-NOT Circuit Conversion

e Additional Gate Types

e Empirical Results

e Conclusions and Further Work

Motivation

e SAT solvers have become a staple tool In
EDA flows due to recent breakthroughs

e Circuit technigues improve performance
on fully circuit derived instances
order of magnitude speedup
require circuit structure a priori
e Literature assumes “structure lost” in CNF
We find assumption not necessarily true

Motivation

e |If we are converting to CNF, don’t
we already know the circuit structure?

True, no need waste time in this case
e On the other hand, we observe non-trivial
structure from several sources

property checking: part circuit, part constraints

mathematical constructions: DIMACS Pret
“*encoded 2-colouring forced to be UNSAT”

e Automatically detecting structure and benefiting
from it makes solvers more applicable for EDA

Converting Circuits to SAT

e All logic gates have a characteristic function
defines compatible assignments of inputs and outputs

e Converting a Circuit to CNF-SAT instance requires
one variable per wire and several clauses per gate

e The conversion of gates to clauses is the encoding
of each gate’s characteristic function in CNF
we call it the CNF-signature of the gate

z=NOR(x,...,x;) = {1‘[}5":1(3?,-+2)} (Z{:lx,-—l—z)

A Generic Circuit
Detection Algorithm

e Convert the CNF
Instance to an
undirected graph

Conversions of the clauses
(b+d+c)(c+a+b’)(a+c’)(d+a’)

o COnvert the CNF : é o o »éklﬂ‘ .Iiteralvertices
signature of the gate to o”‘e"‘o oty O
m atCh to an u n d I re Cted a) hypergraph b) bipartite directed graph

graph
e Use subgraph

Isomorphism to match
Instances of the gate

‘\&»

-y, literal + vertices

o o o o literal - vertices

¢) undirected graph

A Generic Circuit
Detection Algorithm

e To piece together the circuit, create a maximal
Independent set (MIS) instance

e oOne node per detected gate

e an edge between nodes if the gates are incompatible
(signatures overlap, etc.)

(a'+b)(a’+c)(a’+d)(b'+a)(b'+C)
(a+b’+c’)(a+b’+d’)(b+a’+c’)

Encodes (1) a=AND(b,c),

(2) a=AND(b,d), and (3) b=AND(a,c)
Only (2) and (3) are compatible.

AND-OR-NOT Circuit Conversion

e Generic alg requires solving NP-hard problems

e |s there a more efficient way, possibly
for a slightly more restricted problem?

e Yes: We prove the mapping from
AND-OR-NOT circuits to CNF unique, no
Incompatible gate matches

Proof examines each clause of the CNF and shows
It must have come from a specific gate

Proof suggests efficient linear time algorithm
based on pattern-matching of clauses

Easily Detectable Gate Types
Gate type Difficulty of restoring circuit structure

OR and AND Straightforward pattern-matching

NOR and NAND | Pattern-matching with back-tracking

NOT, XOR Can be detected by straightforward
pattern-matching, but w/o orientation,

and XNOR which can only be determined
in the context of other gate types
MAIJ3 More advanced pattern matching

with back-tracking

Table 1: The relative difficulty of detecting particular
types of logic gates in CNF-SAT formulas. Note that this
is not an exhaustive listing of detectable gates.

Spotlight on XOR/XNOR

e XOR/XNOR gates are inherently unoriented
CNF-signatures are symmetric

the 2-input XOR gate
a = XOR(b,c) has CNF signature
(a’+b+c) (a+b’+c) (a+b+c’) (a'+b’'+cC’)

e Their detection Is not all that difficult, but
orientation requires proper context

With proper context, orientation
can be propagated in a BFS like fashion

Spotlight on XOR/XNOR

e What happens without context?

e Multiple valid interpretations;
happens with a chain of XORS

Could
be

or

Empirical Results

e Implemented detection of AND, OR, NAND,
NOR, XOR, XNOR, NOT and MAJ3 gates

e Tested for the presence of structure In
DIMACS, SAT2002 and Velev benchmarks

e Results show:

Much structure detected
sometimes in unexpected places
preserved by simplification

Technique is fast and scales well
small fraction of solving runtime

000
0000
0000
o060
] o0
Structure in Standard Benchmarks| @
Benchmark | % variables in % clauses in % variables in % clauses in Detection # of # of # of
series simple gates simple gates XOR/XNORs XOR/XNORs runtime (s) | benchmarks | variables clauses
Bf 54.29% 22.12% 1.18% 0.54% 0.43 4 5793 16566
Dubois 0% 0% 100% 100% 0.09 13 1275 3400
Hanoi 43.22% 10.19% 0% 0% 0.37 2 2041 12272
Parity 33.17% 13.58% 88.35% 68.42% 2.68 30 24267 83330
Pret 0% 0% 100% 100% 0.09 8 840 2240
Ssa 47.25% 18.57% 1.45% 0.69% 1.09 8 7228 17669
XOR-Chain 0% 0% 100% 99.55% 0.38 27 4554 12126
t Before SAT Preprocessor Hypre After Hypre 1
Benchmark | % variables in % clauses in % variables in % clauses in Detection Hypre % variables | % clauses
series simple gates simple gates XOR/XNORs XOR/XNORs runtime (s) | runtime (s) remaining remaining
Bf 75.31% 46.41% 0.33% 0.12% 0.23 0.49 22.31% 31.17%
Dubois 0% 0% 100% 100% 0.09 0.05 100% 100%
Hanoi 52.24% 12.56% 0% 0% 0.24 0.23 64.97% 66.35%
Parity 30.70% 17.09% 100% 83.24% 2.13 1.47 54.99% 67.01%
Pret 0% 0% 100% 100% 0.09 0.03 100% 100%
Ssa 58.21% 29.86% 9.25% 4.74% 0.17 0.34 8.91% 8.33%
XOR-Chain 0% 0% 100% 100% 0.38 0.17 99.41% 99.55%

Scalability Results

300 . . .

250

200

150

T
k)
X
5
L
|

100

Runtime (seconds)

“ Benchmark Series B25 ———
50 Benchmark Series B27 —>-—

0 1 1 1 1 I I I
1e6 2e6 3e6 4e6 5e6 6e6 7e6 8eb 9eb

of Clauses

Figure 4: Runtime vs. SAT instance size on
Velev’s B25 and B27 series [18] of benchmarks.

000
000
Comparison with Solving Runtime| s¢
Circuit ZChaff | Im- Ex- Simu- Ex-
plicit plicit lation | traction
OVIiw00l | 1057 | 567 793 93 10
OV1iw004 | 953 804 1011 92 10 v
oVIiw005 | 3126 | 740 1314 88 10 Circuit
oVIiw007 | 140 | 286 855 110 11 é’;ﬁg;@n
OVIiw008 | 1450 | 239 1914 114 12 T
OVIiw009 | 1006 | 784 829 117 10
oVIiw010 | 867 | 329 1897 96 10
OVIiw015 | 2209 | 985 1270 97 10
oVliw017 | 1007 | 175 913 109 10
OVIiw019 | 2936 | 849 1448 129 10
oVIiw021 | 1666 | 1069 1345 99 10
oVIiw024 | 1375 | 965 1282 107 9
A

Circuit Based Technique Runtime = Simulation + (Implicit or Explicit Learning)

Conclusions

e Much circuit structure can be extracted efficiently
orientation can be difficult

e Tests show structure pops up in many
places, possibly unbeknownst to the user

e Circuit-based SAT technigues vastly
Improve solving when given this structure

e Logical next step: extend general SAT
solvers to make use of this structure

Further Work

e How difficult Is it to detect other
gate types such as AOI/OAI, ITE, etc.?

Recent work shows AOI/OAI as difficult as MAJ3
e Examine other methods for orienting
Inherently unoriented gate types
Guess and propagate,
e |s the original orientation of the circuit
necessary, or will any valid orientation do?

If so, Is the original orientation
just better than other valid ones?

