
Restoring Circuit
Structure From
SAT Instances

Jarrod A. Roy, Igor L. Markov,
and Valeria Bertacco

University of Michigan at Ann Arbor

Outline

Motivation
Preliminaries
A Generic Circuit Detection Algorithm
AND-OR-NOT Circuit Conversion
Additional Gate Types
Empirical Results
Conclusions and Further Work

Motivation

SAT solvers have become a staple tool in
EDA flows due to recent breakthroughs
Circuit techniques improve performance
on fully circuit derived instances

order of magnitude speedup
require circuit structure a priori

Literature assumes “structure lost” in CNF
We find assumption not necessarily true

Motivation

If we are converting to CNF, don’t
we already know the circuit structure?

True, no need waste time in this case
On the other hand, we observe non-trivial
structure from several sources

property checking: part circuit, part constraints
mathematical constructions: DIMACS Pret
“encoded 2-colouring forced to be UNSAT”

Automatically detecting structure and benefiting
from it makes solvers more applicable for EDA

Converting Circuits to SAT
All logic gates have a characteristic function

defines compatible assignments of inputs and outputs
Converting a Circuit to CNF-SAT instance requires
one variable per wire and several clauses per gate
The conversion of gates to clauses is the encoding
of each gate’s characteristic function in CNF

we call it the CNF-signature of the gate

A Generic Circuit
Detection Algorithm

Convert the CNF
instance to an
undirected graph
Convert the CNF-
signature of the gate to
match to an undirected
graph
Use subgraph
isomorphism to match
instances of the gate

Conversions of the clauses

(b+d+c)(c+a+b’)(a+c’)(d+a’)

A Generic Circuit
Detection Algorithm

To piece together the circuit, create a maximal
independent set (MIS) instance

one node per detected gate
an edge between nodes if the gates are incompatible
(signatures overlap, etc.)

(a’+b)(a’+c)(a’+d)(b’+a)(b’+c)

(a+b’+c’)(a+b’+d’)(b+a’+c’)

Encodes (1) a=AND(b,c),

(2) a=AND(b,d), and (3) b=AND(a,c)

Only (2) and (3) are compatible.

MIS

AND-OR-NOT Circuit Conversion

Generic alg requires solving NP-hard problems
Is there a more efficient way, possibly
for a slightly more restricted problem?
Yes: We prove the mapping from
AND-OR-NOT circuits to CNF unique, no
incompatible gate matches

Proof examines each clause of the CNF and shows
it must have come from a specific gate
Proof suggests efficient linear time algorithm

based on pattern-matching of clauses

Easily Detectable Gate Types

Spotlight on XOR/XNOR
XOR/XNOR gates are inherently unoriented

CNF-signatures are symmetric
the 2-input XOR gate
a = XOR(b,c) has CNF signature
(a’+b+c) (a+b’+c) (a+b+c’) (a’+b’+c’)

Their detection is not all that difficult, but
orientation requires proper context

With proper context, orientation
can be propagated in a BFS like fashion

Spotlight on XOR/XNOR
What happens without context?

Multiple valid interpretations;
happens with a chain of XORS

Could

be
or

Empirical Results

Implemented detection of AND, OR, NAND,
NOR, XOR, XNOR, NOT and MAJ3 gates
Tested for the presence of structure in
DIMACS, SAT2002 and Velev benchmarks
Results show:

Much structure detected
sometimes in unexpected places
preserved by simplification

Technique is fast and scales well
small fraction of solving runtime

Structure in Standard Benchmarks

0.38

1.09

0.09

2.68

0.37

0.09

0.43

Detection
runtime (s)

27

8

8

30

2

13

4

of
benchmarks

4554

7228

840

24267

2041

1275

5793

of
variables

12126

17669

2240

83330

12272

3400

16566

of
clauses

99.55%100%0%0%XOR-Chain

0.69%1.45%18.57%47.25%Ssa

100%100%0%0%Pret

68.42%88.35%13.58%33.17%Parity

0%0%10.19%43.22%Hanoi

100%100%0%0%Dubois

0.54%1.18%22.12%54.29%Bf

% clauses in
XOR/XNORs

% variables in
XOR/XNORs

% clauses in
simple gates

% variables in
simple gates

Benchmark
series

0.38

0.17

0.09

2.13

0.24

0.09

0.23

Detection
runtime (s)

99.41%

8.91%

100%

54.99%

64.97%

100%

22.31%

% variables
remaining

99.55%

8.33%

100%

67.01%

66.35%

100%

31.17%

% clauses
remaining

0.17100%100%0%0%XOR-Chain

0.344.74%9.25%29.86%58.21%Ssa

0.03100%100%0%0%Pret

1.4783.24%100%17.09%30.70%Parity

0.230%0%12.56%52.24%Hanoi

0.05100%100%0%0%Dubois

0.490.12%0.33%46.41%75.31%Bf

Hypre
runtime (s)

% clauses in
XOR/XNORs

% variables in
XOR/XNORs

% clauses in
simple gates

% variables in
simple gates

Benchmark
series

Before SAT Preprocessor Hypre After Hypre

Scalability Results

Comparison with Solving Runtime

Circuit
Structure
Extraction

Time

Circuit Based Technique Runtime = Simulation + (Implicit or Explicit Learning)

Conclusions

Much circuit structure can be extracted efficiently
orientation can be difficult

Tests show structure pops up in many
places, possibly unbeknownst to the user
Circuit-based SAT techniques vastly
improve solving when given this structure
Logical next step: extend general SAT
solvers to make use of this structure

Further Work

How difficult is it to detect other
gate types such as AOI/OAI, ITE, etc.?

Recent work shows AOI/OAI as difficult as MAJ3
Examine other methods for orienting
inherently unoriented gate types

Guess and propagate, ….
Is the original orientation of the circuit
necessary, or will any valid orientation do?

If so, is the original orientation
just better than other valid ones?

