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Motivation

Transistors are getting so small that 
quantum effects cannot be ignored

Why not harness them?
Quantum circuits

A new model of computation:
allows number-factoring in n3 time
A different model of computation:
allows provably faster search
Compare to SETs and QCAs,
which perform traditional computation





Goals of This Work

Study one particular
quantum algorithm for search

Here, algorithm = circuit family

Look for practical applications
Note 1: quantum communication 
circuits already have commercial 
applications
Note 2: all known quantum circuits
for similar problems are related



Background

Reversible Circuits
Linear Algebra and Probability
Quantum Information
Quantum Gates and Circuits
Grover’s Search Algorithm



Example: f(x1,x2,x3)=x2     x1x3     x1x2x3

Reversible Circuits

Given a Boolean function f(x1,x2,..,xn)
one can always construct a reversible 
circuit computing f()

Use Reed-Muller decomposition

⊕

x1
x2
x3

|0> f(x1,x2,x3 )

⊕



Linear Algebra in 2n Dimensions

Basis vectors (basis-states) = bit-strings
|00000>, |01010>, |11101> etc

Linear combinations are allowed
Can multiply by complex numbers, and add
Everything is normalized, e.g.,
(|0>+|1>)/√2 and (|00>+|10>)/√2 

Bits & bit-strings are composed via tensor products
|0> |1>=|01>
(|0>+|1>)/√2      |0>=(|00>+|10>) /√2
(|00>+|11>)/√2  is “entangled” (no decomposition)

⊗
⊗



Quantum Information

Represents the physical state of
Photon polarizations, electron spins, etc

Single-qubit: two-level quantum system
E.g., spin-up for |0> and spin-down for |1>
When measuring α|0>+β|1>, Prob|0>=|α|2

Multiple qubits and quant. measurement
Linear combinations of bit-strings
E.g., (|000>+|010>+|100>+|110>)/2
Can only observe an individual bit-string



Classical Circuits versus Quantum

0-1 strings 

E.g., one bit
{0,1}

Bool. Functions
Gates & circuits

Primary outputs

Lin. combinations
of 0-1 strings

E.g., one qubit
α|0>+β|1>

2n-by-2n matrices
Gates & circuits

Probabilistic
measurement

Mostly ignored here



Quantum Gates and Circuits

Quantum computations M are certain 
invertible matrices (called unitary)
A conventional reversible gate/computation
can be extended to quantum by linearity

E.g., a quantum inverter swaps |0> and |1>
Maps the state (|0>+|1>)/√2 to itself 

Can apply an inverter on one of two qubits
E.g., (|00>+i|11>)/√2 → (|01>+i|10>)/√2

Hadamard gate: |0> → (|0>+|1>)/√2
|1> → (|0>-|1>)/√2

0 1
1 0

1  1
1 -1



Quantum Circuits

Can apply an inverter on one of two qubits
E.g., (|00>+i|11>)/√2 → (|01>+i|10>)/√2 

How do we describe this computation?
Tensor product: Identity⊗NOT
More generally: A⊗B 0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

CNOT gate
x

y

x
y⊕x



Unstructured (Database) Search

One seeks 1 record out of N records
One can look at single records, one at a time
One can use a black box (oracle) that tells 
you whether a given record is good
Goal: minimize the number of oracle queries
Possible non-quantum strategies

Try record 1, record 2, etc … stop when rec. found
Or try records at random

In the worst case, one must try all records
On average, one will try half the records 



Index Search

If all items are indexed, 
you only need to find the right index

n bits for N<2n records

In this case, the oracle is just a Boolean 
function on n bits

This function is the input of search algorithm 

Example 1: Boolean SATisfiability
CNF formula represents an oracle

Example 2: Picking locks / finding passwords
Verifying a password is easy



Quantum Search

Now assume that the oracle 
can evaluate quantum queries
Classical oracle: f(001)=Yes
Quantum oracle:

f((|000>+|001>+|010>+|011>)/2)=
(No+Yes+No+No)/2

Can apply quantum gates before/after
Must use quantum measurement
Turns out: need only √N oracle queries



Grover’s Algorithm (Circuit)

Input state: |000…0>   (n qubits)
Remember, the input of search algo is the oracle

Apply a Hadamard gate on each qubit
Produces linear combination of all bit-strings

√N identical iterations, one query in each
Amplify the bit-string (index) sought, by 1/√N,
and de-amplify all remaining bit-strings 

Quantum measurement
Performed when the sought bit-string has
highest probability of being observed



Requirements to Make this Practical

R1: A search application S where classical 
methods do not provide sufficient scalability
R2: An instantiation Q(S) of Grover’s 
search for S with an asymptotic worst-case 
runtime which is less than that of any 
classical algorithm C(S) for S
R3: A Q(S) with an actual runtime for 
practical instances of S, which is less than 
that of any C(S)



Application Scalability

Explicit databases
Store records explicitly
Customer support, transaction-processing
TeraBytes of data, distributed storage
Massively parallel (search is easy to ||-ze)
Classical methods scale so far (google.com)

Implicit “databases” / index search
Combinatorial optimization & cryptography
Stronger demands for scalability



Oracle Implementation

Complexity analysis proving quantum 
speed-up, assume oracle is a “black box”

I.e., absolutely no internal structure is known

In applications, it is hard to avoid structure
Most “oracles” have small circuits
This may invalidate quantum speed-up

Implementing the oracle can be difficult 
(requires circuit synthesis!)

If no small circuit exists/found,
the oracle may dominate search time



Empirical Speed-up?

Any successful quantum algorithm must 
outrun simulators
Grover’s search
vs QuIDD Pro

Viamontes et al.,
Quant Info Proc.,
October 2003

This result assumes
the oracle in QuIDD form

Creating QuIDD may be expensive
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Comparing to Best Classical Algs.

3-SAT with n variables
Known randomized algorithm  ~1.33n

Grover’s search                      ~1.41n

Graph 3-coloring solvable in ~1.37n

Grover’s algorithm never finishes early
Classical algorithms often do 

Grover’s algorithm cannot be improved
w/o using structure



Presence and Use of Structure

In many cases, structure is present
but not immediately clear

In cryptography, no need for brute force
“Algebraic structure” in AES, etc

Recent promising work on
“structured” quantum search

Roland and Cerf, Phys. Rev. A, Dec 2003
Average-case time for 3-SAT estimated  
1.31n versus 1.33n classical worst case



Conclusions

Even if scalable quantum computers 
were available today, unstructured 
quantum search is not useful

Future breakthroughs may help
Will have to use structure

Our analysis can be used for other 
problems touted for quantum 
computing, e.g., graph isomorphism

Up-coming DAC paper, new tool SAUCY



Thank you


