
Overcoming ResolutionOvercoming Resolution-- BasedBased
Lower Bounds for SAT SolversLower Bounds for SAT Solvers

DoRonDoRon B.B. MotterMotter and Igor L. Markovand Igor L. Markov
University of Michigan, Ann ArborUniversity of Michigan, Ann Arbor

IWLS 2002



MotivationMotivation

Boolean Satisfiability (SAT) has widespread applicationsBoolean Satisfiability (SAT) has widespread applications
�� EDA: Equivalence checking, BMC, Routing, AI: Planning, etc.EDA: Equivalence checking, BMC, Routing, AI: Planning, etc.
�� New applications are constantly emergingNew applications are constantly emerging

Fast SAT solvers abound (GRASP, Chaff,Fast SAT solvers abound (GRASP, Chaff, BerkMinBerkMin))
�� Highly tuned implementations improved over yearsHighly tuned implementations improved over years

Many small instances are still difficult to solveMany small instances are still difficult to solve
Our ApproachOur Approach
�� Algorithms which lead to different classes of tractable instanceAlgorithms which lead to different classes of tractable instancess
�� Seek improvements to these algorithmsSeek improvements to these algorithms



MotivationMotivation

Complete SAT solvers are typically based on DLLComplete SAT solvers are typically based on DLL
�� ResolutionResolution--based lower bounds apply to these solversbased lower bounds apply to these solvers
�� Empirically Chaff, Grasp take exponential time on pigeonholes, eEmpirically Chaff, Grasp take exponential time on pigeonholes, etc.tc.

Previous Work:Previous Work:
�� We introducedWe introduced the Compressed Breadththe Compressed Breadth--First SearchFirst Search (CBFS)(CBFS)
�� Empirical measurementsEmpirical measurements:: our implementation,our implementation, CassattCassatt, spends, spends ΘΘ(n(n44))

time on pigeonholetime on pigeonhole--n instancesn instances
Pigeonhole instances are of sizePigeonhole instances are of size ΘΘ(n(n33))

�� AnalyticallyAnalytically:: CBFS refutes pigeonhole instances in poly timeCBFS refutes pigeonhole instances in poly time
ResolutionResolution--based lower bounds do not apply to CBFSbased lower bounds do not apply to CBFS

This Work:This Work:
�� We augment CBFS with pruning based on the unit clause rule (We augment CBFS with pruning based on the unit clause rule (BCPBCP))



Empirical PerformanceEmpirical Performance



OutlineOutline
Boolean SatisfiabilityBoolean Satisfiability
Overview of Compressed BFSOverview of Compressed BFS
BackgroundBackground
�� Partial Truth Assignments + Open ClausesPartial Truth Assignments + Open Clauses
�� Zero Suppressed Binary Decision DiagramsZero Suppressed Binary Decision Diagrams
�� Boolean Constraint PropagationBoolean Constraint Propagation

Compressed BFSCompressed BFS
�� OverviewOverview
�� ExampleExample

BCP + Compressed BFSBCP + Compressed BFS
�� ExampleExample
�� ExtensionsExtensions

ResultsResults
ConclusionConclusion



Boolean SatisfiabilityBoolean Satisfiability

Boolean Satisfiability (SAT)Boolean Satisfiability (SAT)
�� Instance: formulaInstance: formula φφ in Conjunctive Normal Form (CNF)in Conjunctive Normal Form (CNF)

V: set of variables {a, b, …, n}V: set of variables {a, b, …, n}
C: set of clausesC: set of clauses
Each clause is a set of literals over VEach clause is a set of literals over V

�� Question: Is there an assignment to {a, b, …, n} whichQuestion: Is there an assignment to {a, b, …, n} which
makes this formula true?makes this formula true?

Known to be NPKnown to be NP-- completecomplete
�� Unlikely any algorithm will efficiently solve all instancesUnlikely any algorithm will efficiently solve all instances

Many practical applications in EDAMany practical applications in EDA
�� Bounded model checking, equivalence checking,Bounded model checking, equivalence checking,

circuit layoutcircuit layout



CompressedCompressed--BFS: OverviewBFS: Overview

In BreadthIn Breadth-- First SearchFirst Search
�� Store “promising” partial solutions of a given depthStore “promising” partial solutions of a given depth

�� Iteratively increase depth until all variables are processedIteratively increase depth until all variables are processed
Main data structure is a set/queue of partial truth assignmentsMain data structure is a set/queue of partial truth assignments

In CompressedIn Compressed-- BFSBFS
�� Store a set of clauses instead of a “promising” partial truthStore a set of clauses instead of a “promising” partial truth

assignmentassignment
This is enough information to determine satisfiabilityThis is enough information to determine satisfiability

�� Manipulate all such sets in a compressed formManipulate all such sets in a compressed form
Main data structure is a collection of setsMain data structure is a collection of sets



Background: Partial AssignmentsBackground: Partial Assignments

φφ == (a + c +(a + c + d)(gd)(g ++ h)(bh)(b + e ++ e + f)(df)(d + e)+ e)
Partial truth assignmentPartial truth assignment
�� Assignment to someAssignment to some VV ⊆⊆ VV
�� Consider any assignment to {a, b, c, d}:Consider any assignment to {a, b, c, d}:

If it isIf it is validvalid, (a + c + d) must be satisfied, (a + c + d) must be satisfied
(g + h) is not yet affected by this assignment(g + h) is not yet affected by this assignment
⇒⇒ The assignment only affects clausesThe assignment only affects clauses

a b c d e f g h

(a + c + d)

(b + e + f)

(d + e)

(g + h)

cut

Cut Clauses:
straddle a conceptual

line separating
assigned variables
from unassigned

ones



Background: TerminologyBackground: Terminology

GivenGiven partial truth assignmentpartial truth assignment
Classify all clauses into:Classify all clauses into:
�� SatisfiedSatisfied

At least one literal assigned trueAt least one literal assigned true
�� ViolatedViolated

All literals assigned, and notAll literals assigned, and not satisfiedsatisfied
�� OpenOpen

1 or more literals assigned, and no literals assigned true1 or more literals assigned, and no literals assigned true
OpenOpen clauses areclauses are activatedactivated but notbut not satisfiedsatisfied

�� ActivatedActivated
Have at least one literal assigned some valueHave at least one literal assigned some value

�� UnitUnit
Have all but one literal assigned, and areHave all but one literal assigned, and are openopen

AA validvalid partial truth assignmentpartial truth assignment ⇔⇔ no violated clausesno violated clauses

di
sj

oi
nt

a b c d e f g h

(a + c + d)

(b + e + f)

(d + e)

(g + h)



Open ClausesOpen Clauses

StraightforwardStraightforward BreadthBreadth--First SearchFirst Search
�� Maintain allMaintain all valid partial truth assignmentsvalid partial truth assignments

of a given depth; increase depth in stepsof a given depth; increase depth in steps
Valid partial truth assignmentsValid partial truth assignments
→→ sets of open clausessets of open clauses
�� NoNo literals assignedliterals assigned

⇒⇒ Clause isClause is not activatednot activated
�� AllAll literals assignedliterals assigned

⇒⇒ Clause must beClause must be satisfiedsatisfied
Because: assignment is validBecause: assignment is valid ⇒⇒ no clauses are violatedno clauses are violated

““CutCut” clause” clause == somesome, but not all, but not all literals assignedliterals assigned
�� Must be eitherMust be either satisfiedsatisfied oror openopen
�� This is determined by the partial assignmentThis is determined by the partial assignment

Compressed BreadthCompressed Breadth--First SearchFirst Search
�� Store sets of open clauses instead of promising assignmentsStore sets of open clauses instead of promising assignments

a b c d e f g h

(a + c + d)

(b + e + f)

(d + e)

(g + h)



Zero Suppressed Binary Decision DiagramsZero Suppressed Binary Decision Diagrams

ZDD: A directed acyclic graph (DAG)ZDD: A directed acyclic graph (DAG)
�� Unique sourceUnique source
�� Two sinks: theTwo sinks: the 00 andand 11 nodesnodes

Each node hasEach node has
�� Level indexLevel index ii
�� Two children at lower levelsTwo children at lower levels

TT--Child and EChild and E--ChildChild

Characterized by reduction rulesCharacterized by reduction rules
�� If two nodes have the same level index, childrenIf two nodes have the same level index, children

Merge these nodesMerge these nodes
�� ZeroZero--suppression rulesuppression rule

Eliminate nodes whose TEliminate nodes whose T--Child isChild is 00
No node with a given indexNo node with a given index ⇒⇒
assume a node whose Tassume a node whose T--child ischild is 00

ZDDsZDDs can store collections of setscan store collections of sets
�� 00 is the empty collectionis the empty collection ∅∅
�� 11 is the oneis the one--collection of the empty set {collection of the empty set {∅∅ }}
�� At any node f,At any node f, f = fT ∪ {i} ⊗ fE

0 1

f

1

i

n

∞

f
E

f
T

f = fE ∪ {i} ⊗ fT



ZDD: ExampleZDD: Example

Collection of subsets:Collection of subsets:
�� {1, 3}{1, 3}

�� {2, 3}{2, 3}

�� {3}{3}

0 1

1

2

3

∞

{3}

{2, 3}, {3}

{1,3},{2,3},
{3}



Boolean Constraint PropagationBoolean Constraint Propagation

Repeated application of theRepeated application of the unit clause ruleunit clause rule
Recall:Recall: unitunit clauses (with respect to some partialclauses (with respect to some partial
truth assignment)truth assignment)
�� Have one remaining unassigned literalHave one remaining unassigned literal
�� Not yet satisfiedNot yet satisfied

In order for this assignment to lead to satisfiabilityIn order for this assignment to lead to satisfiability
�� This clause must be satisfiedThis clause must be satisfied
�� The remaining literal must be set trueThe remaining literal must be set true

Boolean Constraint PropagationBoolean Constraint Propagation
�� Repeatedly apply unit clause rule to deduce newRepeatedly apply unit clause rule to deduce new

assignmentsassignments



Compressed BFS: OverviewCompressed BFS: Overview
MaintainMaintain collection of subsets of open clausescollection of subsets of open clauses
�� Analogous to maintaining allAnalogous to maintaining all

“promising” partial solutions of increasing depth“promising” partial solutions of increasing depth
�� Enough information for BFS on the solution treeEnough information for BFS on the solution tree

This collection of sets is calledThis collection of sets is called thethe frontfront
�� Stored and manipulated in compressed form (ZDD)Stored and manipulated in compressed form (ZDD)
�� Assumes a clause ordering (global indices)Assumes a clause ordering (global indices)

Clause indices correspond to node levels in the ZDDClause indices correspond to node levels in the ZDD

Algorithm: expand one variable at a timeAlgorithm: expand one variable at a time
�� After all variablesAfter all variables two cases possibletwo cases possible

The front isThe front is ∅∅ ⇒⇒ UnsatisfiableUnsatisfiable
The front is {The front is {∅∅ }} ⇒⇒ SatisfiableSatisfiable



Compressed BFS: An ExampleCompressed BFS: An Example

(b + c +(b + c + d)(d)(--bb + c ++ c + --d)(ad)(a + c ++ c + d)(ad)(a + b ++ b + --c)(c)(--a +a + --c + d)(c + d)(--a + b + d)a + b + d)

1 2 3 41 2 3 4 5 65 6

Process variables in the order {a, b, c, d}Process variables in the order {a, b, c, d}
Initially the front is set to 1Initially the front is set to 1
�� The collection shouldThe collection should

contain one “branch”contain one “branch”
�� This branch should containThis branch should contain

no open clausesno open clauses ⇒⇒ {{∅∅ }}
1



Compressed BFS: An ExampleCompressed BFS: An Example

(b + c +(b + c + d)(d)(--bb + c ++ c + --d)(d)(aa + c ++ c + d)(d)(aa + b ++ b + --c)(c)(--aa ++ --c + d)(c + d)(--aa + b + d)+ b + d)

1 21 2 3 4 5 63 4 5 6

Processing variableProcessing variable aa
�� Activate clauses {Activate clauses {3, 4, 5, 63, 4, 5, 6}}

Cut clauses: {3, 4, 5, 6}Cut clauses: {3, 4, 5, 6}
�� a = 0a = 0

Clauses {3, 4} become openClauses {3, 4} become open
�� a = 1a = 1

Clauses {5, 6} become openClauses {5, 6} become open

ZDD containsZDD contains {{ {3, 4}, {5, 6}{3, 4}, {5, 6} }}

3

4

5

6

10



Compressed BFS: An ExampleCompressed BFS: An Example

((bb + c ++ c + d)(d)(--bb + c ++ c + --d)(d)(aa + c ++ c + d)(d)(aa ++ bb ++ --c)(c)(--aa ++ --c + d)(c + d)(--aa ++ bb + d)+ d)

1 21 2 3 4 53 4 5 66

Processing variableProcessing variable bb
�� Activate clausesActivate clauses {1, 2}{1, 2}

Cut clauses: {1, 2, 3, 4, 5, 6}Cut clauses: {1, 2, 3, 4, 5, 6}
�� b = 0b = 0

No clauses can become violatedNo clauses can become violated
�� b is not the end literal for any clauseb is not the end literal for any clause

Clause 2 is satisfiedClause 2 is satisfied
�� Don’t need to add itDon’t need to add it

Clause 1 first becomes activatedClause 1 first becomes activated

1

2

3

4

5

6

1010



Compressed BFS: An ExampleCompressed BFS: An Example

((bb + c ++ c + d)(d)(--bb + c ++ c + --d)(d)(aa + c ++ c + d)(d)(aa ++ bb ++ --c)(c)(--aa ++ --c + d)(c + d)(--aa ++ bb + d)+ d)

1 21 2 3 4 53 4 5 66

Processing variableProcessing variable bb
�� Activate clausesActivate clauses {1, 2}{1, 2}

Cut clauses: {1, 2, 3, 4, 5, 6}Cut clauses: {1, 2, 3, 4, 5, 6}
�� b = 1b = 1

No clauses can become violatedNo clauses can become violated
�� b is not the end literal for any clauseb is not the end literal for any clause

Existing clauses 4, 6 are satisfiedExisting clauses 4, 6 are satisfied
Clause 1 is satisfiedClause 1 is satisfied

�� Don’t need to add itDon’t need to add it
Clause 2 first becomes activatedClause 2 first becomes activated

1

2

3

4

5

6

10 10



Compressed BFS: An ExampleCompressed BFS: An Example

((bb + c ++ c + d)(d)(--bb + c ++ c + --d)(d)(aa + c ++ c + d)(d)(aa ++ bb ++ --c)(c)(--aa ++ --c + d)(c + d)(--aa ++ bb + d)+ d)

1 21 2 3 4 53 4 5 66

Processing variableProcessing variable bb
�� Activate clausesActivate clauses {1, 2}{1, 2}

Cut clauses: {1, 2, 3, 4, 5, 6}Cut clauses: {1, 2, 3, 4, 5, 6}
�� b = 1b = 1

No clauses can become violatedNo clauses can become violated
�� b is not the end literal for any clauseb is not the end literal for any clause

Existing clauses 4, 6 are satisfiedExisting clauses 4, 6 are satisfied
Clause 1 is satisfiedClause 1 is satisfied

�� Don’t need to add itDon’t need to add it
Clause 2 first becomes activatedClause 2 first becomes activated

1

2

3

4

5

6

10 10



Compressed BFS: An ExampleCompressed BFS: An Example

((bb + c ++ c + d)(d)(--bb + c ++ c + --d)(d)(aa + c ++ c + d)(d)(aa ++ bb ++ --c)(c)(--aa ++ --c + d)(c + d)(--aa ++ bb + d)+ d)

1 2 3 41 2 3 4 5 65 6 1

2

3

4

5

6

1010

b=1b=0

10



Compressed BFS: An ExampleCompressed BFS: An Example

((bb ++ cc ++ d)(d)(--bb ++ cc ++ --d)(d)(aa ++ cc ++ d)(d)(aa + b ++ b + --cc)()(--a +a + --cc + d)(+ d)(--a + ba + b + d)+ d)

1 2 3 41 2 3 4 5 65 6

Processing variableProcessing variable cc
�� Finish clause 4Finish clause 4

Cut clauses: {1, 2, 3, 5, 6}Cut clauses: {1, 2, 3, 5, 6}
�� c = 0c = 0

No clauses become violatedNo clauses become violated
�� c ends 4, but c=0 satisfies itc ends 4, but c=0 satisfies it

Clauses 4,5 become satisfiedClauses 4,5 become satisfied
No clauses become activatedNo clauses become activated

1

2

3

4

5

6

10 10



Compressed BFS: An ExampleCompressed BFS: An Example

((b +b + cc ++ d)(d)(--bb ++ cc ++ --d)(d)(aa ++ cc ++ d)(d)(aa + b ++ b + --cc)()(--a +a + --cc + d)(+ d)(--a + ba + b + d)+ d)

1 2 3 41 2 3 4 5 65 6

Processing variableProcessing variable cc
�� Finish clause 4Finish clause 4

Cut clauses: {1, 2, 3, 5, 6}Cut clauses: {1, 2, 3, 5, 6}
�� c = 1c = 1

Clause 4 may be violatedClause 4 may be violated
�� If c appears in the ZDD,If c appears in the ZDD,

then it is still openthen it is still open
Clauses 1, 2, 3 are satisfiedClauses 1, 2, 3 are satisfied
No clauses become activatedNo clauses become activated

1

2

3

4

5

6

10 1



Compressed BFS: An ExampleCompressed BFS: An Example

((b + c +b + c + dd)()(--bb + c ++ c + --dd)()(aa + c ++ c + dd)()(aa + b ++ b + --cc)()(--a +a + --c +c + dd)()(--a + b +a + b + dd))

1 2 3 41 2 3 4 5 65 6

Processing variableProcessing variable dd
�� Finish clauses {1, 2, 3, 5, 6}Finish clauses {1, 2, 3, 5, 6}

Cut clauses: {1, 2, 3, 5, 6}Cut clauses: {1, 2, 3, 5, 6}
�� d = 0, d=1d = 0, d=1

All clauses are already satisfiedAll clauses are already satisfied
Assignment doesn’t affect thisAssignment doesn’t affect this
Instance isInstance is satisfiablesatisfiable

1

2

3

4

5

6

11



Compressed BFS:Compressed BFS: PseudocodePseudocode
CompressedBFS(VarsCompressedBFS(Vars, Clauses), Clauses)

frontfront ←← 11
forfor i = 1 to |i = 1 to |VarsVars|| dodo

front’front’ ←← frontfront
//Modify front to reflect x//Modify front to reflect xii = 1= 1
Form sets UForm sets Uxi,1xi,1, S, Sxi,1xi,1, A, Axi,1xi,1
frontfront ←← frontfront ∩∩ 22CutCut -- Uxi,1Uxi,1

frontfront ←← ExistAbstract(frontExistAbstract(front, S, Sxi,1xi,1))
frontfront ←← frontfront ⊗⊗ AAxi,1xi,1
//Modify front' to reflect x//Modify front' to reflect xii = 0= 0
Form sets UForm sets Uxi,0xi,0, S, Sxi,0xi,0, A, Axi,0xi,0

front’front’ ←← front’front’ ∩∩ 22CutCut -- Uxi,0Uxi,0

front’front’ ←← ExistAbstract(frontExistAbstract(front’, S’, Sxi,0xi,0))
front’front’ ←← front’front’ ⊗⊗ AAxi,0xi,0
//Combine the two branches via Union//Combine the two branches via Union
//and remove//and remove SubsumptionsSubsumptions
frontfront ←← frontfront ∪∪ ss front'front'

ifif front =front = 00 thenthen
returnreturn UnsatisfiableUnsatisfiable

ifif front =front = 1 then1 then
returnreturn SatisfiableSatisfiable



Boolean Constraint Propagation with CBFSBoolean Constraint Propagation with CBFS
φφ == (a + d)(a + c)(a + c)(a + b)(a + b)(a + d)(a + c)(a + c)(a + b)(a + b)

11 2 3 4 52 3 4 5
Consider having processed variableConsider having processed variable aa onlyonly
Recall: TheRecall: The frontfront consists of sets ofconsists of sets of openopen clausesclauses
ConflictingConflicting set of clausesset of clauses
�� A set ofA set of openopen clauses by which it is possible to derive aclauses by which it is possible to derive a

contradiction by thecontradiction by the unit clause ruleunit clause rule
�� Ex. if clauses {2, 3} are both openEx. if clauses {2, 3} are both open ⇒⇒ c and c are both impliedc and c are both implied
�� After variableAfter variable aa ⇒⇒ {2, 3} is a conflicting set of clauses{2, 3} is a conflicting set of clauses

Conflicting setsConflicting sets cannot appear in the same set of open clausescannot appear in the same set of open clauses
�� CBFS will eventually determine thisCBFS will eventually determine this
�� Repeated application of the unit clause rule may find this moreRepeated application of the unit clause rule may find this more

efficientlyefficiently
In this example: conflicting sets of clausesIn this example: conflicting sets of clauses
�� Clauses {2, 3} cannot appear togetherClauses {2, 3} cannot appear together
�� Clauses {4, 5} cannot appear togetherClauses {4, 5} cannot appear together



Boolean Constraint Propagation with CBFSBoolean Constraint Propagation with CBFS

Basic ideaBasic idea: recursive search to find all sets of: recursive search to find all sets of
conflicting clausesconflicting clauses
�� For each unit clause UFor each unit clause U

Find all clauses violated when U is satisfiedFind all clauses violated when U is satisfied
Find all clauses violated when U is violated (includes U)Find all clauses violated when U is violated (includes U)
Form Cartesian Product of these setsForm Cartesian Product of these sets

�� Can form the ZDD of all conflicting sets of clausesCan form the ZDD of all conflicting sets of clauses

Conflicting setsConflicting sets cannot appear in the same set ofcannot appear in the same set of
open clausesopen clauses
�� If a set in theIf a set in the frontfront contains acontains a conflicting setconflicting set

Can prune with ZDD Subsumed Difference operatorCan prune with ZDD Subsumed Difference operator



Boolean Constraint Propagation with CBFSBoolean Constraint Propagation with CBFS
GetConflictZDDGetConflictZDD(Formula(Formula F'F', Integer, Integer VarVar))

foreachforeach clause Cclause C∈∈ F'F'

ifif CC has no literals (after thehas no literals (after the cutcut)) //Then C is a violated clause//Then C is a violated clause

ViolClsViolCls ←← ViolClsViolCls  ∪ ∪ CC

//Find the set of variables implied by some unit clause//Find the set of variables implied by some unit clause

IVarsIVars ←← ImpliedVarsImpliedVars(( Units(Units(FF'') )) )

//Find the lowest index implied variable such that v>//Find the lowest index implied variable such that v>VarVar

vvlowlow ←←UpperBound(IVarsUpperBound(IVars,, VarVar))

ifif no suchno such vvlowlow existsexists

returnreturn ViolClsViolCls

ConflZddConflZdd ←← ViolClsViolCls

//Iterate over all implied variables//Iterate over all implied variables ≥≥vv

forallforall vv∈∈ IVarsIVars such thatsuch that vv≥≥vvlowlow

Z1Z1←← GetConflictZDDGetConflictZDD((AssignAssign((FF'',, v=v=1), v)1), v)

ZZ00 ←← GetConflictZDDGetConflictZDD((AssignAssign((FF'',, v=v=0), v)0), v)

ZZ←←ZZ00⊗⊗ ZZ11

ConflZDDConflZDD ←← ConflZDDConflZDD ∪∪ ZZ

returnreturn ConflZDDConflZDD



Extending BCP/CBFSExtending BCP/CBFS

Bounded Depth BCPBounded Depth BCP
�� WantWant conflicting setsconflicting sets to subsume many sets in theto subsume many sets in the

frontfront
⇒⇒ Should be as small as possibleShould be as small as possible

As depth of search increasesAs depth of search increases ⇒⇒ number of clauses in anynumber of clauses in any
conflicting sets found increasesconflicting sets found increases

�� Search for Conflicting ZDD may be time consumingSearch for Conflicting ZDD may be time consuming

BCP pruning at step k is similar to step k+1BCP pruning at step k is similar to step k+1
�� To help combat this, apply BCP every 2d stepsTo help combat this, apply BCP every 2d steps

�� dd ⇒⇒ depth of BCP searchdepth of BCP search



Empirical ResultsEmpirical Results
FPGA S/U Cassatt BCP 2 BCP 3 BCP 4 zChaff
10_11 UNS 0.04 0.12 0.45 1.18 >250
10_12 UNS 0.05 0.14 0.35 0.96 >250
10_13 UNS 0.03 0.15 0.59 2.01 >250
10_15 UNS 0.09 0.34 1.31 6.39 >250
10_20 UNS 0.24 0.7 2.82 15.1 >250
11_12 UNS 0.06 0.16 0.59 1.1 >250
11_13 UNS 0.04 0.15 0.74 2.97 >250
11_14 UNS 0.04 0.21 0.98 4.09 >250
11_15 UNS 0.06 0.24 1.06 5.43 >250
11_20 UNS 0.1 0.51 3.3 20.68 >250
10_8 SAT 0.03 0.07 0.28 2.6 2.13
10_9 SAT 0.06 0.13 0.36 1.24 2.01
12_8 SAT 0.06 0.12 0.37 2.03 >250
12_9 SAT 0.12 0.19 0.53 2.36 104.7
12_10 SAT 0.15 0.26 0.87 3.97 >250
12_11 SAT 0.07 0.2 0.83 4.97 >250
12_12 SAT 0.52 0.67 1.55 5.68 132.91
13_9 SAT 0.35 0.44 0.8 2.79 191.63
13_10 SAT 0.71 0.84 1.43 5.47 66.3
13_11 SAT 1.61 1.8 2.4 4.47 >250
13_12 SAT 2.66 2.88 3.62 7.99 >250



Empirical ResultsEmpirical Results

Benchmark # S/U Cassatt + BCP
Depth 2

+ BCP
Depth 3

+ BCP
Depth 4

Family %Sol Avg %Sol Avg %Sol Avg %Sol Avg
aim-100* 24 - 70.83 84.04 75 79.5 75 77.74 75 79.39
aim-50* 24 - 100 0.18 100 0.17 100 0.355 100 1.69
dubois* 13 UNS 100 0.01 100 0.02 100 0.02 100 0.01
pret* 8 UNS 100 0.016 100 0.018 100 0.02 100 0.02
par16* 5 SAT 80 85.52 60 129.19 60

131.338
60 136.75

par16-c* 5 SAT 60 152.42 60 154.67 60 155.26 60 159.00
par8* 5 SAT 100 0.71 100 0.488 100 0.89 100 2.04
par8-c* 5 SAT 100 0.026 100 0.058 100 0.128 100 0.45



Conclusions and Ongoing WorkConclusions and Ongoing Work

CBFS runtimes on several families show greatCBFS runtimes on several families show great
improvements over DLLimprovements over DLL--based solversbased solvers
�� Potential for a more general purpose combined solverPotential for a more general purpose combined solver

We introduced a BCPWe introduced a BCP--based pruning into CBFSbased pruning into CBFS
�� On classes CBFS solves quicklyOn classes CBFS solves quickly ⇒⇒ no further improvementno further improvement
�� On less structured instancesOn less structured instances ⇒⇒ CBFS’sCBFS’s runtime is improved byruntime is improved by

the addition of a restricted BCPthe addition of a restricted BCP

We hope to further improve performance of CBFS/BCPWe hope to further improve performance of CBFS/BCP
�� BCP reductions need not be complete:BCP reductions need not be complete:

Heuristic and randomized approaches can applied to find some, buHeuristic and randomized approaches can applied to find some, butt
not all conflicting setsnot all conflicting sets

�� Can tune the application of BCP to improve performanceCan tune the application of BCP to improve performance




