Faster SAT and Smaller BDDs via
Common Function Structure

Fadi A. Aloul, Igor L. Markov,
Karem A. Sakallah

University of Michigan

Clauses

Motivation

Hole-7 Instance
(clausesin red)

hale7 enfold hole7 enf.new
1
LR
08t
07 bij
06 |/
0.5
[EN
03t
02
0.1
o

Clauses

0 10 20 30 40 a0 B0
Variables Variables

Original Variable Order “New” Variable Order

* Outline

Hypergraph Terminology
Motivating Example
Multilevel Partitioning
MINCE Algorithm
Experimental Results
Conclusions

* Linearly-Ordered Hypergraphs

= Given a hypergraph with V vertices and E
hyperedges with a linear vertex order...

= Span of hyperedge: difference between the greatest and
smallest vertices connected by the same hyperedge

= i-th cut: number of edges crossing vertex i+0.5
= Cutwidth: maximum cut of all vertices i, i T (0,..,n-1)

= An objective of vertex ordering: identify a linear vertex
order that minimizes the span and cutwidth of the
instance

=
I

>) ——

* Bad vs. Good Vertex Orderings

v y v

|
5bcde

t t £
Total Span=8 Cutwidth =3

| I

| R
b d a e ¢

Total Span=4 Cutwidth=1

How does vertex reordering help?

Converting CNF Formulas to Hypergraphs:
* Variablesb Vertices
* Clauses b Hyperedges

f(ab,cde =(a+d+e U(b+d) U(c+e

* Related Work

= Circuits with small cutwidth are theoretically
“easy” for SAT [Prasad et al. 99]

» Sizes of BDDs are correlated with circuit cutwidth
[Berman 91, McMillan 92]

= Extracted BDD variable orderings from linear
spectral hypergraph placement [Wood et al. 98]

= This work considers average cutwidth instead of
maximum cutwidth

* Example
Hole-7 Instance

Clauses

(clausesin red)

hole7 enf.new

hale7 enfold

Clauses

80 B0

o] 10 20 30 40 a0 B0 0 10 20 30 40
Variables Variables

Original Variable Order MINCE Variable Order

Observation: Crossing
* Minimization

V-1
Total Span = é_ span(e) = é_ é_ 1=#xings=é_ é_ 1=é_ cut(i)
dcxc i=0

dE dEXe
"

a el LY T
~iT @@]
& cut() & span(e)
E . dc RNl - AverageSpan

AverageCut = =2 = . =
g V-1 V-1 E V U

Min. AverageCut « Min. AverageSpan

AverageCut » % - AverageSpan

Known from VLS| placement:
Recursive Min-cut Bisection b Min. Total Net Length in LinPlacement

* Linear Placement

= Net length objective (aka “bounding box™)
= For CNF instances, translates into & clause span

= 30+ years of placement research
= Recursive bisection a leading method
= Applied to SAT in this work

= CAPO: Effecient hypergraph placement software
= Caldwell, Kahng and Markov [DAC 00]
= Based on Recursive Min-cut Bisection
= Multilevel Fiduccia-Mattheyses (FM)
= Open-source, free:
http://visicad.cs.ucla.edu/software/PDtools
= Runsin: Q(Nlog®N) , Nis size of input

* Min-Cut MLFM Partitioning

= MLPart: Efficient min-cut hypergraph partitioner
= Caldwell, Kahng and Markov [ASPDAC 00]
= Outperforms hMetis (Karypis et al. [DAC 97])
= Runsin: Q(NlogN)
= Called by CAPO

= Basic Idea:
= Group original variables @
= Induce clustered hypergraphs
= Partition clustered hypergraphs @
Gy @
Cluster oy

= Refine partitioned hypegraphs

= Partition & refinement by

Fiduccia-Mattheyses Refine

*By G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar

* MINCE - Flow Diagram

/MINCE [CNFinstance | I
Flow v

| Hypeigraph |

Linear Min-cut Placement by
Recursive MLFM P?rtiti oning. e.g.CAPO

| Variable ordering for CNF |

k | Preprocessed CNF instance | /

/ \
| SATSolver | | BDD Engine |

* Experimental Setup

SAT engine: GRASP SAT Solver

BDD engine: CUDD Package

Time-out limit: 10,000 seconds

Memory limit: 500 Mb

Platform: 333 MHz Pentium Il with Linux
Benchmarks: DIMACS, N-Queens, ISCAS89

SAT Results

DIMACS Benchmarks*

216

90,000+
80,000+
70,000+
60,000+
50,000+
40,000+
30,000+
20,000+
10,000

0

Total Runtime (sec)

DLCS MSOS Fixed MSTS DLIS MINCE

*Except f, g, par32

SAT Results

Selected DIMACS Instances

100,000

@ Original
10,000 = w/MINCE

1,000+

100+

Avg Var Cut

1 et
Aim Bf dub hanoi hole ii16 ii32 ii8 jnh parl6 par8 pret ssa

SAT Results

Selected NQueens Instances

35,000

Total RunTime (sec)

MSOS MSTS Fixed DLIS DLCS MINCE

BDD Results

|SCAS 89 Benchmarks

16
14+
12+
10+

Completed Instances

o N M O ©
| | | | |

Fixed Random Fixed-Sift Random-Sift MINCE

Best- vs. Worst-case
i Performance

= SAT/BDD
= Worst-case: exp. Best-case: Q(N)
= Recursive min-cut bisection placement
= Worst-case: Q(Nlog>N) Best-case: Q(Nlog* N)
= Very easy problem instances
= DLL/BDD run in near-linear time
= Vertex ordering only slows DLL/BDD
= MINCE is not helpful for easy instances

i Conclusions

= MINCE is useful in capturing the structural
properties of CNF instances

= MINCE ordering is very effective in reducing
SAT runtime time and BDD runtime/memory
requirements

= The ordering is easily generated in a
preprocessing step

= No source code modification needed
= Tools are publicly available!

i Future Work

Dramatic speedup improvements possible
Further improving the MINCE algorithm
Accounting for polarities of literals in
hypergraphs

Applying the ordering to symbolic simulation

Tracking empirical correlation between
problem complexity and its cutwidth

Check out MINCE @:
http://andante.eecs.umich.edu/mince

10

