
1

Faster SAT and Smaller BDDs via
Common Function Structure

Fadi A. Aloul, Igor L. Markov,
Karem A. Sakallah

University of Michigan

Motivation
Hole-7 Instance
(clauses in red)

Original Variable Order “New” Variable Order

2

Outline
n Hypergraph Terminology
n Motivating Example
n Multilevel Partitioning
n MINCE Algorithm
n Experimental Results
n Conclusions

Linearly-Ordered Hypergraphs
n Given a hypergraph with V vertices and E

hyperedges with a linear vertex order…

a b edc

n Span of hyperedge: difference between the greatest and
smallest vertices connected by the same hyperedge
n i-th cut: number of edges crossing vertex i+0.5
n Cutwidth: maximum cut of all vertices i, i ∈(0,..,n-1)
n An objective of vertex ordering: identify a linear vertex
order that minimizes the span and cutwidth of the
instance

3

Bad vs. Good Vertex Orderings

a b edc

Total Span = 8 Cutwidth = 3 Total Span = 4 Cutwidth = 1

b d cea

Converting CNF Formulas to Hypergraphs:
• Variables ⇒ Vertices
• Clauses ⇒ Hyperedges

f(a,b,c,d,e) = (a + d + e) ∧ (b + d) ∧ (c + e)

How does vertex reordering help?

Related Work
n Circuits with small cutwidth are theoretically

“easy” for SAT [Prasad et al. 99]
n Sizes of BDDs are correlated with circuit cutwidth

[Berman 91, McMillan 92]
n Extracted BDD variable orderings from linear

spectral hypergraph placement [Wood et al. 98]

n This work considers average cutwidth instead of
maximum cutwidth

4

Example
Hole-7 Instance
(clauses in red)

Original Variable Order MINCE Variable Order

C

Observation: Crossing
Minimization

Known from VLSI placement:
Recursive Min-cut Bisection ⇒ Min. Total Net Length in LinPlacement

≈1E

espan
nAverageSpa Ee

∑
∈=

)(

∑∑∑∑∑∑
−

=∈ ∈∈ ∈∈

=====
1

0

)(1#1)(
V

iCc cxEe exEe

icutxingsespanTotalSpan

nAverageSpa
V

C
AverageCut •≈ nAverageSpaMinAverageCutMin .. ↔

nAverageSpa
V

V

V

E

E

espan

V

E

V

icut
AverageCut Ee

v

i •
−

•=•
−

=
−

=
∑∑
∈

−

=

1

)(

11

)(
1

0

a b edc

x

x

x x

xx x

x

5

Linear Placement
n Net length objective (aka “bounding box”)

n For CNF instances, translates into ∑ clause span

n 30+ years of placement research
n Recursive bisection a leading method
n Applied to SAT in this work

n CAPO: Effecient hypergraph placement software
n Caldwell, Kahng and Markov [DAC 00]
n Based on Recursive Min-cut Bisection
n Multilevel Fiduccia-Mattheyses (FM)
n Open-source, free:

http://vlsicad.cs.ucla.edu/software/PDtools
n Runs in: , N is size of input)log(2 NNΘ

Min-Cut MLFM Partitioning
n MLPart: Efficient min-cut hypergraph partitioner

n Caldwell, Kahng and Markov [ASPDAC 00]
n Outperforms hMetis (Karypis et al. [DAC 97])
n Runs in:
n Called by CAPO

n Basic Idea:
n Group original variables
n Induce clustered hypergraphs
n Partition clustered hypergraphs
n Refine partitioned hypegraphs
n Partition & refinement by

Fiduccia-Mattheyses
*By G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar

Cluster Refine

)log(NNΘ

6

MINCE
Flow

MINCE - Flow Diagram
Circuit

CNF instance

Hypergraph

Linear Min-cut Placement by
Recursive MLFM Partitioning. e.g.CAPO

Preprocessed CNF instance

Variable ordering for CNF

BDD EngineSAT Solver

Experimental Setup
n SAT engine: GRASP SAT Solver
n BDD engine: CUDD Package
n Time-out limit: 10,000 seconds
n Memory limit: 500 Mb
n Platform: 333 MHz Pentium II with Linux
n Benchmarks: DIMACS, N-Queens, ISCAS89

7

SAT Results

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

To
ta

l R
un

tim
e

(s
ec

)

DLCS MSOS Fixed MSTS DLIS MINCE

DIMACS Benchmarks*

219218

219

216

222

218

*Except f, g, par32

SAT Results

1

10

100

1,000

10,000

100,000

A
vg

 V
ar

 C
ut

Aim Bf dub hanoi hole ii16 ii32 ii8 jnh par16 par8 pret s s a

Original
w /MINCE

Selected DIMACS Instances

8

SAT Results

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

To
ta

l R
un

Ti
m

e
(s

ec
)

MSOS MSTS Fixed DLIS DLCS MINCE

Selected NQueens Instances

BDD Results

0

2

4

6

8

10

12

14

16

C

o
m

p
le

te
d

 In
st

an
ce

s

Fixed Random Fixed-Sift Random-Sift MINCE

ISCAS 89 Benchmarks

9

Best- vs. Worst-case
Performance
n SAT/BDD

n Worst-case: exp. Best-case:
n Recursive min-cut bisection placement

n Worst-case: Best-case:
n Very easy problem instances

n DLL/BDD run in near-linear time
n Vertex ordering only slows DLL/BDD
n MINCE is not helpful for easy instances

)(NΘ

)log(2 NNΘ)log(2 NNΘ

Conclusions
n MINCE is useful in capturing the structural

properties of CNF instances
n MINCE ordering is very effective in reducing

SAT runtime time and BDD runtime/memory
requirements

n The ordering is easily generated in a
preprocessing step

n No source code modification needed
n Tools are publicly available!

10

Future Work
n Dramatic speedup improvements possible
n Further improving the MINCE algorithm
n Accounting for polarities of literals in

hypergraphs
n Applying the ordering to symbolic simulation
n Tracking empirical correlation between

problem complexity and its cutwidth

n Check out MINCE @:
http://andante.eecs.umich.edu/mince

