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Linearly-Ordered Hypergraphs
n Given a hypergraph with V vertices and E 

hyperedges with a linear vertex order…

a b edc

n Span of hyperedge: difference between the greatest and 
smallest vertices connected by the same hyperedge
n i-th cut: number of edges crossing vertex i+0.5
n Cutwidth: maximum cut of all vertices i, i ∈(0,..,n-1)
n An objective of vertex ordering: identify a linear vertex 
order that minimizes the span and cutwidth of the 
instance
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Bad vs. Good Vertex Orderings

a b edc

Total Span = 8    Cutwidth = 3 Total Span = 4    Cutwidth = 1

b d cea

Converting CNF Formulas to Hypergraphs:
• Variables ⇒ Vertices
• Clauses    ⇒ Hyperedges

f(a,b,c,d,e) = (a + d + e) ∧ (b + d) ∧ (c + e)

How does vertex reordering help?

Related Work
n Circuits with small cutwidth are theoretically 

“easy” for SAT [Prasad et al. 99]
n Sizes of BDDs are correlated with circuit cutwidth

[Berman 91, McMillan 92]
n Extracted BDD variable orderings from linear 

spectral hypergraph placement [Wood et al. 98]

n This work considers average cutwidth instead of 
maximum cutwidth
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Example
Hole-7 Instance
(clauses in red)

Original Variable Order MINCE Variable Order

C

Observation: Crossing 
Minimization

Known from VLSI placement: 
Recursive Min-cut Bisection   ⇒ Min. Total Net Length in LinPlacement
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Linear Placement
n Net length objective (aka “bounding box”) 

n For CNF instances, translates into ∑ clause span 

n 30+ years of placement research
n Recursive bisection a leading method
n Applied to SAT in this work

n CAPO: Effecient hypergraph placement software
n Caldwell, Kahng and Markov [DAC 00]
n Based on Recursive Min-cut Bisection
n Multilevel Fiduccia-Mattheyses (FM)
n Open-source, free: 

http://vlsicad.cs.ucla.edu/software/PDtools
n Runs in:                       , N is size of input)log( 2 NNΘ

Min-Cut MLFM Partitioning
n MLPart: Efficient min-cut hypergraph partitioner 

n Caldwell, Kahng and Markov [ASPDAC 00]
n Outperforms hMetis (Karypis et al. [DAC 97])
n Runs in: 
n Called by CAPO

n Basic Idea:
n Group original variables
n Induce clustered hypergraphs
n Partition clustered hypergraphs
n Refine partitioned hypegraphs
n Partition & refinement by

Fiduccia-Mattheyses
*By G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar

Cluster Refine

)log( NNΘ
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MINCE
Flow

MINCE - Flow Diagram
Circuit

CNF instance

Hypergraph

Linear Min-cut Placement by
Recursive MLFM Partitioning. e.g.CAPO

Preprocessed CNF instance

Variable ordering for CNF

BDD EngineSAT Solver

Experimental Setup
n SAT engine: GRASP SAT Solver
n BDD engine: CUDD Package
n Time-out limit: 10,000 seconds
n Memory limit: 500 Mb
n Platform: 333 MHz Pentium II with Linux
n Benchmarks: DIMACS, N-Queens, ISCAS89
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SAT Results
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SAT Results
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Best- vs. Worst-case 
Performance
n SAT/BDD

n Worst-case: exp. Best-case: 
n Recursive min-cut bisection placement

n Worst-case:               Best-case:
n Very easy problem instances

n DLL/BDD run in near-linear time
n Vertex ordering only slows DLL/BDD
n MINCE is not helpful for easy instances

)(NΘ

)log( 2 NNΘ )log( 2 NNΘ

Conclusions
n MINCE is useful in capturing the structural 

properties of CNF instances
n MINCE ordering is very effective in reducing 

SAT runtime time and BDD runtime/memory 
requirements

n The ordering is easily generated in a 
preprocessing step

n No source code modification needed
n Tools are publicly available!
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Future Work
n Dramatic speedup improvements possible
n Further improving the MINCE algorithm 
n Accounting for polarities of literals in 

hypergraphs
n Applying the ordering to symbolic simulation
n Tracking empirical correlation between 

problem complexity and its cutwidth

n Check out MINCE @:
http://andante.eecs.umich.edu/mince


