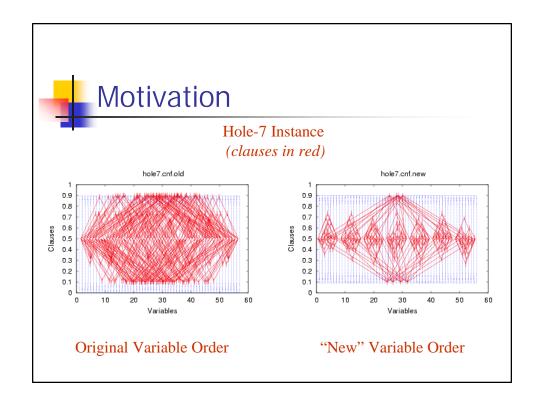


Faster SAT and Smaller BDDs via Common Function Structure

Fadi A. Aloul, Igor L. Markov, Karem A. Sakallah

University of Michigan

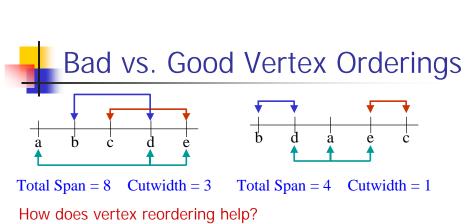


Outline

- Hypergraph Terminology
- Motivating Example
- Multilevel Partitioning
- MINCE Algorithm
- Experimental Results
- Conclusions

Linearly-Ordered Hypergraphs

- Given a hypergraph with V vertices and E hyperedges with a linear vertex order...
 - Span of hyperedge: difference between the greatest and smallest vertices connected by the same hyperedge
 - i-th cut: number of edges crossing vertex i+0.5
 - Cutwidth: maximum cut of all vertices i, i \in (0,...,n-1)
 - An objective of vertex ordering: identify a linear vertex order that minimizes the span and cutwidth of the instance



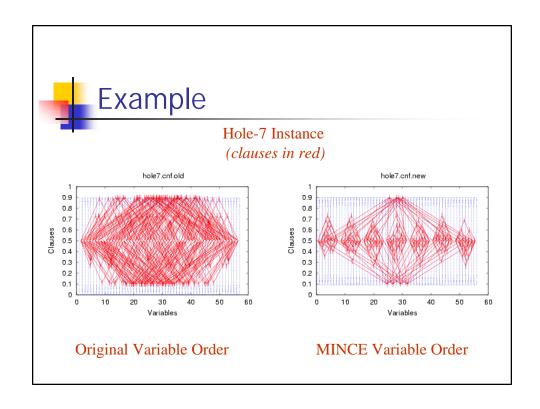
Converting CNF Formulas to Hypergraphs:

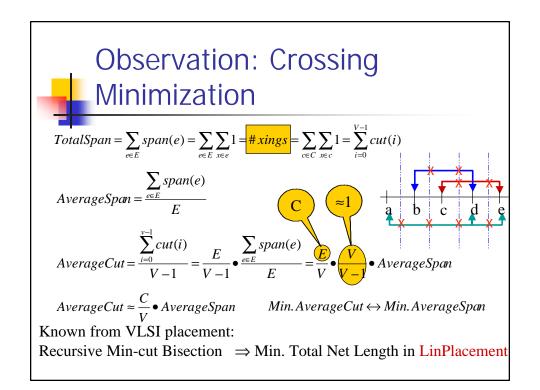
- Variables ⇒ Vertices
- Clauses \Rightarrow Hyperedges

$$f(a,b,c,d,e) = (a + d + e) \wedge (b + d) \wedge (c + e)$$

Related Work

- Circuits with small cutwidth are theoretically "easy" for SAT [Prasad et al. 99]
- Sizes of BDDs are correlated with circuit cutwidth [Berman 91, McMillan 92]
- Extracted BDD variable orderings from linear spectral hypergraph placement [Wood et al. 98]
- This work considers average cutwidth instead of maximum cutwidth





Linear Placement

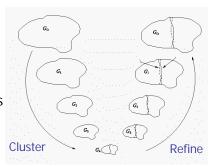
- Net length objective (aka "bounding box")
 - For CNF instances, translates into Σ clause span
- 30+ years of placement research
 - Recursive bisection a leading method
 - Applied to SAT in this work
- CAPO: Effecient hypergraph placement software
 - Caldwell, Kahng and Markov [DAC 00]
 - Based on Recursive Min-cut Bisection
 - Multilevel Fiduccia-Mattheyses (FM)
 - Open-source, free:

http://vlsicad.cs.ucla.edu/software/PDtools

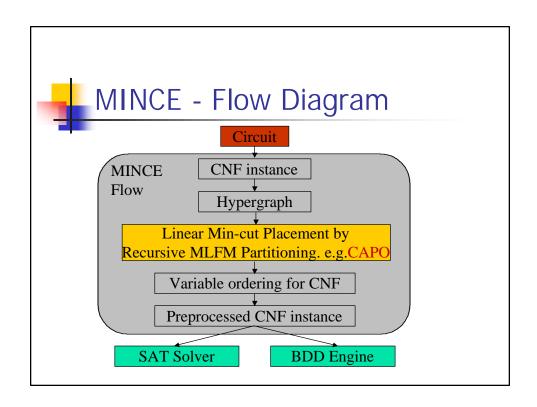
• Runs in: $\Theta(N \log^2 N)$, N is size of input

Min-Cut MLFM Partitioning

- MLPart: Efficient min-cut hypergraph partitioner
 - Caldwell, Kahng and Markov [ASPDAC 00]
 - Outperforms hMetis (Karypis et al. [DAC 97])
 - Runs in: $\Theta(N \log N)$
 - Called by CAPO
- Basic Idea:
 - Group original variables
 - Induce clustered hypergraphs
 - Partition clustered hypergraphs
 - Refine partitioned hypegraphs
 - Partition & refinement by Fiduccia-Mattheyses



*By G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar



Experimental Setup

SAT engine: GRASP SAT Solver

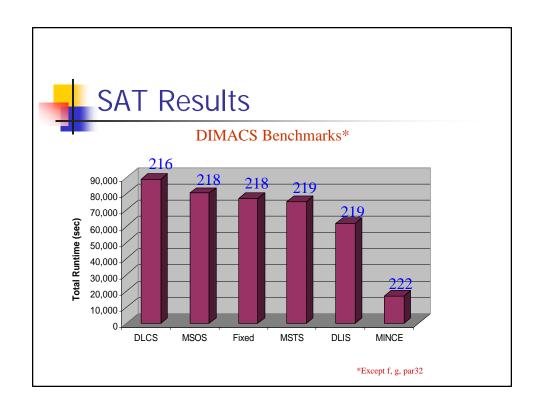
BDD engine: CUDD Package

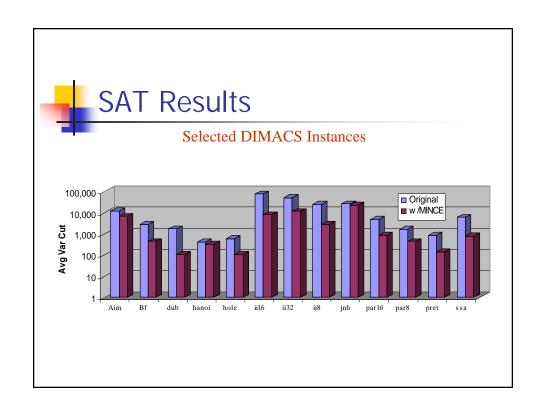
Time-out limit: 10,000 seconds

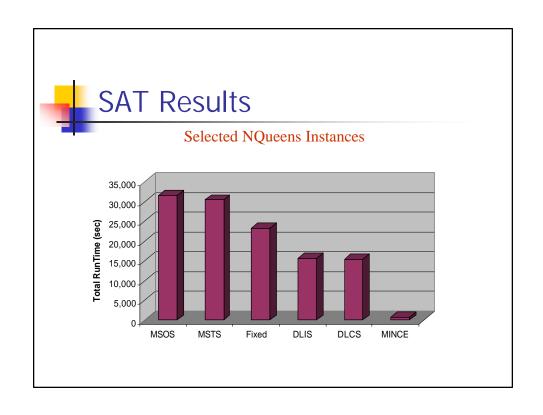
Memory limit: 500 Mb

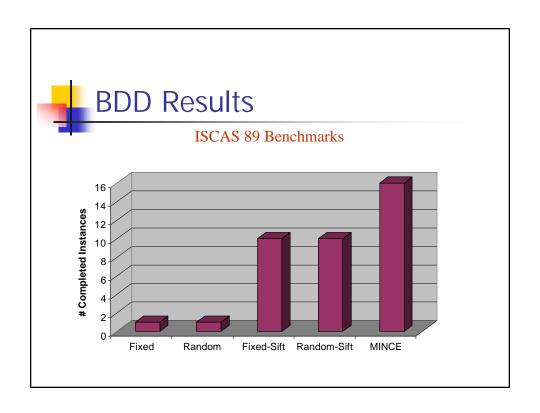
Platform: 333 MHz Pentium II with Linux

Benchmarks: DIMACS, N-Queens, ISCAS89









Best- vs. Worst-case Performance

- SAT/BDD
 - Worst-case: exp. Best-case: $\Theta(N)$
- Recursive min-cut bisection placement
 - Worst-case: $\Theta(N \log^2 N)$ Best-case: $\Theta(N \log^2 N)$
- Very easy problem instances
 - DLL/BDD run in near-linear time
 - Vertex ordering only slows DLL/BDD
 - MINCE is not helpful for easy instances

Conclusions

- MINCE is useful in capturing the structural properties of CNF instances
- MINCE ordering is very effective in reducing SAT runtime time and BDD runtime/memory requirements
- The ordering is easily generated in a preprocessing step
- No source code modification needed
- Tools are publicly available!

Future Work

- Dramatic speedup improvements possible
- Further improving the MINCE algorithm
- Accounting for polarities of literals in hypergraphs
- Applying the ordering to symbolic simulation
- Tracking empirical correlation between problem complexity and its cutwidth
- Check out MINCE @:

http://andante.eecs.umich.edu/mince