
OnOn--chip Test Generation chip Test Generation
Using Linear SubspacesUsing Linear Subspaces

RamashisRamashis Das, Igor Markov, John P. HayesDas, Igor Markov, John P. Hayes
University of Michigan University of Michigan
Ann Arbor, MI, USAAnn Arbor, MI, USA

2

OutlineOutline

IntroductionIntroduction
Theoretical FrameworkTheoretical Framework
Proposed DesignProposed Design
Experimental ResultsExperimental Results
ConclusionsConclusions

3

Generic BIST CircuitGeneric BIST Circuit

Basic blocks:Basic blocks:
Test Pattern Test Pattern
Generator (TPG)Generator (TPG)
Test controllerTest controller
Response Response
AnalyzerAnalyzer

TPG: Feeds TPG: Feeds
inputs to the inputs to the
circuit under testcircuit under test
RA: Compares RA: Compares
outputs with faultoutputs with fault--
free responsesfree responses

Test patter
generator TPG

Circuit under
test CUT

Response analyzer RA

Test
controller

4

Test Pattern Generator (TPG)Test Pattern Generator (TPG)

Performance of BIST determined byPerformance of BIST determined by
Efficiency of TPG in producing good test Efficiency of TPG in producing good test
vectorsvectors

Desired features:Desired features:
Low hardware overheadLow hardware overhead
High fault coverageHigh fault coverage
Short testing timeShort testing time

5

Generic TPG StructureGeneric TPG Structure

Basic blocks:Basic blocks:
State ControllerState Controller
ROMROM
Mapping LogicMapping Logic

SCSC: Holds current state : Holds current state
of TPG in of TPG in SRSR
MLML: Decodes state into : Decodes state into
test inputs for CUTtest inputs for CUT
MM: Stores pre: Stores pre--
determined test datadetermined test data

State controller SC

State register SR

ROM M

Mapping logic ML

To circuit under test (CUT)

6

PrePre--stored testsstored tests
Linear feedback shift registers (Linear feedback shift registers (LFSRsLFSRs))
Linear transformation circuits Linear transformation circuits [Akers, [Akers, ITCITC
1989]1989]

Obtain test set Obtain test set TT byby
running an ATPG programrunning an ATPG program
Embed Embed TT in in kk nn--bit vectorsbit vectors
SCSC: : kk--bit binary counterbit binary counter
MLML: XOR array: XOR array

Some Existing TPG DesignsSome Existing TPG Designs

Binary counter
(State controller SC)

XOR array
(Mapping logic ML)

To circuit under test (CUT)

7

Vector SpacesVector Spaces

Space: Largest set that satisfies closure Space: Largest set that satisfies closure
property on a field property on a field FF
For test vectors, vector space For test vectors, vector space V V is defined is defined
over bit vectorsover bit vectors andand the field the field FF22 = {0, 1}= {0, 1}

⊕⊕ –– bitbit--wise XORwise XOR
•• –– bitbit--wise ANDwise AND

For For n n = 3, the vector space is = 3, the vector space is
VV33 = {000, 001, 010, 011, 100, 101, 110, 111}= {000, 001, 010, 011, 100, 101, 110, 111}

8

Clusters (Subspaces)Clusters (Subspaces)

Cluster (subspace): subset of vector spaceCluster (subspace): subset of vector space
closed under bitclosed under bit--wise wise XORsXORs

Some clusters of Some clusters of VV33::
{000}{000}
{000, 001}{000, 001}
{000, 001, 010, 011}{000, 001, 010, 011}

Any cluster includes {000Any cluster includes {000……0}0}

9

BasesBases
Basis (of a cluster): set of vectorsBasis (of a cluster): set of vectors

Must produce the entire cluster by bitwise XOR Must produce the entire cluster by bitwise XOR
operations (linear combinations)operations (linear combinations)
Smallest such set (not unique)Smallest such set (not unique)

{001, 010} or {001, 011}, or
{010, 011}

{000, 001, 010, 011}

{ }{000}

{001}{000, 001}

Basis B3'Cluster V3'

011 = 001 ⊕⊕ 010

Example: Test set Example: Test set
CompressionCompression

ISCAS-85 c499 benchmark circuit

1: 01100111100110000011000101011010010110000
2: 10110001001010111111110110110001111101110
3: 11010101111010000001010110111000111010101
4: 10101110000100001101010110001011101001101
5: 00100010010010110011111101011001011101011
6: 00100000011110100000000111110111001011111
7: 11111101100110110100000010100000011010000
8: 11111011100101111010010000111100001010001
9: 00001110110000111111100111010100111001100
10: 11010101100010110001010111111011000011100
11: 10011010111000011111110101100011111001110
12: 01100000101110000111011101101011100110001
...
…
51: 00001000010000100010101011111011111010100
52: 10010100100011010111010001110111001011100
53: 11111111000000000110100100100001101101101

c499c499 ATALANTA

Compression ratio of 6.6!Compression ratio of 6.6!

Time to test: 2Time to test: 288 = 256= 256

11

Size ReductionSize Reduction

Entire Space Entire Space
(2(2nn vectors)vectors)

BasisBasis
((nn vectors)vectors)

12

Size ReductionSize Reduction

Single ClusterSingle Cluster

Storage overhead: Storage overhead: kk
Testing time: 2Testing time: 2kk

Cluster (2Cluster (2kk vectors)vectors)

Corresponding basis
(k vectors)

Basis of size Basis of size kk captures a cluster of captures a cluster of
size 2size 2kk

Compression ratio: 2Compression ratio: 2kk//kk

13

Single vs. Multiple ClustersSingle vs. Multiple Clusters

Single ClusterSingle Cluster

Corresponding basis

Storage overhead: Storage overhead: kk
Testing time: 2Testing time: 2kk

14

Single vs. Multiple ClustersSingle vs. Multiple Clusters

Storage overhead: Storage overhead: kk11 + + kk22 + + kk33 (> (> k, ~ kk, ~ k))
Testing time: 2Testing time: 2kk11 + + 22kk22 + 2+ 2kk3 3 (<< 2(<< 2kk))

Trade off:Trade off:

Multiple clustersMultiple clusters

Corresponding bases

15

Our Design FlowOur Design Flow

16

Basic Idea of our TPG DesignBasic Idea of our TPG Design

BasisBasis

Hardware toHardware to
generategenerate

cluster fromcluster from
basis vectorsbasis vectors

ControllerController

To circuit under test (CUT)To circuit under test (CUT)

State controller SC

State register SR

ROM M

Mapping logic ML

To circuit under test (CUT)

17

Generating a ClusterGenerating a Cluster

Enumerate all possible sums of basis vectorsEnumerate all possible sums of basis vectors
Use a Use a kk--bit binary counter bit binary counter b=0..2b=0..2kk--11
jjthth bit of count bit of count bb includes/excludes includes/excludes vvjj (basis vector)(basis vector)

Thus, Thus, bb determines a sum of basis vectors determines a sum of basis vectors XXbb

All possible All possible XXbb = all vectors in the subspace= all vectors in the subspace
Enumerated with a binary counter (or another counter!)Enumerated with a binary counter (or another counter!)

1

0

20, −

=

≤≤= ∑ k
j

k

j
jb bvbX

18

Example: Cluster GenerationExample: Cluster Generation

Basis: {Basis: {vv00 = 0001, = 0001, vv11 = 0011, = 0011, vv22 = 0101} = 0101}
Size = 3 Size = 3 → → need a 3need a 3--bit counter (state bit counter (state bb = = bb22bb11bb00))

vv00 = 0001= 0001

vv11 = 0011= 0011

vv22 = 0101= 0101
BitBit--wise XOR of the wise XOR of the
selected vectorsselected vectors

bb = 000= 000
bb = 001= 001

bb = 111= 111 X = 0000X = 0000
X = 0001X = 0001

bb = 110= 110

X = 0110 X = 0110
(0101(0101⊕⊕0011)0011)
X = 0111 X = 0111
(0101(0101⊕⊕00110011⊕⊕0001)0001)

19

Pros and ConsPros and Cons
of Binary Enumerationof Binary Enumeration
ProsPros

Basis selection is flexibleBasis selection is flexible
Allows one to ensure full fault coverageAllows one to ensure full fault coverage

ConsCons
Explicit XOR of all vectors Explicit XOR of all vectors →→ 22--D array of D array of XORsXORs
Large delays and area overhead due to Large delays and area overhead due to XORsXORs

Similar to test embedding [Akers, Similar to test embedding [Akers, ITCITC’’8989]]

20

Use Gray Codes Instead!Use Gray Codes Instead!

In Gray codes (000,00In Gray codes (000,0011,0,0111,011,0100,,111010……))
Two consecutive counts differ by a single bit Two consecutive counts differ by a single bit

We replace a binary counterWe replace a binary counter
with a Graywith a Gray--code counter incode counter in

1

0
20, −

=

≤≤= ∑ k
j

k

j
jg gvgX

XXg+1g+1 differs from differs from XXgg by basis vector by basis vector vvjj, ,
such that such that j=hj=h is the flipped bitis the flipped bit

hgg vXX ⊕=+1 Fewer XOR
gates required !

21

Example: Using Gray CodesExample: Using Gray Codes

001
010
001
100
001
010
001
-

One-hot
Gray code

0101000101000100
0100001101111101
0111000101100111
0110010100112110
0011000100100010
0010001100011011
0001000100000001
0000-0000-000

= Xg+1⊕ vhXgFlipping bit
index (h)

Gray code (g)

Basis: {Basis: {vv00 = 0001, = 0001, vv11 = 0011, = 0011, vv22 = 0101} = 0101}
Size = 3 Size = 3 → → need a 3need a 3--bit counter (state bit counter (state gg = = gg22gg11gg00))

22

Cluster Generation in H/WCluster Generation in H/W
One-hot

Gray code
counter

One-hot
Gray code

counter

ROM
Containing

Basis vectors

ROM
Containing

Basis vectors

Mapping logicMapping logic

One-hot encoded
address of the vector vh

vh

Circuit that computes
bit-wise XOR of vh and
previous test vector Xg

23

24

Design ImprovementDesign Improvement

kk--bit binary counterbit binary counter

Layer of XOR gatesLayer of XOR gates

SCSC

MLMLMultiple
levels of
logic
merged &
simplified

To circuit under test (CUT)

25

Our Design Flow Our Design Flow -- RevisitedRevisited

Subspace
selection

 Basic
TPG

design

Design
improvement

Clusters

Fault
simulator

ATALANTACircuit
netlist

Final
TPG

26

Subspace/Cluster SelectionSubspace/Cluster Selection
Find clusters & bases for a circuit Find clusters & bases for a circuit

To achieve full fault coverage (by subspaces)To achieve full fault coverage (by subspaces)
Optimize performance metrics:Optimize performance metrics:

Area overhead: # basis vectorsArea overhead: # basis vectors
Testing time: size of largest clusterTesting time: size of largest cluster

1.1. Start with {000Start with {000……0} vector in cluster 0} vector in cluster SS
2.2. Find faults not detected by Find faults not detected by S S (fault simulation)(fault simulation)
3.3. Run ATPG to obtain test vectors Run ATPG to obtain test vectors TT
4.4. Find Find tt ∈T that best increases fault coverage of that best increases fault coverage of SS
5.5. Add Add tt it to it to SS
6.6. Unless full fault coverage reached, go to step 2Unless full fault coverage reached, go to step 2

27

Results: Results: TestsetTestset CompressionCompression

409910.292141214450c3540

204810.5511111116178c5315

10248.60110108641c1355

20558.212141111533c1908

62692.5344011101233c2670

245775.1744113212207c7552

1284.431773132c6288

5274.4621395860c880

2566.631885341c499

2566.371885136c432

Test size

Compres-
sion ratio

(n1/n2)

Total
no. of
cluster

s

No. of
basis

vectors
(n2)

Max
cluster

size
No. of test

patterns (n1)

Proposed MethodATALANTA

No of
inputs

Bench-
mark

circuits

28

Results: Results: TestsetTestset SizeSize

40994828970659281923351c3540

2048n/a62184381922279c5315

10241760122344062144740963059c1355

205547001169365981923539c1908

62696128n/a33000655367689c2670

24577n/an/a32800n/a9276c7552

128n/a980031344351239c6288

5276402915968192765c880

256n/a2206467910241125c499

256n/a1253201024636c432

Our TPGGLFSRUse of
counters

Multiple
seeds/

polynomials

Akers
and

Jansz

Weighted
random
pattern

Test set size
Benchmark

circuits

29

Results: Area OverheadResults: Area Overhead

387824745429c6288

6831044926738c1355

715847761725c1908

9631595153093668c2670

983452454617n/ac7552

3216451739842708c5315

1127125510861027c3540

1099153113651208c880

5551044926784c499

468922827630c432

Our TPGCAPSGLFSR
Akers and

Jansz
Benchmark

circuits

30

ConclusionsConclusions
New onNew on--chip test generation techniquechip test generation technique

Uses linear subspaces and basesUses linear subspaces and bases
Uses GrayUses Gray--code enumerationcode enumeration
MultiMulti--level logic optimization (see paper)level logic optimization (see paper)
End result: compact hardware design End result: compact hardware design

Heuristic for selecting subspaces & basesHeuristic for selecting subspaces & bases
Salient features:Salient features:

Achieves complete fault coverageAchieves complete fault coverage
Relatively low hardware costRelatively low hardware cost
Relatively small test set (testing time)Relatively small test set (testing time)

31

Thank YouThank You

32

Future WorkFuture Work
Handling incompletely specified test Handling incompletely specified test
sets (donsets (don’’t cares)t cares)
Overlap of ClustersOverlap of Clusters
Trade off between fault coverage and Trade off between fault coverage and
area overhead and/or testing timearea overhead and/or testing time
Improvement in heuristic used to select Improvement in heuristic used to select
clustersclusters
Extension to scanExtension to scan--based testingbased testing

