
DAC 2002 1

Solving Difficult SAT Instances
In The Presence of Symmetry

Fadi A. Aloul, Arathi Ramani

Igor L. Markov and Karem A. Sakallah

University of Michigan

DAC 2002 2

Highlights of Our Work

No new SAT solvers are proposed

We improve performance of existing
complete SAT solvers by preprocessing

Evaluate on carefully chosen SAT benchmarks

� ignore easy benchmarks

� only worry about benchmarks with symmetries
(but the symmetries may not be given!)

� show applicability to chip layout (200x speed-ups)
and derive new hard SAT benchmarks

� show asymptotic improvements

DAC 2002 3

Outline

Symmetries and permutations
� Compact representations of symmetries

� Computational group theory

Symmetries of CNF instances
� Detection via Graph Automorphism

� Syntactic versus semantic symmetries

� Using symmetries to speed up search

Opportunistic symmetry detection

Empirical results

DAC 2002 4

Symmetries and Permutations

not a symmetry

Symmetries of the triangle:

1→2, 2→3, 3→1 (123)

1→3, 3→2, 2→1 (132)

1→2, 2→1, 3→3 (12)

1→1, 2→3, 3→2 (23)

1→3, 3→1, 2→2 (13)

1→1, 2→2, 3→3 “do nothing”

Permutations
can have
multiple
(disjoint)

cycles

symmetry

1

2

3

DAC 2002 5

Symmetries and Permutations (2)

apply (123) and then again (123): get (132)

apply (123) and then (12) : get (23)

all non-trivial symmetries
are products of (123) and (12) - “generators”

(123)

1

2

3

3

2

1

2

1

3

2

1

3

(12)

(123)

DAC 2002 6

Symmetries and Permutations (3)

Idea: represent symmetries of an object
by permutations that preserve the object

Composition of symmetries is modeled
by composition of permutations

� Composition is associative

� Every symmetry has an inverse

� The do-nothing symmetry is the identity

This enables applications of group theory

DAC 2002 7

Compact Representations

Represent the group of all symmetries

� Do not list individual symmetries

� List generating permutations (generators)

Elementary group theory proves:

� If redundant generators are avoided,

� A group with N elements can be represented
by at most log2(N) generators

Guaranteed exponential compression

DAC 2002 8

Compact Representations (2)

Sometimes can do better than log2(N)

E.g., consider the group Sk of
all k! permutations of 1..k

� Can be generated by (12) and (123..k)

� Or by (12), (23), (34),…, (k-1 k)

To use this guaranteed compression,
we need algorithms
in terms of permutation generators

DAC 2002 9

Computational Group Theory

Algorithms for group manipulation
in terms of generators are well known

� Published by Sims, Knuth, Babai and others

� Especially efficient for permutation groups

High-quality implementations available

� The GAP package – free, open-source
(GAP=“Groups, Algebra, Programming”)

� The MAGMA package – commercial

DAC 2002 10

Finding Symmetries of Graphs
Symmetry (automorphism) of a graph

� Permutation of vertices
that maps edges to edges

Additional constraints

� Vertex colors (labels): integers

� Every vertex must map into a vertex of same color

Computational Graph Automorphism

� Find generators of a graph’s group of symmetries

� GraphAuto ∈NP, and is believed to ∉P and ∉NPC

� Linear average-case runtime (but that’s irrelevant!)

� Algorithms implemented in GAP(GRAPE(NAUTY))

1

2

1

2

A B

D C

DAC 2002 11

Symmetries of CNF Formulae

Permutations of variables
that map clauses to clauses
� E.g., symmetries of (a+b+c)(d+e+f)

include (ab), (abc) as well as (ad)(be)(cf)

� Considering single swaps only is not enough

Ditto for variable negations (a→a’) and
compositions with permutations
� E.g., symmetries of (a+b+c)(d+e’+f’)

include (de’) as well as (ad)(be’)(cf’)

DAC 2002 12

CNF formula → colored graph

� Linear time and space

Find graph’s [colored] symmetries

� Worst-case exponential time

Interpret graph symmetries found
as symmetries of the CNF formula

� Permutational symmetries

� Phase-shift symmetries

Reduction to Graph Automorphism

DAC 2002 13

Reduction to Graph Automorphism

Clauses: A (x’ + y + z) , B (x + y’ + z’), C (y’ + z) 1 2 3 F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Vertices of two colors: clauses and vars
� One vertex per clause, two per variable

Edges of three types: (i) incidence,
(ii) consistency, and (iii) 2-literal clauses

1

2

1

2

A B

C

x x’ y y’ z z’

Symmetry:
(x x’)(y z’)(y’ z)

2 222

DAC 2002 14

Syntactic and Semantic Symmetries

CNF formula versus Boolean function

Syntactic symmetries

� symmetries of representation

Semantic symmetries of the object

� E.g., permutations and negations of variables
that preserve the value of the function
for all inputs

Any syntactic symmetry is also semantic

� but not vice versa, example: (a)(a’)(a+b)

DAC 2002 15

Speeding up SAT Search

Search space may have symmetries
� May have regions that map 1:1

� This makes search redundant

� (a+d)(b+d)(a+b)(…)…(…) ab’⇔a’b

Ideas for speed-ups
� Consider equivalence classes under symmetry

� Pick a representative for each class

� Search only one representative per class

This restricted search is ⇔ to original

DAC 2002 16

Symmetry-breaking Predicates

To restrict search

� Add clauses to the original CNF formula

(“symmetry-breaking” clauses)

� They will pick representatives of classes
and restrict search

Our main task is to find those clauses

� Use only permutations induced by generators

� Permutation → group of clauses
(a “symmetry-breaking” predicate)

DAC 2002 17

Construction of S.-b. Predicates

Earlier work:
� By Crawford, Ginsberg, Roy and Luks (92,96)

� Not based on cycle notation for permutations

Our construction is more efficient
� Every cycle considered separately

� In practice almost all cycles are 2- or 3-cycles
� Two types of 2-cycles: (aa’) and (ab)

� Symm.-breaking predicates: (a) and (a’+b) resp.

� For multiple cycles
� Procedure to chain symmetry-breaking predicates

CGRL

DAC 2002 18

Details: Individial Cycles (1)

Use an ordering of all variables (arbitrary)

� To prevent transitivity violations: (a+b’)(b+c’)(c+a)

(the construction by CGRL uses an ordering as well)

Symmetry-breaking predicate for cycle (ab):

� (a⇒b) aka (a≤b), if a precedes b in the ordering

� Think of partial variable assignments to b and a

� Must choose one from 01 and 10

00
01
10
11

(a’+b)

DAC 2002 19

Details: Individial Cycles (2)

S.-b. predicate for cycle (abc) is (a≤b≤c)

� For 3-var partial assignments, can cycle all 0s to front

For longer cycles, still can improve upon CGRL

Does ordering affect overall performance?

000
001
010
011

100
101
110
111

(a’+b)(b’+c)

DAC 2002 20

Details: Multiple Cycles(1)

Solution space reduction

� By 2x when (a) is added to break cycle (aa’)

� Still by 2x if permutation has cycles (aa’) and (bb’)

� By 4/3x when (a’+b) is added to break cycle (ab)

� What if a permutation has cycles (ab) and (cd) ?

� By 2x when (a≤b≤c) is added to break (abc)

Suppose you have cycles (aa’) and (uvt)

� Adding both predicates cuts solution space by 4x

Rule of thumb: after breaking a 2-cycle,
symmetry-break the square of the permutation

Next
slide

DAC 2002 21

Details: Multiple Cycles(2)

Rule of thumb: after breaking a 3-cycle,
symmetry-break the cube of the permutation

What if we have both (xy) and (uv) ?
� Squaring will kill the second cycle, so don’t square!

� Look at partial assignments for x,y: 00, 01, 10 and 11

� For 10 or 01, (x’+y) is all we can do

� For 00 or 11, can add (u’+v)

� Adding (x≤y) and (x=y)⇒(u≤v)
cuts the solution space by 8/5x (better than 4/3x)

For 3-cycles, add (x=y=z)⇒(u≤v≤w) or the like

For multiple cycles ((x=y=z)&(a=b))⇒(u≤v), etc

DAC 2002 22

Discussion

We detect syntactic symmetries only
� If more semantic symmetries available,

can use them in the same way

Symmetry-detection can take long time
� Sometimes longer than solving SAT

In some cases the only symmetry is trivial
� Symm. detection is often fast in these cases

Symmetry-breaking using generators only
is not exhaustive (remark by CGRL)
� But makes symmetry-breaking practical (our result)

� Pathological cases are uncommon:why?(future work)

DAC 2002 23

Evaluation and Benchmarks

Most of DIMACS benchmarks are
easy for existing solvers

We focus on difficult CNF instances

� Pigeon-hole-n (PHP-n), Urquhart, etc.

Observe that PHP-n can appear in apps

EDA layout apps (routing) → symmetry

We generate satisfiable and unsatisfiable CNF
instances related to PHP-n

DAC 2002 24

FPGA Routing Benchmarks

a b c d

e f g h

0
1
2

DAC 2002 25

Global Routing Benchmarks

S

EE

E

S

SS

E

E

S

11ih

11iv

1

2

3

1 2 3
tracks

Construct difficult grid-routing
instances by “randomized flooding”

Then convert to CNF

DAC 2002 26

Empirical Results - Chaff
Plain Time-

S/U #V #CL Chaff out Finding Number Search Total Search

sec % sec of cycles Time only

hole7 U 56 204 0.37 0% 0.1 2.03E+08 all 13 0.01 3.32 36.50

hole8 U 72 297 1.27 0% 0.07 1.46E+10 all 15 0.01 15.22 94.15

hole9 U 90 415 3.79 0% 0.1 1.32E+12 all 17 0.02 32.00 204.97

hole10 U 110 561 22.44 0% 0.15 1.45E+14 all 19 0.02 130.07 997.18

hole11 U 132 738 212.73 0% 0.13 1.91E+16 all 21 0.03 1329.54 7090.88

hole12 U 156 949 1000 100% 0.24 2.98E+18 all 23 0.04 3597.12 26315.79

Urq3_5 U 46 470 232.44 10% 0.48 5.37E+08 all 29 0.00 484.16 2.32E+06

Urq4_5 U 74 694 250.01 25% 1.35 8.80E+12 all 43 0.00 185.18 2.50E+06

Urq5_5 U 121 1210 1000 100% 13.15 4.72E+21 all 72 0.00 76.05 1.00E+07

Urq6_5 U 180 1756 1000 100% 62.93 6.49E+32 all 109 0.00 15.89 1.00E+07

Urq7_5 U 240 2194 1000 100% 176.62 1.12E+43 all 143 0.00 5.66 1.00E+07

Speedup
Instance #generators

Symmetries

DAC 2002 27

Empirical Results - Chaff

3267.97212.490.3159all1.89E+524.4100%10004220440Uchnl11x20

4792.24633.450.1645all1.24E+351.0820%788.321742286Uchnl11x13

1415.51231.310.1543all7.31E+320.750%207.371476264Uchnl11x12

3961.49454.780.1747all4.50E+371.2825%657.612130300Uchnl10x15

663.00111.630.1241all6.04E+300.610%81.881344240Uchnl10x12

210.1339.910.1139all4.20E+280.450%22.171122220Uchnl10x11

33.152.450.8528103.48E+1010.650%28.18108621056Sgrout3.3-10

31.802.730.6728103.48E+107.140%21.308356912Sgrout3.3-08

53.792.700.3627102.61E+106.810%19.368356912Sgrout3.3-04

110.894.750.4029106.97E+108.940%44.359156960Sgrout3.3-03

28.373.480.6726108.71E+094.790%19.017592864Sgrout3.3-01

onlyTimecyclesofsec%sec

SearchTotal Search#generatorsNumberFindingoutChaff#CL#VS/U

SpeedupSymmetries
Time

-Plain
Instance

DAC 2002 28

Empirical Results - Chaff

12195.12143.230.08110all8.85E+776.9100%10001242234Sfpga13_12

12195.12242.600.0893all5.76E+774.04100%1000905195Sfpga13_10

8593.75208.810.0684all2.56E+772.5785%550.00759176Sfpga13_9

16388.89504.560.0579all2.25E+771.780%885.00684162Sfpga12_9

3103.14188.390.0872all8.41E+771.2310%246.70560144Sfpga12_8

616.9214.740.13104all7.44E+775.310%80.201128216Sfpga12_12

11377.05181.630.0695all7.18E+773.7650%694.00968198Sfpga12_11

113.394.160.0368all6.33E+770.880%3.80549135Sfpga10_9

157.5611.150.0562all6.00E+710.630%7.56448120Sfpga10_8

onlyTimecyclesofsec%sec

SearchTotal Search#generatorsNumberFindingoutChaff#CL#VS/U

SpeedupSymmetries
Time

-Plain
Instance

DAC 2002 29

Empirical Results - Chaff

1.121.02290.50227103.64E+7829.420%325.921954529471U5pipe

1.010.98334.00142101.03E+789.320%337.61802135237U4pipe

1.010.9136.2078101.42E+773.630%36.44275332468U3pipe

1.230.252.805103.20E+0111.090%3.438213925U2pipe_2_ooo

1.410.241.803108.00E+009.020%2.557026834U2pipe_1_ooo

1.600.181.3038102.26E+4510.470%2.086695892U2pipe

1.210.765.4264102.34E+773.170%6.54246403250U2dlx_ca_mc

1.850.0819.6585107.29E+77463.570%36.44275332468U3pipe

1.220.252.825103.20E+0111.140%3.438213925U2pipe_2_ooo

1.410.231.803108.00E+009.370%2.557026834U2pipe_1_ooo

1.330.171.5638102.26E+4510.740%2.086695892U2pipe

1.040.156.3066109.36E+7738.360%6.54246403250U2dlx_ca_mc

onlyTimecycleofsec%sec

SearchTot Search#generatorsNumberFindingoutChaff#CL#VS/U

SpeedupSymmetriesTime-Plain

Instance

DAC 2002 30

Domain-specific
Symmetry-Breaking Predicates

We looked at symmetry generators
for global routing benchmarks

Those symmetries were permutations
of routing tracks

Symmetry-breaking clauses can be
added when converting to CNF
� Serious speed-up for Chaff in all cases

No symmetries left after that

DAC 2002 31

Fast Symmetry Detection

1

2

1

2

A B

C

x x’ y y’ z z’

Symmetry:
(x x’)(y z’)(y’ z)

2 22

E 1

22

D

2 2

1

2

a b u v

DAC 2002 32

Conclusions

Pre-processing speeds up SAT solvers
on difficult instances with symmetries

� Strong empirical results on new and old BMs

Improved constructions

� Reduction to graph automorphism

� Symmetry-breaking predicates

� Cycle-based construction

� Using generators only

Many important questions not answered

Significant on-going work

DAC 2002 33

DAC 2002 34

Empirical Results - Chaff

Plain Time-

S/U #V #CL Chaff out Finding Number Search Total Search

sec % sec of cycles Time only

grout3.3-01 S 864 7592 19.01 0% 4.79 8.71E+09 10 26 0.67 3.48 28.37

grout3.3-03 S 960 9156 44.35 0% 8.94 6.97E+10 10 29 0.40 4.75 110.89

grout3.3-04 S 912 8356 19.36 0% 6.81 2.61E+10 10 27 0.36 2.70 53.79

grout3.3-08 S 912 8356 21.30 0% 7.14 3.48E+10 10 28 0.67 2.73 31.80

grout3.3-10 S 1056 10862 28.18 0% 10.65 3.48E+10 10 28 0.85 2.45 33.15

chnl10x11 U 220 1122 22.17 0% 0.45 4.20E+28 all 39 0.11 39.91 210.13

chnl10x12 U 240 1344 81.88 0% 0.61 6.04E+30 all 41 0.12 111.63 663.00

chnl10x15 U 300 2130 657.61 25% 1.28 4.50E+37 all 47 0.17 454.78 3961.49

chnl11x12 U 264 1476 207.37 0% 0.75 7.31E+32 all 43 0.15 231.31 1415.51

chnl11x13 U 286 1742 788.32 20% 1.08 1.24E+35 all 45 0.16 633.45 4792.24

chnl11x20 U 440 4220 1000 100% 4.4 1.89E+52 all 59 0.31 212.49 3267.97

fpga10_8 S 120 448 7.56 0% 0.63 6.00E+71 all 62 0.05 11.15 157.56

fpga10_9 S 135 549 3.80 0% 0.88 6.33E+77 all 68 0.03 4.16 113.39

fpga12_11 S 198 968 694.00 50% 3.76 7.18E+77 all 95 0.06 181.63 11377.05

fpga12_12 S 216 1128 80.20 0% 5.31 7.44E+77 all 104 0.13 14.74 616.92

fpga12_8 S 144 560 246.70 10% 1.23 8.41E+77 all 72 0.08 188.39 3103.14

fpga12_9 S 162 684 885.00 80% 1.7 2.25E+77 all 79 0.05 504.56 16388.89

fpga13_9 S 176 759 550.00 85% 2.57 2.56E+77 all 84 0.06 208.81 8593.75

fpga13_10 S 195 905 1000 100% 4.04 5.76E+77 all 93 0.08 242.60 12195.12

fpga13_12 S 234 1242 1000 100% 6.9 8.85E+77 all 110 0.08 143.23 12195.12

2dlx_ca_mc U 3250 24640 6.54 0% 38.36 9.36E+77 10 66 6.30 0.15 1.04

2dlx_ca_mc U 3250 24640 6.54 0% 3.17 2.34E+77 10 64 5.42 0.76 1.21

2pipe U 892 6695 2.08 0% 10.47 2.26E+45 10 38 1.30 0.18 1.60

2pipe_1_ooo U 834 7026 2.55 0% 9.02 8.00E+00 10 3 1.80 0.24 1.41

2pipe_2_ooo U 925 8213 3.43 0% 11.09 3.20E+01 10 5 2.80 0.25 1.23

3pipe U 2468 27533 36.44 0% 3.63 1.42E+77 10 78 36.20 0.91 1.01

4pipe U 5237 80213 337.61 0% 9.32 1.03E+78 10 142 334.00 0.98 1.01
5pipe U 9471 195452 325.92 0% 29.42 3.64E+78 10 227 290.50 1.02 1.12

Speedup
Instance #generators

Symmetries

