Solving Difficult SAT Instances In The Presence of Symmetry

Fadi A. Aloul, Arathi Ramani Igor L. Markov and Karem A. Sakallah University of Michigan

Highlights of Our Work

- No new SAT solvers are proposed
- We improve performance of existing complete SAT solvers by preprocessing
- Evaluate on <u>carefully chosen SAT benchmarks</u>
 - ignore easy benchmarks
 - only worry about benchmarks with symmetries (but the symmetries may not be given!)
 - show applicability to chip layout (200x speed-ups)
 and derive new hard SAT benchmarks
 - show asymptotic improvements

Outline

- Symmetries and permutations
 - Compact representations of symmetries
 - Computational group theory
- Symmetries of CNF instances
 - Detection via Graph Automorphism
 - Syntactic versus semantic symmetries
 - Using symmetries to speed up search
- Opportunistic symmetry detection
- Empirical results

Symmetries and Permutations

Symmetries of the triangle:

$1 \rightarrow$	2,	2-	<i>⇒</i> 3,	3-	$\rightarrow 1$	(123)

$$1\rightarrow 3$$
, $3\rightarrow 2$, $2\rightarrow 1$ (132)

$$1\rightarrow 2$$
, $2\rightarrow 1$, $3\rightarrow 3$ (12)

$$1\rightarrow 1$$
, $2\rightarrow 3$, $3\rightarrow 2$ (23)

$$1 \rightarrow 3$$
, $3 \rightarrow 1$, $2 \rightarrow 2$ (13)

$$1\rightarrow 1, 2\rightarrow 2, 3\rightarrow 3$$

Permutations
can have
multiple
(disjoint)
cycles

"do nothing"

MichiganEngineering

DAC 2002

4

Symmetries and Permutations (2)

apply (123) and then again (123): get (132) apply (123) and then (12): get (23) all non-trivial symmetries are products of (123) and (12) - "generators"

DAC 2002

Symmetries and Permutations (3)

- Idea: represent symmetries of an object by permutations that preserve the object
- Composition of symmetries is modeled by composition of permutations
 - Composition is associative
 - Every symmetry has an inverse
 - The do-nothing symmetry is the identity
- This enables applications of group theory

Compact Representations

- Represent the group of all symmetries
 - Do not list individual symmetries
 - List generating permutations (generators)
- Elementary group theory proves:
 - If redundant generators are avoided,
 - A group with N elements can be represented
 by at most log₂(N) generators
- Guaranteed exponential compression

Compact Representations (2)

- Sometimes can do better than log₂(N)
- E.g., consider the group S_k of all k! permutations of 1..k
 - Can be generated by (12) and (123..k)
 - Or by (12), (23), (34),..., (k-1 k)
- To use this guaranteed compression, we need algorithms in terms of permutation generators

Computational Group Theory

- Algorithms for group manipulation in terms of generators are well known
 - Published by Sims, Knuth, Babai and others
 - Especially efficient for permutation groups
- High-quality implementations available
 - The GAP package free, open-source (GAP="Groups, Algebra, Programming")

DAC 2002

■ The MAGMA package — commercial

Finding Symmetries of Graphs

- Symmetry (automorphism) of a graph
 - Permutation of vertices that maps edges to edges
- Additional constraints
 - Vertex colors (labels): integers
 - Every vertex must map into a vertex of same color
- Computational Graph Automorphism
 - Find generators of a graph's group of symmetries
 - GraphAuto ∈ NP, and is believed to ∉ P and ∉ NPC
 - Linear average-case runtime (but that's irrelevant!)
- Algorithms implemented in GAP(GRAPE(NAUTY))

 Michigan Engineering

 BAC 2002

Symmetries of CNF Formulae

- Permutations of variables that map clauses to clauses
 - E.g., symmetries of (a+b+c)(d+e+f)
 include (ab), (abc) as well as (ad)(be)(cf)
 - Considering single swaps only is not enough
- ◆ Ditto for variable negations (a→a') and compositions with permutations
 - E.g., symmetries of (a+b+c)(d+e'+f') include (de') as well as (ad)(be')(cf')

Reduction to Graph Automorphism

- ◆ CNF formula → colored graph
 - Linear time and space
- Find graph's [colored] symmetries
 - Worst-case exponential time
- Interpret graph symmetries found as symmetries of the CNF formula
 - Permutational symmetries
 - Phase-shift symmetries

Reduction to Graph Automorphism

- Vertices of two colors: clauses and vars
 - One vertex per clause, two per variable
- Edges of three types: (i) incidence,
 (ii) consistency, and (iii) 2-literal clauses

Syntactic and Semantic Symmetries

- CNF formula versus Boolean function
- Syntactic symmetries

Michigan Engineering

- symmetries of representation
- Semantic symmetries of the object
 - E.g., permutations and negations of variables that preserve the value of the function for all inputs
- Any syntactic symmetry is also semantic
 - but not vice versa, example: (a)(a')(a+b)

Speeding up SAT Search

- Search space may have symmetries
 - May have regions that map 1:1
 - This makes search redundant
 - = $(\underline{a}+d)(\underline{b}+d)(a+b)(...)...(...)$

ab'⇔a'b

- Ideas for speed-ups
 - Consider equivalence classes under symmetry
 - Pick a representative for each class
 - Search only one representative per class
- ◆ This restricted search is ⇔ to original

Symmetry-breaking Predicates

- To restrict search
 - Add clauses to the original CNF formula ("symmetry-breaking" clauses)
 - They will pick representatives of classes and restrict search
- Our main task is to find those clauses
 - Use only permutations induced by generators
 - Permutation → group of clauses (a "symmetry-breaking" predicate)

Construction of S.-b. Predicates

Earlier work:

- By Crawford, Ginsberg, Roy and Luks (92,96)
- Not based on cycle notation for permutations
- Our construction is more efficient
 - Every cycle considered separately
 - In practice <u>almost all</u> cycles are 2- or 3-cycles
 - Two types of 2-cycles: (aa') and (ab)
 - Symm.-breaking predicates: (a) and (a'+b) resp.
 - For multiple cycles

MichiganEngineering

Procedure to chain symmetry-breaking predicates

Details: Individial Cycles (1)

- Use an ordering of all variables (arbitrary)
 - To prevent transitivity violations: (a+b')(b+c')(c+a) (the construction by CGRL uses an ordering as well)
- Symmetry-breaking predicate for cycle (ab):
 - (a⇒b) aka (a≤b), if a precedes b in the ordering
 - Think of partial variable assignments to b and a
 - Must choose one from 01 and 10

Details: Individial Cycles (2)

```
000 100 (a'+b)(b'+c)
001 101
010 110
011 111
```

- ◆ S.-b. predicate for cycle (abc) is (a≤b≤c)
 - For 3-var partial assignments, can cycle all 0s to front
- For longer cycles, still can improve upon CGRL
- Does ordering affect overall performance?

Details: Multiple Cycles(1)

- Solution space reduction
 - By 2x when (a) is added to break cycle (aa')
 - Still by 2x if permutation has cycles (aa') and (bb')
 - By 4/3x when (a'+b) is added to break cycle (ab)
 - What if a permutation has cycles (ab) and (cd)?
 - By 2x when $(a \le b \le c)$ is added to break (abc)
- Suppose you have cycles (aa') and (uvt)
 - Adding both predicates cuts solution space by 4x
- Rule of thumb: after breaking a 2-cycle, symmetry-break the square of the permutation

Next

slide

MichiganEngineering

Details: Multiple Cycles(2)

- Rule of thumb: after breaking a 3-cycle, symmetry-break the cube of the permutation
- What if we have both (xy) and (uv) ?
 - Squaring will kill the second cycle, so don't square!
 - Look at partial assignments for x,y: 00, 01, 10 and 11
 - For 10 or 01, (x'+y) is all we can do
 - For 00 or 11, can add (u'+v)
 - Adding $(x \le y)$ and $(x = y) \Rightarrow (u \le v)$ cuts the solution space by 8/5x (better than 4/3x)
- For 3-cycles, add $(x=y=z) \Rightarrow (u \le v \le w)$ or the like
- For multiple cycles $((x=y=z)&(a=b))\Rightarrow(u\leq v)$, etc MichiganEngineering

Discussion

- We detect <u>syntactic symmetries only</u>
 - If more semantic symmetries available, can use them in the same way
- Symmetry-detection can take long time
 - Sometimes longer than solving SAT
- In some cases the only symmetry is trivial
 - Symm. detection is often fast in these cases
- Symmetry-breaking using generators only is not exhaustive (remark by CGRL)
 - But makes symmetry-breaking practical (our result)
 - Pathological cases are uncommon:why?(future work)

Evaluation and Benchmarks

- Most of DIMACS benchmarks are easy for existing solvers
- We focus on difficult CNF instances
 - Pigeon-hole-n (PHP-n), Urquhart, etc.
- Observe that PHP-n can appear in apps
- ◆ EDA layout apps (routing) → symmetry
- We generate satisfiable and unsatisfiable CNF instances related to PHP-n

Global Routing Benchmarks

- Construct difficult grid-routing instances by "randomized flooding"
- Then convert to CNF

	Plain	Time-		Sym		Speedup						
Instance	S/U	#V	#CL	Chaff	out	Finding	Number	#genera	ators	Search	Total	Search
				sec	%	sec	of	cycles		Time		only
hole7	U	56	204	0.37	0%	0.1	2.03E+08	all	13	0.01	3.32	36.50
hole8	U	72	297	1.27	0%	0.07	1.46E+10	all	15	0.01	15.22	94.15
hole9	U	90	415	3.79	0%	0.1	1.32E+12	all	17	0.02	32.00	204.97
hole10	U	110	561	22.44	0%	0.15	1.45E+14	all	19	0.02	130.07	997.18
hole11	U	132	738	212.73	0%	0.13	1.91E+16	all	21	0.03	1329.54	7090.88
hole12	U	156	949	1000	100%	0.24	2.98E+18	all	23	0.04	3597.12	26315.79
Urq3_5	U	46	470	232.44	10%	0.48	5.37E+08	all	29	0.00	484.16	2.32E+06
Urq4_5	U	74	694	250.01	25%	1.35	8.80E+12	all	43	0.00	185.18	2.50E+06
Urq5_5	U	121	1210	1000	100%	13.15	4.72E+21	all	72	0.00	76.05	1.00E+07
Urq6_5	U	180	1756	1000	100%	62.93	6.49E+32	all	109	0.00	15.89	1.00E+07
Urq7_5	U	240	2194	1000	100%	176.62	1.12E+43	all	143	0.00	5.66	1.00E+07

				Plain	Time -		Symi	metries			Spe	edup
Instance	S/U	#V	#CL	Chaff	out	Finding	Number	#genera	tors	Search	Total	Search
				sec	%	sec	of	cycles		Time		only
grout3.3-01	S	864	7592	19.01	0%	4.79	8.71E+09	10	26	0.67	3.48	28.37
grout3.3-03	S	960	9156	44.35	0%	8.94	6.97E+10	10	29	0.40	4.75	110.89
grout3.3-04	S	912	8356	19.36	0%	6.81	2.61E+10	10	27	0.36	2.70	53.79
grout3.3-08	S	912	8356	21.30	0%	7.14	3.48E+10	10	28	0.67	2.73	31.80
grout3.3-10	S	1056	10862	28.18	0%	10.65	3.48E+10	10	28	0.85	2.45	33.15
chnl10x11	U	220	1122	22.17	0%	0.45	4.20E+28	all	39	0.11	39.91	210.13
chnl10x12	U	240	1344	81.88	0%	0.61	6.04E+30	all	41	0.12	111.63	663.00
chnl10x15	U	300	2130	657.61	25%	1.28	4.50E+37	all	47	0.17	454.78	3961.49
chnl11x12	U	264	1476	207.37	0%	0.75	7.31E+32	all	43	0.15	231.31	1415.51
chnl11x13	U	286	1742	788.32	20%	1.08	1.24E+35	all	45	0.16	633.45	4792.24
chnl11x20	U	440	4220	1000	100%	4.4	1.89E+52	all	59	0.31	212.49	3267.97

DAC 2002

_				Plain	Time n - Symmetries							eedup
Instance	S/U	#V	#CL	Chaff	out	Finding	Number	#genera	ntors	Search	Total	Search
				sec	%	sec	of	cycles		Time		only
fpga10_8	S	120	448	7.56	0%	0.63	6.00E+71	all	62	0.05	11.15	157.56
fpga10_9	S	135	549	3.80	0%	0.88	6.33E+77	all	68	0.03	4.16	113.39
fpga12_11	S	198	968	694.00	50%	3.76	7.18E+77	all	95	0.06	181.63	11377.05
fpga12_12	S	216	1128	80.20	0%	5.31	7.44E+77	all	104	0.13	14.74	616.92
fpga12_8	S	144	560	246.70	10%	1.23	8.41E+77	all	72	0.08	188.39	3103.14
fpga12_9	S	162	684	885.00	80%	1.7	2.25E+77	all	79	0.05	504.56	16388.89
fpga13_9	S	176	759	550.00	85%	2.57	2.56E+77	all	84	0.06	208.81	8593.75
fpga13_10	S	195	905	1000	100%	4.04	5.76E+77	all	93	0.08	242.60	12195.12
fpga13_12	S	234	1242	1000	100%	6.9	8.85E+77	all	110	0.08	143.23	12195.12

DAC 2002

				Plain	Time-			Speedup				
Instance	S/U	#V	#CL	Chaff	out	Finding	Number	#genera	ators	Search	Tot	Search
				sec	%	sec	of	cycle		Time		only
2dlx_ca_mc	U	3250	24640	6.54	0%	38.36	9.36E+77	10	66	6.30	0.15	1.04
2pipe	U	892	6695	2.08	0%	10.74	2.26E+45	10	38	1.56	0.17	1.33
2pipe_1_000	U	834	7026	2.55	0%	9.37	8.00E+00	10	3	1.80	0.23	1.41
2pipe_2_000	U	925	8213	3.43	0%	11.14	3.20E+01	10	5	2.82	0.25	1.22
3pipe	U	2468	27533	36.44	0%	463.57	7.29E+77	10	85	19.65	0.08	1.85
2dlx_ca_mc	U	3250	24640	6.54	0%	3.17	2.34E+77	10	64	5.42	0.76	1.21
2pipe	U	892	6695	2.08	0%	10.47	2.26E+45	10	38	1.30	0.18	1.60
2pipe_1_000	U	834	7026	2.55	0%	9.02	8.00E+00	10	3	1.80	0.24	1.41
2pipe_2_000	U	925	8213	3.43	0%	11.09	3.20E+01	10	5	2.80	0.25	1.23
3pipe	U	2468	27533	36.44	0%	3.63	1.42E+77	10	78	36.20	0.91	1.01
4pipe	U	5237	80213	337.61	0%	9.32	1.03E+78	10	142	334.00	0.98	1.01
5pipe	U	9471	195452	325.92	0%	29.42	3.64E+78	10	227	290.50	1.02	1.12

MichiganEngineering

Domain-specific Symmetry-Breaking Predicates

- We looked at symmetry generators for global routing benchmarks
- Those symmetries were permutations of routing tracks
- Symmetry-breaking clauses can be added when converting to CNF
 - Serious speed-up for Chaff in all cases
- No symmetries left after that

Fast Symmetry Detection

Michigan Engineering (x x')(y z')(y' z)

31

Conclusions

- Pre-processing speeds up SAT solvers on difficult instances with symmetries
 - Strong empirical results on new and old BMs
- Improved constructions
 - Reduction to graph automorphism
 - Symmetry-breaking predicates
 - Cycle-based construction
 - Using generators only
- Many important questions not answered

DAC 2002

Significant on-going work

				Plain	Time-	Symmetries					Speedup		
Instance	S/U	#V	#CL	Chaff	out	Finding	Number	#genera	ators	Search	Total	Search	
				sec	%	sec	of	cycles		Time		only	
grout3.3-01	S	864	7592	19.01	0%	4.79	8.71E+09	10	26	0.67	3.48	28.37	
grout3.3-03	S	960	9156	44.35	0%	8.94	6.97E+10	10	29	0.40	4.75	110.89	
grout3.3-04	S	912	8356	19.36	0%	6.81	2.61E+10	10	27	0.36	2.70	53.79	
grout3.3-08	S	912	8356	21.30	0%	7.14	3.48E+10	10	28	0.67	2.73	31.80	
grout3.3-10	S	1056	10862	28.18	0%	10.65	3.48E+10	10	28	0.85	2.45	33.15	
chnl10x11	U	220	1122	22.17	0%	0.45	4.20E+28	all	39	0.11	39.91	210.13	
chnl10x12	U	240	1344	81.88	0%	0.61	6.04E+30	all	41	0.12	111.63	663.00	
chnl10x15	U	300	2130	657.61	25%	1.28	4.50E+37	all	47	0.17	454.78	3961.49	
chnl11x12	U	264	1476	207.37	0%	0.75	7.31E+32	all	43	0.15	231.31	1415.51	
chnl11x13	U	286	1742	788.32	20%	1.08	1.24E+35	all	45	0.16	633.45	4792.24	
chnl11x20	U	440	4220	1000	100%	4.4	1.89E+52	all	59	0.31	212.49	3267.97	
fpga10_8	S	120	448	7.56	0%	0.63	6.00E+71	all	62	0.05	11.15	157.56	
fpga10_9	S	135	549	3.80	0%	0.88	6.33E+77	all	68	0.03	4.16	113.39	
fpga12_11	S	198	968	694.00	50%	3.76	7.18E+77	all	95	0.06	181.63	11377.05	
fpga12_12	S	216	1128	80.20	0%	5.31	7.44E+77	all	104	0.13	14.74	616.92	
fpga12_8	S	144	560	246.70	10%	1.23	8.41E+77	all	72	0.08	188.39	3103.14	
fpga12_9	S	162	684	885.00	80%	1.7	2.25E+77	all	79	0.05	504.56	16388.89	
fpga13_9	S	176	759	550.00	85%	2.57	2.56E+77	all	84	0.06	208.81	8593.75	
fpga13_10	S	195	905	1000	100%	4.04	5.76E+77	all	93	0.08	242.60	12195.12	
fpga13_12	S	234	1242	1000	100%	6.9	8.85E+77	all	110	0.08	143.23	12195.12	
2dlx_ca_mc	U	3250	24640	6.54	0%	38.36	9.36E+77	10	66	6.30	0.15	1.04	
2dlx_ca_mc	U	3250	24640	6.54	0%	3.17	2.34E+77	10	64	5.42	0.76	1.21	
2pipe	U	892	6695	2.08	0%	10.47	2.26E+45	10	38	1.30	0.18	1.60	
2pipe_1_000	U	834	7026	2.55	0%	9.02	8.00E+00	10	3	1.80	0.24	1.41	
2pipe_2_000	U	925	8213	3.43	0%	11.09	3.20E+01	10	5	2.80	0.25	1.23	
3pipe	U	2468	27533	36.44	0%	3.63	1.42E+77	10	78	36.20	0.91	1.01	
4pipe	U	5237	80213	337.61	0%	9.32	1.03E+78	10	142	334.00	0.98	1.01	
5pipe	U	9471	195452	325.92	0%	29.42	3.64E+78	10	227	290.50	1.02	1.12	