
1

Can Recursive Bisection Alone
Produce Routable Placements?

Andrew E. Caldwell

 Andrew B. Kahng

Igor L. Markov
http://vlsicad.cs.ucla.edu

Supported by Cadence

Outline

l Routability and the placement context

l Placement by recursive bisection

l UCLA Capo placer

l Empirical results

l Conclusions and open questions

2

Routability is a Requirement
For Placement
l VLSI placement is fixed-die, followed by routing

l Routing fails ⇒ placement was not useful

l Algorithms that produce routable placements
are more valuable (no fixes ⇒ cleaner EDA)

l Timing-driven placement
� does not excuse the routability requirement
� is a harder problem, not a different problem

l Question: can we achieve routability without
increasing wirelength ? (via a better global placer)

In This Work:

l Given
� a circuit
� a [very good] black-box router

l Definition
 a circuit placement is "100% auto-routable"
⇔ the router automatically completes all nets

without manual intervention

l OUR CRITERION: Less than “100% auto-
routability” == placement failure

l Sets the bar for placer evaluation

WL-driven Placement

Routing

Infeasible

3

Fixed-die vs Variable-die
l Fixed-die P&R (typically, N-layer metal)

� “cell sites” and routing tracks are fixed

� cannot “spread” rows and insert routing tracks

�makes achieving routability much harder

� is implied by modern design techniques
� power/ground planning, hierarchical block methodology

� assumed by Cadence LEF/DEF formats
� assumed by most commercial EDA tools

l Variable-die P&R (typically, 2-layer metal)
� row geometries, utilization, area not known in advance

� routability can be traded for area

Routability

l Routability is not a purely “ 0-1 property”
� router runtime explodes when routing gets harder

l May be harder with growing #nets
� need to use large benchmarks (10K cells and up)

l May be easier with increased # metal layers
� need to use very recent benchmarks

l Experimental question: Does decreasing overall
WL improve routability and routed wirelength ?

4

 Recursive Bisection Placement

etc.

Recursive Bisection (RB) Placement

l Framework for leading commercial tools
� fast and scalable
�can be extended to handle timing

l Key technologies
�balanced hypergraph bipartitioning

� UCLA MLPart (Caldwell/Kahng/Markov ASPDAC 2000)

�end-case processing
� optimal methods (Caldwell/Kahng/Markov ISPD ‘99)

l RB placement vastly improved in the last 2 years
�due to the multi-level partitioning breakthrough

l Experimental Q: does better RB improve routability?

5

UCLA Capo Placement Tool
l Open-source: vlsicad.cs.ucla.edu, openeda.org
l Employs recent advances in recursive bisection
l This paper: nothing used beyond recursive bisection
l Improved “flat” Fiduccia-Mattheyses (FM)

�better performance for small partitioning tolerance
�VLSI Design 2000

l Better Multi-Level Fiduccia-Mattheyses (MLFM)
� improves upon K0HWLV (DAC `97), faster
�ASP DAC 2000

l New block splitting heuristics for vertical cuts
→ “easier” partitioning instances and increased

solution space
l Hierarchical tolerance computation (UCLA TR-200002)

Experimental Flow

Industry router
from same vendor

Capo placer
(“Fast” = 1/2 MLFM)

Industry placer

Legalization (~2sec)
w/ industry placer

VLSI
Circuit
(LEF/DEF)

Computed: HPWL, WWL, routed WL and runtimes

6

Test Cells Nets White #Metal Placer HPWL WWL Place Routed Route
case spaceLayers x1e6 x1e6 time WL x1e6 time

1 11471 11828 24.30% 3 Industrial 2.8 3.22 182 3.43 223
+ UCLA Capo 2.68 3.05 269 3.3 293

 Capo-Fast 2.72 3.03 131 3.38 336
2 19832 22974 9.90% 6 Industrial 1.24 2.53 520 2.49 833
+ UCLA Capo 1.28 2.36 473 2.16 500

 Capo-Fast 1.31 2.12 270 2.22 502
3 20392 25634 14.20% 2 Industrial 5.93 7.7 414 7.9 613
+ UCLA Capo 5.6 7.18 471 7.52 579

 Capo-Fast 5.76 7.25 239 unroutable! 3840
4 25995 28603 8.70% 3 Industrial 10.8 13.6 427 17 5382
- UCLA Capo 10.3 12.8 837 17.9 6346

 Capo-Fast 10.2 12.5 394 17.8 5558
5 33917 39152 29.40% 4 Industrial 5.89 7.29 990 7.9 3502

 - infty UCLA Capo 5.73 6.88 1197 unroutable! 4196
 Capo-Fast 5.67 6.73 621 unroutable! 7355
6 35549 44121 0.10% 4 Industrial 9.67 12.3 1765 11.8 1120
+ UCLA Capo 9.3 11.4 1546 11.1 1050

 Capo-Fast 9.43 11.5 649 11.7 1055
7 42352 44490 29.30% 5 Industrial 37.1 47.7 981 44.3 624
= UCLA Capo 36.2 45.5 1154 44.5 615

 Capo-Fast 34.8 45.1 657 46 701

What About MCNC Benchmarks?
l Too old for meaningful routability evaluation

� > 10 years old, no longer representative (Alpert 98)
� row-based layouts use variable-die

l Most published WLs are unreliable
� solutions not available
� different row configurations used
� some placers place pads (on the boundary?)
� some assume given pad locations (which ones?)

l Capo runs on MCNC benchmarks (Bookshelf format)
� you can download Capo, run it and see solutions

� runtimes on a single Pentium III Xeon @550MHz
� avqlarge (25K cells, 33K nets) – 4.5min
� golem3 (100K cells, 217K nets) – 37 min

7

What Did Not Work For Us…

l “Overlapping” with bisections

l Fancy terminal propagation

l Explicit top-down look-ahead

l Improvements using analytical placement
� quadratic wirelength
� linear wirelength

l Using name-based hierarchies
� improvement on one example out of many

� the circuit was unusually hard to partition
� possible interpretation: need to improve partitioner

l “Placement Vcycling”

Conclusions

l Capo placer is scalable and competitive

� freely available for research and commercial use

l Better recursive bisection ⇒ better routability

� improving RB still makes sense (e.g., as proposed)

� improving min-cut partitioning still makes sense

l Weighted wirelength is not a good objective

l “better HPWL ⇒better routability” - not clear!

� We draw conclusions only about min-cut

� Folklore: analytical placements are hard to route

� Other WL minimization techniques may be better or worse

� Min-cut may be a better objective !

8

Open Questions

l Need transparent routability improvement
�not to affect wirelength of routable placements

l Is recursive bisection [done right] still the best method ?
�you can download Capo and compare

KWWS���YOVLFDG�FV�XFOD�HGX�*65&�ERRNVKHOI�6ORWV�3ODFHPHQ
W

