

Safe Delay Optimization for Physical Synthesis

Kai-hui Chang, Igor L. Markov and Valeria Bertacco

University of Michigan at Ann Arbor

Jan. 25, 2007

Improving Deep Submicron Layouts

- Current technology trends (≤ 90nm) ;
 - Interconnect delay is dominant
 - Impact of logic restructuring is difficult to predict
 - Use of placement information is critical

- Existing post-placement timing optimizations break down
 - Logic level timing analysis is inaccurate (route length and net delay estimates are arbitrary)
 - Estimated improvements may worsen timing
 - May increase congestion and route length
 - Critical nets may detour during routing
 - Lack of predictability

2

Our Work: Improving Predictability

- We define a new parameter of physical synthesis optimizations: physical safeness
- We propose a new safe physical synthesis technique
 - Predictable delay improvement
 - Easily verifiable correctness
 - Up to 86% improvement for IWLS2005 benchmarks with < 1% increase in route length and via count
 - 11% delay improvement on average

Outline

- Physical safeness
- Our physical synthesis approach
- Experimental results
- Conclusions

4

Physical Safeness

- Preserving physical parameters
 - Timing, congestions, distances, locations
- Safe techniques allow only legal changes
 - Accurate analysis can be performed
 - Changes that worsen lavout are rejected immediately

 Unsafe techniques allow overlaps and route length increase

- Legalization is required
- Accurate analysis cannot be performed immediately

5

Physical Safeness

- Preserving physical parameters
 - Timing, congestions, distances, locations
- Safe techniques allow only legal changes
 - Accurate analysis can be performed
 - Changes that worsen layout are rejected immediately

 Unsafe techniques allow overlaps and route length increase

Batched legalization leads to unpredictability

Legalization is required

Accurate analysis cannot be performed immediately

Safe/Unsafe Examples: Rewiring

- Symmetry-based rewiring
- Physically safe

- ATPG-based rewiring
- Physically unsafe

	g1		g2		Ç	j 3		
•	g	g5 4 OR3			h	g6		
	g7	7	g8		g	9		

Must call legalizer to remove overlaps

Physical Synthesis Techniques

ATPG-based rewiring, buffer insertion, gate sizing, gate relocation	Safe Unsafe	Low
Gate replication	Unsafe	Medium
Restructuring	Unsafe	High
Safe Resynthesis	Safe	Medium

Safe Resynthesis is useful by itself or after unsafe techniques for further optimization

7

- Physical safeness
- Our physical synthesis approach
 - Naïve variant
 - Enhanced variant
- Experimental results
- Conclusions

Safe Resynthesis

1. Simulate patterns and generate a signature for each wire in the circuit

Input vectors

I_1	I_2	I_3	I ₄	I_5
0	1 1 1 0	1	0	0
1	1	1	1	1
1	1	0	0	1
1	0	1	0	0

Safe Resynthesis (Naïve Approach)

2. Resynthesize the target wire w_1 with combinations of different gates and wires

(naïve: may end up trying gates of all types at all locations)

Safe Resynthesis

3. Place the new gate at overlap-free sites near the center-of-gravity of its inputs and outputs

The location with the maximum improvement will be chosen Equivalence checking verifies its correctness 12

Safe Resynthesis (Faster Approach)

- Trying all possible combinations is too expensive – will be improved
- Efficient search pruning
 - Physical constraints: improves timing? (based on arrival times, locations and distances)
 - Logical constraints: preserves functionality? (based on controlling values of gates)
- Resynthesis performed only if all constraints are satisfied

4

Pruning 1: Physical Constraints

- 1. Use arrival times (AT) from incremental STA
 - Consider only gates with AT_{gate} < AT_{target}
- 2. Try only gates close to the original driver

11

Pruning 2: Logical Compatibility

 Based on the controlling values of gates (AND, OR, but not XOR)

Checks compatibility of all bits in

- Candidate signature
- Target signature
- Ignore wires with signature incompatible signatures
 - Reduce the number of candidate wires

Candidate

signature

13

Implementation Insights

- Accelerate compatibility test
 - "One-count": number of 1s in the signature
 - E.g., one-count decreases for an AND gate

- Improve signature quality
 - Poor signatures require more equivalence checking
 - Uses patterns produced by the FRAIG package in ABC synthesis package (UCB)
 - Distinguish different wires in an AIG

Analysis of Our Approach

- Scalability
 - Signature + equivalence checking scales better than BDDs in terms of memory usage
 - Can handle 100K gate designs
- Optimization power
 - Utilizes complete controllability don't-cares
 - Subsumes gate relocation and replication
 - Finds long range opportunities
- Safeness
 - Accurate analysis can be performed for each change

17

Outline

- Physical safeness
- Our physical synthesis approach
- Experimental results
- Conclusions

18

Experimental Setup

Placer: Capo and QPlace

Timing analyzer:

■ Before routing: D2M + Steiner tree

• After routing: routed nets

Benchmarks: IWLS2005, 0.18 μ m library

Suite	Benchmarks	
OpenCores	SPI, DES_AREA, TV80, SYSTEMCAES, MEM_CTRL, AC97, USB, PCI, AES WB_CONMAX, Ethernet, DES_PERF	
Faraday	DMA	
ITC99	B14, B15, B17, B18, B22	
ISCAS89	S35932, S38417	19

Unsafely

resynthesized

layout

20

Compare circuit delay,

route length and

via count

Delay Improvement (30% Whitespace)

Bench	Estir	nated dela	y improve	Routed delay improvement			
mark	Safe resynth.	Unsafe resynth.		Unsafe+	Safe	Unsafe	Unsafe
		Before legal.	After legal.	safe resynth.	resynth.	resynth.	+safe resynth.
AC97	2.67%	3.67%	3.44%	3.67%	1.56%	1.31%	2.65%
USB	5.21%	5.29%	5.10%	5.29%	3.09%	6.69%	10.41%
PCI	5.99%	5.37%	4.58%	5.37%	0.00%	-1.90%	0.00%
AES	2.32%	5.06%	4.94%	5.06%	2.25%	3.61%	5.66%
WB	61.37%	61.54%	61.48%	61.54%	61.29%	61.30%	63.14%
Ether.	85.66%	86.41%	85.89%	86.41%	85.61%	82.07%	86.60%
DES	1.98%	2.21%	2.12%	2.21%	1.93%	0.49%	2.44%
Ave.	23.60%	24.22%	23.93%	24.22%	22.25%	21.94%	24.41%

Improvement: unsafe+safe > safe > unsafe; unsafe resynthesis may worsen routed timing

21

Delay Improvement (Different Percentage of Whitespace)

	Percentage	Estim	ated dela	y improver	Routed delay improvement			
۱	of whitespace	Safe	Unsafe resynth.		Unsafe	Safe	Unsafe	Unsafe +safe resynth.
١	oopaoo	resynth.	Deloie		+ safe resynth.	resynth.	resynth.	
			legal.	legal.	Tooynan			Tooyinii
	30%	23.60%	24.22%	23.93%	24.22%	22.25%	21.94%	24.41%
Ī	10%	23.59%	24.12%	23.64%	24.01%	23.52%	23.56%	23.98%
	3%	20.33%	20.78%	20.34%	21.63%	20.22%	20.23%	21.38%

- Safe and unsafe resynthesis have similar performance
- Unsafe+safe resynthesis achieves the most improvement

22

Route Length and Via Count Increase (Different Percentage of Whitespace)

Route length increase is small for all layouts, while via count increase is significant for layouts produced by unsafe resynthesis 23

Summary of Empirical Results

- 22% smaller delay at 30% whitespace
- 20% smaller delay at 3% whitespace
- Route length and via count increase < 1%</p>
- Unsafe optimization
 - Provides better improvement before legalization and routing
 - Improvement after routing is hard to predict
 - Increases via count
- Safe optimization
 - Effects are more predictable
 - Does not increase via count

Conclusions

- Physical safeness
 - Effects of unsafe techniques are hard to evaluate
 - Safe techniques may provide better improvement
- A safe resynthesis technique
 - Up to 86% delay improvement
 - Route length and via count increase page by less than 1%

- Unsafe + safe optimization leads to the most delay improvement
 - More powerful safe optimizations
 - Techniques to apply unsafe optimizations in a safe way