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Abstract

Boolean Satisfiability solvers improved dramatically
over the last seven years [14, 13] and are commonly
used in applications such as bounded model checking,
planning, and FPGA routing. However, a number of
practical SAT instances remain difficult to solve. Recent
work pointed out that symmetries in the search space are
often to blame [1]. The framework of symmetry-break-
ing (SBPs) [5], together with further improvements [1],
was then used to achieve empirical speed-ups.
For symmetry-breaking to be successful in practice, its
overhead must be less than the complexity reduction it
brings. In this work we show how logic minimization
helps to improve this trade-off and achieve much better
empirical results. We also contribute detailed new stud-
ies of SBPs and their efficiency as well as new general
constructions of SBPs.

1 Introduction

Many search, synthesis and optimization problems aris-
ing in algorithmic applications exhibit symmetries. The
presence of multiple, symmetric solutions may lead to
degeneracy and slow down known algorithms for such
problems. Symmetries can make it more difficult to con-
clude that a a given instance of a search problem has no
solutions - because symmetric sub-instances may be
independent. However, once the symmetries are identi-
fied, it is often easy for people to “mod out”  by symme-
try and simplify the problem at hand. Of course, when
the number of symmetries is high, even simple book-
keeping requires a computer program. 
In this work we study the Boolean SATisfiability prob-
lem (CNF-SAT) - one of the most important in Com-
puter Science - in the presence of symmetry. Previous
work contributed the framework of symmetry-breaking
predicates that proceeds as follows.

1. The symmetries are identified using a reduction to the
Graph Automorphism problem. 

2. Symmetry-breaking predicates (SBP) are produced.

3. A SAT-solver is applied to the conjunction of the

original formula and symmetry-breaking predicates. 
A reduction to Graph Automorphism that detects all
permutational symmetries was proposed in [5]. That
work also contributed the first general construction of
SBPs for single permutations in tabular form. The
authors pointed out that constructing SBPs for every
symmetry is often impractical, and developed the con-
cept of symmetry-tree that reduces the number of
clauses added to the original CNF formula. Yet it does
not always avoid exponential number of added clauses.
The symmetry-breaking framework was further
improved in [1] which contributed 

• a new reduction to Graph Automorphism that detects
all permutational symmetries, phase shifts and their
compositions (we call them mixed symmetries),

• empirical evaluation of symmetry-breaking
performed only for generators of the symmetry group,

• more efficient symmetry-breaking predicates for
mixed symmetries in cycle notation,

• strong empirical evidence that symmetry-breaking is
practically useful when best available SAT-solvers
are used.

In this paper we further improve the symmetry-breaking
framework for CNF-SAT using logic minimization to
simplify SBPs and empirically improve runtime of SAT-
solvers. We contribute new constructions of full and
partial symmetry-breaking predicates of smaller size,
produced in many cases by explicit logic optimization.
Analyses of symmetry-breaking include orbit counts
and estimates of efficiency of symmetry-breaking predi-
cates. Additionally, we provide some justification for
breaking the symmetries of only the generators. A num-
ber of related questions are still open however.
The remaining part of the paper is organized as follows.
Section 2 presents the necessary definitions and nota-
tion. Section 3 covers previous work. More efficient
SBP constructions are given in Section 4, and a theoreti-
cal discussion of symmetry-breaking by generators in
Section 5. We show experimental results in Section 6,
and the paper concludes in Section 7.
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2 Definitions and Notation

Intuitively, a symmetry of a discrete object is a transfor-
mation, e.g., permutation, of its components that leaves
the object intact. For example, the six permutational
symmetries of the equilateral triangle can be thought of
as permutations of its vertices. Symmetries are studied
in abstract algebra in terms of groups [6].
A group is a set with a binary associative operation
(often thought of as multiplication) defined on it such
that there is a unit element and every element has a
unique inverse. A group is called Abelian if the opera-
tion is commutative, e.g., the cyclic group of order k
consists of powers of g modulo k. In general, a set of
group elements such that any other group element can
be expressed as their product is called a generating set.
Any irredundant generating set is no greater than the
binary logarithm of the group size and can be much
smaller. A subgroup of a group is a subset that is closed
under the operation.
The symmetric group S( ) on a finite set  is the
group of all permutations of . If , the group
is commonly denoted by . A homomorphism from
group G to group H is a mapping such that a product of
two group elements is mapped to the product of their
images, and such a mapping is called an isomorphism
when its inverse exists and is a homomorphism. A group
G acts on a set  when a homomorphism is given from
G to . For an element of , its G-orbit is the set
of elements of  to which it can be mapped by ele-
ments of G. Orbits define an equivalence relation on . 
Permutations of , often denoted by lower-case Greek
letters, can be written in tabular form where the ele-
ments of  are written in the first row and their images
in the second row. For example, the image of element i
under the permutation  will be denoted  and written
below i. We also use cycle notation, which can be pro-
duced from the tabular notation by (i) constructing
directed edges from elements of  to their images, and
(ii) listing the disjoint cycles of this directed graph. Sin-
gle-element cycles are implicit and never listed, and
two-element cycles are called transpositions. For exam-
ple, (12)(456) can denote a permutation that swaps ele-
ments 1 and 2, maps 4 to 5, 5 to 6 and 6 to 4. Cycle
notation is preferable to tabular notation for sparse per-
mutations that map most of elements of  to them-
selves. The set of elements that are not mapped to
themselves is called the support of the permutation. The
cycle type of a permutation is a sequence of integers 
for ;  is the number of i-cycles in the
permutation.
A symmetry (automorphism) of a graph is a permutation
of its vertices that maps edges to edges. If vertices are

labeled by integers (colored), one may additionally
require that symmetries preserve labels.
Consider the set of Boolean variables . A lit-
eral is either a variable or its negation. A clause is a dis-
junction of literals, e.g., , and a CNF
formula is a conjunction of clauses, e.g.,

. A binary clause has two
literals and can be viewed as an implication between
variables, e.g., . An instance of the CNF-
SAT decision problem is given by a CNF formula, the
question is whether the formula can be satisfied by an
assignment of Boolean values to the variables.
We will assume a total ordering of variables 
and consider the induced lexicographic ordering of the

 truth assignments, i.e., 0-1 strings of length n. We
now assume that a group acts on the set of literals, sub-
ject to the Boolean consistency constraint, which
requires that if  then  for any literals a
and b. Such an action unambiguously induces a corre-
sponding action on the set of truth assignments. We
focus on orbits of this action. The lex-leader of an orbit
is defined as the lexicographically smallest element. A
lex-leader predicate (LL-predicate) for the action is a
Boolean function on  that evaluates to true
only on lex-leaders of orbits. 
Consider a permutation on the set of literals. Given a
CNF formula, we can permute literals in it, potentially
changing the formula. A permutation of literals is a
symmetry of a given CNF formula if Boolean consis-
tency is observed and the formula is preserved under the
permutation (in other words, every clause must map into
a clause with the same polarities of literals). In particu-
lar, we consider simultaneous negations of sets of vari-
ables (phase-shifts) and compositions of permutations
and phase-shifts (mixed symmetries). Given a CNF for-
mula, we consider its group of symmetries and its corre-
sponding action on truth assignments. A symmetry-
breaking predicate (SBP) is a Boolean function that
evaluates to true on at least one element of each orbit of
the group of symmetries. In this work, we will consider
SBPs that are expressed by CNF formulae, and the size
of an SBP is the number of literals its CNF involves.
Observe that adding an SBP to the original CNF for-
mula does not affect the satisfiability, but restricts the
possible solutions to those selected by the SBP.
A full SBP is an SBP that selects exactly one element of
each orbit, otherwise we call an SBP partial. A lex-
leader SBP (LL-SBP) is an SBP that selects lex-leaders
only. An LL-SBP is a full SBP. For SBPs that are not
full, it is often important that they select lex-leaders,
among other elements. We call such SBPs partial lex-
leader SBPs (PLL-SBPs).
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3 Previous Work

3.1 The Natural LL-SBP of Crawford et al.

Let  be a vector of Boolean vari-
ables,  be a permutation group acting
on . A PLL-SBP  is defined for every group
element, and their conjunction is an LL-SBP for  [5].
The construction relies on the ordering

 :

(3.1)

(3.2)

Introducing auxiliary variables , this
predicate yields a CNF formula with 5n clauses and

 literals. The SBP for the entire group is:

 (3.3)

This predicate may contain redundant clauses, in partic-
ular some  may be tautologies and  for
different permutations may have identical clauses.
Moreover, there are often exponentially many symme-
tries, and the natural LL-SBP for the entire group is
infeasible. Crawford et al. construct a symmetry tree to
prune “ redundant”  symmetries, but that may still yield
exponential-sized LL-SBPs. Additionally, they have
shown NP-completeness of identifying lex-leaders in
certain circumstances. A more recent work by Luks and
Roy [9] studies the complexity LL-SBPs for Abelian
permutation groups and shows that, in general, LL-
SBPs may have to be exponentially large. However,
careful re-ordering of variables enables polynomial-
sized formulas.

3.2 Further Improvements

3.2.1 CNF Symmetries via Graph Automorphism

While CNF symmetries are not limited to permutations
of variables, we build, for a given CNF formula, a graph
such that the group of CNF symmetries is isomorphic to
the group of graph automorphisms. A simple construc-
tion represents every clause by a vertex of color 2, and
every variable by two vertices of color 1 (one for posi-
tive literals and one for negative) connected by Boolean
consistency edges. Every literal in the CNF formula then
is represented by a bi-partite edge. An improved con-
struction treats binary clauses differently. It leaves out
their clausal vertices and connects their literal vertices
by double-edges. Since some graph automorphism pro-
grams do not allow double-edges, the work in [1] uses a
model with single edges which can result in spurious
graph automorphisms (one-sided error) if the original

CNF formula contains binary clauses forming circular
chains of implications. Fortunately, this rarely happens
in CNF applications and spurious graph symmetries can
be easily tested for. In our experiments, no spurious
symmetries were detected.
The graph automorphism problem is believed to be out-
side P, yet not NP-complete. Common algorithms finish
in linear time if the only symmetry is trivial, and poly-
nomial time is guaranteed in the bounded-degree case
[2,3]. Finding CNF symmetries is often easier than solv-
ing SAT, and excellent software is available [11, 12].

3.2.2 Breaking Symmetries By Generators 

Breaking all symmetries may not speed up search
because there are often exponentially many of them and
their PLL-SBPs may be redundant [5]. It is not neces-
sary either. Breaking enough symmetries, whose SBPs
are short CNF clauses, may provide a better trade-off.
Irredundant generators are good candidates for symme-
tries to be broken because they cannot be expressed in
terms of each other, which minimizes redundancies. A
potential concern is that breaking generators alone may
lead to the selection of more than one element from
some orbits, an example with  was provided to
us by Eugene Goldberg. Yet, such partial symmetry
breaking may be the best option because its overhead is
small. When building LL-SBPs for different generators,
one must use the same variable order. An LL-SBP for a
given symmetry generator can be constructed as the nat-
ural LL-SBP for the cyclic group generated by it, or a
PLL can be used.

3.2.3 Breaking Symmetries by Cycles

For a given permutation, choosing an SBP with fewer
literals is also important for empirical success. To this
end, the construction of small SBPs from [1] is based on
the cycles of a permutation (with subsequent chaining)
instead of the entire permutation in tabular form. This
eliminates redundancies in the SBPs of individual per-
mutations and is convenient because generators returned
by graph automorphism programs are often sparse, i.e.,
involve very few variables. Additionally, one can create
a catalog of LL-SBPs or PLL-SBPs for small cycle
lengths. This improves upon the natural LL-SBP con-
struction which entails a conjunction over non-trivial
powers of a given permutation.
A major problem with cycle-based constructions arises
when they are applied to symmetry generators and may
influence the order of variables. LL-SBPs for all genera-
tors must use the same order of variables, but not neces-
sarily the original order. In some applications the
original order of variables works, and in many an appro-
priate order can be found quickly.
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4 New Constructions for Single Perms

The main idea behind our new constructions is to
decompose a permutation into cycles, construct SBPs
for individual cycles and then chain them together. 

4.1 Extensions and Improvements of
The Natural LL-SBP Construction 

We describe in this section a) an extension to Craw-
ford’s construction of the LL-SBP for a single permuta-
tion to enable the handling of mixed symmetries, and b)
a simplification of the LL-SBP that yields a linear-sized
CNF formula.

Without loss of generality, every symmetry that is a
composition of permutations and pure phase shifts can
be decomposed into a product of a permutation and a
phase-shift acting after the permutation. That is because
the group of phase shifts is normal in the group of com-
positions, i.e., the composition of an arbitrary permuta-
tion, an arbitrary phase shift and the permutation's
inverse is necessarily a phase shift (not necessarily the
same as the original). Such mixed symmetries can be
incorporated in the construction of the LL-SBP by
allowing a variable  to be mapped into either its image

under the permutation  or the negation of that image

 induced by the phase shift action.

Crawford’s construction in (3.1) and (3.2) for the LL-
SBP of a single-permutation can be simplified to yield a
CNF formula whose size is linear, instead of quadratic,
in the number of variables. To facilitate the following
derivation let , , and

. Noting that , Crawford’s LL-SBP can
now be expressed as:

(4.1)

Factoring out the common prefix  yields:

(4.2)

which simplifies further, through absorption, to:

(4.3)

The recursive structure of the formula is now revealed
by comparing (4.1) and (4.3). Let  be a
sequence of predicates defined by:

(4.4)

and let . Then,

(4.5)

Note that predicate  represents the entire formula
(4.1). The satisfiability of (4.1) can, thus, be determined
by checking the satisfiability of the following equiva-
lent, but simpler formula:

(4.6)

One final simplification replaces the equalities in (4.6)
with implications since we are only interested in satisfy-
ing each of the predicates. We thus obtain:

(4.7)

The CNF representation of (4.7) consists of  3-literal
and  4-literal clauses for a total size of  literals.

4.2 Orbits of Cyclic Symmetries

While the cyclic group of size n naturally acts on the set
1..n, this action can be extended to the Boolean cube of

 truth assignments. Orbits of this action are called
necklaces in combinatorics, and their number can be
found using the celebrated counting theorem by Polya
[6, Theorem 14.5]:

(4.8)

where the sum is taken over all divisors of n.  is
the Euler's totient function, i.e., the number of positive
integers not exceeding m which are relatively prime to
m (1 is counted as being relatively prime to all num-
bers). The first several values (for n=2,3,4,5) of 
are 3,4,6,8 and can be verified by direct counting. For
prime p,  and thus the number of orbits is

. Indeed, every orbit contains p ele-
ments, except for the two one-element orbits 00...0 and
11...1. In general, orbit sizes must divide cycle length,
and the number of necklaces is lower-bounded by

. Thus it grows exponentially. The
asymptotic estimate  for the number of neck-
laces can be produced using . Therefore
the efficiency of full SBPs for single cycles is not
bounded, at least as far as reductions in search space are
concerned.

4.3 Full Symmetry-Breaking for Single Cycles

If for every literal in a given cycle, its complementary
literal is not in the cycle, the natural LL-SBP construc-
tion applies and can be improved as described above.
Otherwise, we must apply the extended natural LL-SBP
construction.

xi

xi
π

xi
π

l i xi xi
π≤( )= gi xi xi

π≥( )=
g0 1≡ ei l igi=

g0 l1→( ) g0l1g1 l2→( )… g0l1… ln 1– gn 1– ln→( )

g0

g0 l1 l1g1 l2→( )… l1g1… ln 1– gn 1– ln→( ) ]⋅[→

g0 l1 g1 l2→( )… g1l2…ln 1– gn 1– ln→( ) ]⋅[→

p1 … pn, ,

pi gi 1– l i→( ) gi 1– l igi l i 1+→( )⋅=

… gi 1– l igi…ln 1– gn 1– ln→( )

pn 1+ 1=

pi gi 1– l ipi 1+→= i 1 … n, ,=

p1

p1( ) p1 g0 l1p2→=( )… pn gn 1– lnpn 1+→=( )

p1( ) p1 g0 l1p2→ →( )… pn gn 1– lnpn 1+→ →( )

2n
2n 14n

2n

B n( ) 1/n( ) 2dφ n/d( )
d n

∑=

φ m( )

B n( )

φ p( ) p 1–=
2 p 1)– 2p+( )( )/p

2 n 1)– 2n+( )( )/n
Θ 2n/n( )

φ n/d( ) n 1–≤



5

Lemma 4.1 If a symmetry of a CNF formula has a
cycle of length n that contains literals a and , then

1. Every variable participating in the cycle, has both
positive and negative literal in the cycle.

2. n must be even.

3. The distance between every pair of complementary
literals is n/2.

4. Any contiguous sub-word of length n/2 determines
the remaining part of the cycle.

Proof: 1. The literal a can map to any literal b in the
cycle, therefore by Boolean consistency  must map to

, and  must be in the cycle. 2. Follows from 1. To
prove 3. notice that the hop-distance from a to  in the
cycle must equal that from  to a (by Boolean consis-
tency), and the two add up to n. 4. Any contiguous sub-
word of length n/2 contains exactly one literal of every
variable participating in the cycle and unambiguously
determines where it maps (the last literal in the word
must map to the complement of the first literal); the
images of literals not in the sub-word are unambigu-
ously determined by Boolean consistency. 

Minimal LL-SBPs can be created for single-cycle per-
mutations by constructing the Boolean function that
selects the lex-leader of each orbit and minimizing this
function using standard logic minimization procedure
ESPRESSO[10]. Alternatively, a natural PLL-SBP can
be created according to (3.1) for each permutation in the
cyclic group generated by the given cycle; the minimal
LL-SBP for the cycle is now obtained by minimizing
the conjunction of these formulas. A listing of minimal
LL-SBPs for k-cycles of various length is give in table
Table1. It is interesting to note that the LL-SBP for
cycles whose length is less than 6 is composed entirely
of binary clauses. We produced minimal LL-SBPs for
cycles of length up to 20. Such LL-SBPs contain clauses
of increasing lengths, but also k binary clauses. Since
longer clauses are less effective during search, one may
prefer to use a PLL-SBP that consists only of binary
clauses.

4.4 Partial SBPs For Single Cycles

This is motivated by the desire to create strong predi-
cates that can speed up search.

Theorem 4.2 A partial LL-SBP for the -cycle is
possible with  binary clauses.

Proof: Suppose we have a symmetry which is an -
cycle on variables . A set of binary clauses is

defined by a partial order on variables, and we choose
the partial order in which  and

. We need to show that such a set of
clauses picks at least one representative from each neck-
lace class, in particular that lex-leaders satisfy every
clause. The former is accomplished by giving an algo-
rithm that for an arbitrary truth assignment finds a rota-
tionally symmetric assignment that satisfies every
clause. We then modify the algorithm to yield lex-lead-
ers only, and show that they satisfy all clauses as well.
For an arbitrary truth assignment, consider two cases:
(1) two variables are assigned different values, (2) oth-
erwise. In case (2) all values are the same, i.e., all 0s or
all 1s. These two truth assignments satisfy all clauses. In
case 1, we can find two “neighboring”  variables

 that are assigned different values. Moreover,
we can even find two “cyclically-neighboring”  variables

 such that the left variable =1 and the
right variable =0, e.g.,  and

 are valid examples. Any such assign-
ment can be further rotated (by applying the cyclic sym-
metry) to an assignment with , which
satisfies all clauses regardless of the values assigned to
other variables.
We now need to show that every lex-leader satisfies the
constructed SBP. Indeed, assume a lex-leader distinct
from 000...0 such that . Then rotate the
truth assignment in the direction from  to  until

. Each such rotation must lead to a lexicographi-
cally smaller representative. Contradiction.
This proof suggests a technique of identifying partial
symmetry-breaking predicates. The key is finding a
“canonical form”  to which any truth assignment can be

a

a
b b

a
a

n
2n 2–

n
x1 … xn, ,

Table 1: Minimal LL-SBPs for k-cycles

Perm LL-SBP

x1x2( ) x1 x2+( )

x1x2x3( ) x1 x2+( ) x2 x3+( )

x1x2x3x4( ) x1 x2+( ) x1 x3+( ) x2 x4+( ) x3 x4+( )

x1x2x3x4x5( ) x1 x2+( ) x1 x3+( ) x2 x4+( )

x2 x5+( ) x3 x5+( )

x1x2x3x4x5x6( ) x1 x2+( ) x1 x3+( ) x1 x4+( )

x3 x6+( ) x4 x6+( ) x5 x6+( )

x2 x3 x4+ +( ) x2 x3 x5+ +( )

x1 other vars≤
xn other vars≥

xiand xi 1+

xiand x i mod n( ) 1+
x1 1 x2, 0= =

xn 1 x1, 0= =

xn 1 x1, 0= =

x1 0 xn, 0= =
xn x1

xn 1=
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reduced (not necessarily uniquely) by rotations. In the
example above, the canonical form was defined by par-
ticular values of only two variables. More refined
canonical forms can be defined by inequalities, more
involved arithmetic predicates, etc.

4.5 k-Cycle Chains 

In this section we deal with collections of cycles of the
same length. We first assume that no cycles in this col-
lection include complementary literals.
Step one. Break the first cycle.
Step two. Add a chaining predicate. A chaining predi-
cate is an AND of sub-predicates. Each sub-predicate is
of the form . The variable i traverses
all divisors of the cycle length, excluding itself. The 
predicate depends on the variables of the broken cycle,
and  depends on all variables of the remaining cycles.

 is true when the truth assignment is in an orbit of
length i. For example  checks that all variables have
identical values.  is only needed for even cycles, it
checks that all even-numbered variables have the same
values and that all odd-numbered variables do. In gen-
eral,  checks that any two variables with indices hav-
ing the same remainder modulo i must have equal
values. Thus the number of clauses is linear in cycle
length.  is a symmetry-breaking predicate for power-i
of the remaining cycles. It must be produced recursively.
Observe that recursion is guaranteed to terminate
because at every call either (i) the size of cycles
decreases, OR (ii) the number of cycles decreases,... OR
both. Note that the size of cycles cannot increase. It will
stay the same if and only if the cycle length is prime, in
which case the number of cycles decreases. The number
of cycles can increase, but this can only happen when
cycle length is composite, in which case the size of
cycles must decrease.
Special cases may be simplified further simplified. For
example, for cycles of prime length, we only have i=1,
and chaining is particularly simple. In particular, cycles
of length two appear very often, and an example is given
in the next Section. In the general case, one can con-
struct a PLL-SBPs by only including

, or using any subset of i’s. 
As mentioned above, the number of orbits of an n-cycle
is , thus the efficiency of symmetry-breaking is
not limited in this case. This is not true, however, for n
2-cycles. The efficiency of symmetry-breaking is lim-
ited by 50% because the efficiency of every new cycle is
2x smaller than the efficiency of the previous cycle. For
example, for one 2-cycle, there are 3 lex-leaders out of 4
assignments. For two 2-cycles, there are 4+2*3=10 lex-
leaders out of 16 assignments, for three 2-cycles, there
are 16+2*10=36 lex-leaders out of 64 assignments. For

k 2-cycles, the number of lex-leaders is
, and therefore, by induction.

. Moreover, as k increases
. In other words, k 2-cycles, asymptoti-

cally remove 50% of the solution space. 
We now generalize our techniques to handle comple-
mentary literals. Our method of handling chains of
cycles of length two must be extended to cycles of the
form . Since a cycle of this form implies an SBP
that breaks exactly 50% of the solution space, we should
stop right there and ignore all other 2-cycles. In other
words, when we have a chain of 2-cycles, we must first
scan it for same-literal cycles. To chain longer cycles
with complemented literals, we conjoin implications as
described earlier.

4.6 Arbitrary Cycle Types

Constructions of SBPs for multiple cycles of the same
length (described above) can be used as subroutines in
SBP constructions for arbitrary permutations as follows.
Algorithm: Start with an empty SBP.

Step 1. Produce an SBP for all cycles of the shortest
length k. Conjoin it to the previously accumulated SBP.

Step 2. Compute the k-th power of the permutation.
Step 3. If non-trivial cycles are left, start over (at

Step 1) with the k-th power.
Example. Consider (ab)(cd)(efg)(hijklm). 
An LL-SBP for the permutation (ab)(cd), e.g.,

 must be con-
joined with n LL-SBP for the square of the original per-
mutation -(efg)(hjl)(ikm). 

Theorem 4.3 Suppose that Step 1 in the algorithm
above produces partial LL-SBPs. Then the algorithm,
too, yields partial LL-SBPs. 

Proof: First, we describe the order of variables for
which the constructed SBP is a partial LL-SBP. 

1. Variables from earlier cycles must appear earlier.
2. The relative order of variables from cycles of the

same length must be that for which SBP from Step 1
are LL-SBPs.

The remaining part of the proof describes lex-leaders of
orbits of the given permutation (with respect to the
given ordering) and verifies that the constructed SBP
evaluate to true on them.
In order to produce a lex-leader of a given truth assign-
ment, we need to apply the permutation as many times
as it takes. Now, suppose that the shortest cycles have
length k. Since variables from those cycles go first, we
first need to apply the permutation (less than k times) to
choose lex-leaders for that part of the truth assignment.
From now on, the values of those variables must be

Ai …( ) Bi
� …( )
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Ai

A1
A2
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Bi
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o 2n( )
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P k( ) 0.5 4k×→
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fixed. Conveniently, applying the permutation Nk times
(N is an integer) does not change the values of those
variables. In other words, we need to find out how many
times the k-th power must be applied to find a lex-leader
in terms of the next batch of variables.
Because we are considering partial LL-SBPs for the first
batch of variables independently of other variables, par-
tial LL-SBPs can be used without modifications. The
rest is by induction.
Observe that even when SBPs produced at step 1are LL-
SBPs, the SBP constructed by the algorithm may not be
full. In particular, it may select more than lex-leaders
from orbits where the first batch of variables have equal
values. That is because on such orbits the second batch
of variables can be subject to arbitrary powers of the
permutation. The same applies to further batches of
variables and can be remedied by adding more symme-
try-breaking clauses similar to those used in Section 4.5.
In particular, for cycles of length k we need to distin-
guish orbits whose lengths are less than k, which leads
to complications for non-prime k. However, we believe
that this extended construction yields LL-SBPs.

5 Symmetry-breaking by Generators

The LL-SBP construction of Crawford et al. entails con-
joining symmetry-breaking predicates built for each ele-
ment of the symmetry group. While this maximally
reduces search space, the set of added clauses may be
overwhelmingly large. Therefore, the total search time
may be increased. This section discusses the idea of
conjoining only symmetry-breaking clauses of symme-
try-generators - a potentially more practical alternative.

5.1 Generators and Subgroups

Lemma 5.1 Given a permutation, a symmetry-break-
ing predicate that distinguishes exactly one element in
every orbit (i.e., fully breaks a given symmetry) also
fully breaks every symmetry generated by this permuta-
tion, i.e., every power of this permutation.

Proof: The orbits of one permutation and the group it
generates are identical. 

We now consider groups with more than one generator.
Each generator is modeled by a cyclic sub-group.

Lemma 5.2 Consider a group G and its subgroups
 For an element of a G-orbit to be a lex-leader, it is

necessary that it be the lex-leader in each of its -
orbits.

Proof: For every subgroup H of group G, G-orbits
can be decomposed into a disjoint union of H-orbits.
Therefore, for an element to be a lex-leader in its G-
orbit, it must be a lex-leader in its H-orbit.

Corollary 5.3 A conjunction of (not necessarily full)
lex-leader SBPs for sub-groups is a valid lex-leader
SBP. However, it may not be a full SBP, and therefore
not an LL-SBP.
Consider a group G and its subgroups . Suppose
that we are given SBPs for all subgroups. A conjunction
of those SBPs may not be a valid SBP because there
may be no representative in a given G-orbit that is
picked as a representative in all of its -orbits.

Lemma 5.4 A special case of Lemma 4.2 happens
when all subgroups are cyclic and generated by genera-
tors of G. Lemmas 4.1 and 4.2 then imply that on every
G-lex-leader, full SBPs for individual generators must
evaluate to true. Therefore, a conjunction of SBPs for
generators is a valid SBP.

Theorem 5.5 Consider a group G and its subgroups
H and K, such that G=HK and H normal. Observe that K
acts on H-orbits by multiplication on the left. We require
that this action map H-lex-leaders to H-lex-leaders. In
this case, the conjunction of full lex-leader SBPs for H-
orbits and K-orbits is a full lex-leader SBP for G-orbits.

Proof: Take an arbitrary G-orbit and its element p
that is the lex-leader of its H-orbit and its K-orbit. Let q
be the lex-leader in p's G-orbit. Find a

 such that g(p)=q and g=hk. Then
q=h(k(p)) and k(p) is in the same H-orbit as q. Since q is
the lex-leader of its H-orbit, either h=e or k(p) is not an
H-lex-leader. The latter is impossible because p is an H-
lex-leader and the action of K by multiplication on the
left preserves H-lex-leaders. On the other hand, if h=e,
then q=k(p) and p is in the same K-orbit as q. However,
both p and q are lex-leaders of their K-orbits. Therefore
k=e and p=q.

Corollary 5.6 Consider two permutations  and
 with disjoint support. The conjunction of full lex-

leader SBPs for  and  is a full lex-leader SBP for
the Abelian group generated by those permutations.

5.2 Requirements for Variable Ordering

As mentioned in Section 3.2.3, SBPs built for individual
permutations in terms of cycle notation require, in gen-
eral, different variable orderings. Therefore such SBPs
for symmetry generators may be incompatible. Instead,
the natural LL-SBP construction can be used for cyclic

Hi{ }
Hi

Hi{ }

Hi

g G h H k K∈,∈,∈

π1
π2

π1 π2
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groups generated by symmetry generators or, if the
order of a generator is large, the natural PLL-SBP con-
struction can be used.
For some structured CNF formulas, such as hole-n
instances defined below, the original order of variables
is compatible with cycle-based SBPs for all generators.
Otherwise, careful analyses of supports of symmetry
generators from a given set may still allow using more
efficient LL-SBPs or PLL-SBPs for some generators. 
For example, if all supports are disjoint, then it is easy to
construct an overall variable ordering consistent with
cycle-based SBPs. More generally, one can build the
support intersection graph of a generating set where
each generator is represented by a vertex and edges con-
nect vertices when the supports of generators have non-
empty intersections. A maximal independent set (MIS)
in this graph flags generators for which cycle-based
SBPs can be used. This introduces a partial variable
order, which can be arbitrarily extended to an order of
all variables so that the natural LL-SBPs or PLL-SBPs
can be used for remaining generators.

5.3 Symmetric Groups and
The Pigeonhole Principle

Lemma 5.7 [9] A full lex-leader SBP for the sym-
metric group  can be constructed by conjoining SBPs
for n-1 generating transpositions (12), (23),...,(n-1 n).
This SBP contains n-1 binary clauses. 

Proof: Because  can map any linear order on n
variables to any order, its orbits over truth assignments
are distinguished only by the number of zeros. Thus,
there are n+1 orbits, and lex-leaders can be chosen by
requiring that the values of the variables form a non-
decreasing sequence. This entails n-1 binary clauses

.

Lemma 5.8 When, in addition to permutational sym-
metries, we allow all phase-shift symmetries and their
compositions, a full lex-leader SBP exists with n one-lit-
eral clauses.

Proof: It can be seen that the number of zeros is not
an orbit invariant anymore because the group acts tran-
sitively on the Boolean cube, which becomes one orbit.
The lex-leader is therefore the truth assignment 000...0,
and the LL-SBP consists of n one-literal clauses.

Recall that the pigeon-hole principle states that n+1
objects (pigeons) cannot be assigned to n slots (holes).
This is easily proven by induction. However, the
pigeon-hole principle can also be phrased as an unsatis-
fiable instance of Boolean satisfiability (hole-n

instances) and proven by SAT-solving algorithms for
specific values of n, in which case induction is unavail-
able. The n(n+1) indicator-variables encode assign-
ments of pigeons to holes.  binary mutual-
exclusion clauses form n families - one per hole, and
ensure that no two pigeons are in the same hole. Another
family consists of n+1 n-literal clauses, one per pigeon,
ensuring that every pigeon is assigned to least one hole.
It has been proven [4] that no polynomial-length resolu-
tion proofs of the pigeon-hole principle exist. Because
of this, the dominant SAT-solving frameworks due to
Davis-Putnam (DP) and Davis-Longeman-Loveland
(DLL) cannot solve the hole-n CNF instances, regard-
less of implementation. This agrees well with empirical
results for best available SAT-solvers, such as Chaff
[13]. However, short induction-less proofs of the
pigeon-hole principle can be constructed using symme-
try [8]. Observe that the group of symmetries of the
hole-n instance is a Cartesian product of  and 
because “all holes are symmetric”  and, independently,
“all pigeons are symmetric” .

Theorem 5.9 For a hole-n instance, the conjunction
of LL-SBPs for symmetry sub-groups  and  is
not an LL-SBP. As a consequence, it is not true in gen-
eral that a conjunction of LL-SBPs of groups G and H is
an LL-SBP of .

Proof: We order the variables in the “hole-major”
order, i.e., in n groups of n+1. Observe that hole-sym-
metries permute those groups, while pigeon-symmetries
simultaneously permute variables inside each group. By
applying pigeon-symmetries to an arbitrary truth assign-
ment, we can permute the values of any two variables
within the first group of n+1, and if their values are
equal, we can permute the two variables having the
same offsets in the second group, etc. Thus one can sort
variables in the first group (zeros first), but this will
bipartition variables in other groups. One can then sort
each partition, which will create further partitions. Inde-
pendently, hole-symmetries allow lexicographically
sorting the n groups. An LL-SBP for pigeon-symmetries
selects lex-leaders with respect to the above “pigeon-
sort” . An LL-SBP for hole-symmetries selects lex-lead-
ers with respect to the above “hole-sort” . The conjunc-
tion of such LL-SBPs will pick truth assignments that
are both. However, some of those are not lex-leaders
with respect to the Cartesian-product group. We give an
example for hole-2, which has six variables, divided
into two groups of three. The truth assignment (011,100)
is a lex-leader with respect to both pigeon-sort and hole-
sort. Yet, it can be mapped to a lex-smaller assignment -
(001,110) - by applying the pigeon-symmetry that sorts
variables 3-6 and the only non-trivial hole-symmetry.

Sn

Sn

x1 x2≤( ) x2 x3≤( )… xn 1– xn≤( )

n2 n 1+( )/2

Sn Sn 1+

Sn Sn 1+

G H×
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6 Experimental Results

In this section, we empirically show the advantage of
using smaller SBPs. The experiments were performed
on an AMD Athlon 1.2 GHz machine with 1 GB of
RAM running Linux. The runtime limit for all experi-
ments was set to 1000 seconds. The benchmarks
included hole-n instances and artificially constructed
randomized Urquhart (Urq) instances [17]. We used the
best available back-track SAT solver Chaff [13]. Since
Chaff is randomized, its runtime varies, and we aver-
aged all results over ten independent runs. Cursory anal-
ysis of distributions of results reveals normal-looking
distributions and suggests that the averages we report
are, indeed, representative.
Table2 lists symmetry detection runtimes and the num-
ber of symmetry generators. We use the reduction to

graph automorphism from [1] which detects a wider
range of symmetries than that from [5] (the latter con-
struction does not find any symmetries in the Urq
instances, as seen from Table 3). The graphs are then
passed to GAP/GRAPE/NAUTY [16,15,12]. Table 2
also compares SAT-solving runtimes for the original
CNF instance and the instances augmented with sym-
metry-breaking predicates using the natural PLL-SBPs
[5], the cycle-based SBPs [1], and the proposed
approach. Clearly, the addition of SPBs significantly
reduces the search runtime, and the proposed approach
leads to the greatest savings in runtime. 
Table 3 compares the size of predicates produced by
constructions from [5], [1] and this work. Our construc-
tion entails the smallest number of variables, clauses,
and literals for all instances analyzed.

Table 2: Search runtimes of CNF-SAT instances with and without PLL-SBPs. 
The symmetry detection runtime and the number of symmetry generators are also included.

Symmetries Chaff [13] Runtime (sec) Speedup of NEW

Finding (sec) #Generators Orig Craw DAC NEW Orig Craw DAC

Urq3_5 0.27 29 1000 1000 0.01 0.01 >100K >100K 1
Urq4_5 1.64 43 1000 1000 0.01 0.01 >100K >100K 1
Urq5_5 14.6 72 1000 1000 0.01 0.01 >100K >100K 1
Urq6_5 70 109 1000 1000 0.02 0.02 >50K >50K 1
Urq7_5 186 143 1000 1000 0.02 0.02 >50K >50K 1
hole7 0.01 13 0.33 0.05 0.01 0.01 33.10 5 1
hole8 0.01 15 1.05 0.08 0.01 0.01 151 11.48 1.43
hole9 0.23 17 3.94 0.13 0.01 0.01 393.70 12.87 1
hole10 0.35 19 21.0 0.22 0.01 0.01 2104 22.08 1
hole11 0.33 21 207 0.32 0.02 0.01 19463 30.12 1.54
hole12 0.42 23 1000 0.50 0.02 0.01 >100K 50.14 2
hole15 1.32 29 1000 1.39 0.04 0.02 44262 61.52 1.56
hole20 10.3 39 1000 5.98 0.09 0.04 25000 149.5 2.23
hole30 189 59 1000 52.23 0.30 0.16 6250 326.4 1.88

Table 3: Size of SPBs using the natural PLL-SBP, the construction from [1], and the proposed approach

Natural PLL-SBP[5] Construction from [1] NEW

#V #C #Lits #V #C #Lits #V #C #Lits
Urq3_5 0 0 0 0 29 29 0 29 29
Urq4_5 0 0 0 0 43 43 0 43 43
Urq5_5 0 0 0 0 72 72 0 72 72
Urq6_5 0 0 0 0 109 109 0 109 109
Urq7_5 0 0 0 0 143 143 0 143 143
hole7 728 3640 30212 84 433 1517 143 366 808
hole8 1080 5400 53460 112 575 2074 179 278 1068
hole9 1530 7650 89505 144 737 2734 1302 466 1364
hole10 2090 10450 143165 180 919 3503 199 578 1696
hole11 2772 13860 220374 220 1121 4387 241 702 2064
hole12 3588 17940 328302 264 1343 5392 287 838 2468
hole15 6960 34800 929160 420 2129 9193 449 1318 3896
hole20 16380 81900 3660930 760 3839 18508 799 2358 6996
hole30 54870 274350 26255295 1740 8759 51013 1799 5338 15896
Total 89998 449990 31710403 3924 20251 98717 5398 12638 36652
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7 Conclusions and Future Work

In this work we extended and improved the framework
of symmetry-breaking predicates for solving Boolean
Satisfiability by using logic minimization to construct
more efficient CNF representations of symmetry-break-
ing predicates. Our constructions of symmetry-breaking
predicates are in terms of cycles of permutations, which
is particularly convenient when existing software for the
graph automorphism problem is used. The proposed
techniques lead to empirical speed-ups in back-track
search for the best available SAT solvers, e.g., as shown
in Figure 1.
Additionally, we gave new analyses of symmetry-break-
ing, including (i) estimates of efficiency of symmetry-
breaking predicates, (ii) justification of symmetry-
breaking by generators, and (iii) counterexamples to
intuitive conjectures. Future work includes further effi-
ciency improvement of symmetry-breaking predicates,
more systematic studies of proposed constructions and
empirical evaluation on applications arising the field of
Electronic Design Automation.
We are pursuing improved algorithms for symmetry
detection, e.g., along the lines of [1], where new tech-
niques for opportunistic symmetry detection were pro-
posed. 

Acknowledgements. This work is funded by an
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graduate fellowship and the DARPA/MARCO Giga-
scale Silicon Research Center (GSRC). 
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