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Abstract

Most recent works on soft errors only address circuit reliability
under single gate errors caused by SEUs. In this paper, we com-
pare the probabilities of single and multiple errors. We formu-
late a criterion based on gate error probabilities for considering
multiple gate errors in circuit reliability. Gate error probabilities
are increased by technology trends such as the down-scaling of
device features and process variation. The probability of multi-
ple errors is generally higher when there is correlation between
gate errors. We discuss several examples of correlated errors such
as systematic errors and SEUs with a common radiation source.
The correlation decreases the number of error combinations to be
considered, thereby making multiple gate errors easier to simulate
and analyze. We conclude by briefly discussing methods to model
multiple errors.

1 Motivation

Trends in chip technology include the down-scaling of device fea-
tures and increasing process variation in VLSI and molecular cir-
cuits. These trends increase the likelihood of circuits experiencing
soft errors. A soft error is a signal in a logic circuit which has an
incorrect logic value but does not imply a permanent defect. Soft
errors are often transient in nature.

A gate error is an incorrect signal at the output of a gate. In
previous research, it is commonly assumed that there is only one
such error in the entire circuit for each clock cycle. Thus, the focus
of soft error research has been on the effects of single-event upsets
(SEUs)— an SEU occurs when a charged particle deposits some of
its charge on a microelectronic device. Tools such as SERA [10],
and FASER [11] attempt to predict the probability with which a
single gate error (caused by an SEU), propagates to a primary out-
put of the CMOS circuit in question. In contrast to those works,
our error representation is not technology-specific since we seek
to study general trends in several domains including nano- and
quantum circuits.

In this paper, we compare the probability of single gate errors
(SGEs) to simultaneous multiple gate errors (MGEs). An MGE is
a collection of SGEs which occur in the same clock cycle. The
SGEs that constitute an MGE may mutually mask each other de-
pending upon the input vector. In general, the output error prob-
ability that results from an MGE cannot be easily predicted from
resultant output error probabilities of the constituent SGEs (see
Example 1). Many circuits have more fan-in than fanout. For
instance, the average gate-to-output ratio in the ISCAS85 bench-
mark suite is ≈ 35. Therefore, MGEs have to be specifically mod-
eled in these determine output error probabilities.

However, mutual masking may not occur often in circuits with
a high degree of fanout and relatively little fan-in. In these types
of circuits the separate modeling of the constituent SGEs may be
enough to predict output error probabilities.

Figure 1: Sample circuit.

Example 1 Suppose the circuit in Figure 1 has an MGE consist-
ing of gate errors at AND and X1, namely bit-flips with probability
0.10, regardless of the input value. Table 1 lists the output error
probabilities for each primary input combination. Note that out-
put error probabilities under the MGE are not equal to the sum
of the output error probabilities for the two SGEs. Output error
probabilities depend on how the errors logically mask each other
for each input combination.

Output Error Prob.
Input Combined X1 AND
00 0.10 0 0.10
01 0.18 0.10 0.10
10 0 0 0
11 0.18 0.10 0.10

Table 1: Output error probabilities for circuit in Figure 1.

Classical circuits are generally only tested for single errors due
to the assumption that the mean time between failures (MTBF)
exceeds the time it takes to repair a single error. Circuits may be
repaired or discarded before multiple errors are allowed to accu-
mulate. This assumption does not hold for soft errors. Typically,
soft errors are a result of inherently unreliable components or ex-
ternal radiation effects and cannot be repaired.

The remaining portion of this paper is organized as follows:
Section 2 discusses the probability of MGEs with each gate hav-
ing an independent probability of error, the effect of technology
trends on gate error probabilities is discussed in Section 3, Sec-
tion 4 discusses examples of situations where there is a correlation
between gate errors due to a common error source, Section 5 dis-
cusses techniques for handling MGEs and Section 6 concludes the
paper.



2 When Error Rates are High

In this section, we derive a criterion for the probability of gate
error per clock cycle for a significant number of MGEs. For the
purposes of projection, we assume an average probability of gate
error Perr(g). The probability of gate error averaged over typical
operating conditions (altitude, temperature, neutron flux, etc) and
over all the types of gates in a circuit. If gates experience error
independently, the probability of experiencing k errors in a circuit
with n gates is given by the binomial random variable:

Pk =

(

n
k

)

Perr(g)k(1−Perr(g))n−k (1)

The probability of an SGE is:

PSGE = P1 = nPerr(g)(1−Perr(g))n−1 (2)

The probability of MGEs can be derived from the cumulative
distribution function (cdf) F(n,k, p) for the binomial distribu-
tion. F(n,k, p) is calculated using the regularized incomplete beta-
function

F(n,k, p) = Ip(k +1,n+ k) =
B(p,k +1,n+ k)
B(1,k +1,n+ k)

where B(p,k +1,n+ k) =
R p

0 uk(1−u)n−k−1δu 1

PMGE =
n

∑
k=2

(

n
k

)

Perr(g)k(1−Perr(g))n−k = 1−F(n,2, p) (3)

MGE’s become of interest to hardware designers when PMGE
comes close to PSGE , that is for some constant C > 0:

C×PMGE > PSGE (4)

To find the gate error probability at which MGE’s become impor-
tant we can solve for Perr(g) in the equation:

1−F(Perr(g),n,2) > F(Perr(g)n,1)−F(Perr(g),n,0) (5)

A closed-form solution for this equation is difficult to find. How-
ever, as Figure 2 shows us the minimum Perr(g) needed to meet
the criteria in Equation 4, Pcrit , decreases with the number of gates
according to the following Equation when C = 100:

Pcrit ≈ 0.23×10−N (6)

In a circuit with only 100 gates Pcrit = .025, in a circuit with
1,000,000 gates Pcrit = .025×10−6 . The criterion derived in this
section is somewhat optimistic since in many cases correlation be-
tween errors make MGEs more common. For instance, as gates
become smaller a single SEU can cause multiple errors. Such sit-
uations are discussed in more detail in Section 4.

3 When Gates Reach Nanoscale

As device features continue to shrink, quantum effects may even-
tually dominate circuit behavior. Quantum-mechanical behaviors
are inherently probabilistic, but certain probabilistic effects be-
come apparent even at much larger scales. We classify mecha-
nisms by which probabilistic gate errors occur into two main cat-
egories: external particle strikes (SEU) and signal misinterpreta-
tions (SM). The total probability of gate error can be expressed
as:

Perr(g) = Pg(SEU ∪SM) (7)

1The beta-function can be written in terms of the gamma-function as B(a,b) =
Γ(a)Γ(b)
Γ(a+b) . On natural numbers Γ(n) = n!
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Figure 2: The minimum probability of gate error, Pcrit , required to
meet criteria in Equation 4 as the number of gates increases.

PSEU (g) is the probability that gate g experiences an SEU and
is dependent on the neutron flux F at the current altitude. The
authors in [8] give an estimate for this probability as follows:

PSEU (g) ∝ F ×A× τclk × exp(
Qcmax(g)

Qs(g)
) (8)

F is the neutron flux given in particles per unit area per unit time, A
is the gate area, and τclk is the clock period. Qcmax(g) is the critical
charge required to overcome the threshold voltage and Qs(g) is the
charge collection efficiency of the gate in question.

PSM(g) is the probability that a signal which is logically 0 is
interpreted as a 1 or vice versa by gate g.

PSM(g) ∝ exp(
Qcmax(g)

Qs(g)
)× 1

τclk
(9)

PSM(g) is dependent upon the threshold voltage, if the threshold
voltage is low, it is likely that a noisy-0 signal can be interpreted
as a 1. PSM(g) is proportional to the clock frequency because at
high clock frequencies the phenomenon of ground bounce,i.e., the
raising or lowering of the voltage on a ground pin, can cause sig-
nals to be misinterpreted in comparison to ground.

Trends in VLSI circuits which can affect Perr(g) include:

• Increasing gate density — results in reduction of gate area A
which in turn decreases PSEU (g), but this effect is balanced
by an increase in the number of gates. Furthermore, if gates
are smaller, a single event may cause multiple upsets due to
increased proximity among gates.

• Decreasing threshold voltage — less energy is required to
overcome the threshold voltage so PSM(g) and PSEU (g) are
both increased [4].

• Increasing clock speed — decreases the PSEU (g) since τclk
decreases but PSM(g) increases due to the ground-bounce
phenomenon described above [3].

• Decreasing clock speed — this is a trend in low-power com-
puting. Decreasing the clock speed will increase τclk in
Equation 8 and therefore increase PSEU (g).

Emerging technologies which are vying to replace CMOS circuits
include quantum circuits, quantum dots and molecular circuits.
General nanotechnology trends include:

• Process variations — causes differences in threshold voltage
between gates which can increase PSM(g).
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Figure 3: Single event multiple upset. Source:NASA

• No gain in molecular circuits — since the gates in these cir-
cuits do not have a power supply source, signals tend to be-
come attenuated. Gates that are towards the end of logic
blocks tend to mistakenly interpret signals as the low logic
value, thereby increasing PSM(g).

4 When Errors Have Common Sources

Often, SGEs arise from a single source thereby making the prob-
ability of an MGE higher. An obvious instance of this is a single
event multiple upset, where a single neutron hits multiple neigh-
boring gates. Figure 3 from NASA JPL’s Space Radiation Effects
group [9] shows how a single event multiple upset occurs. Note
that several damage clusters are produced by the movement of sil-
icon atoms after an initial SEU collision. Unlike the independent
SGE’s which constitute MGEs in Section 2, the incidence of such
highly-correlated errors is proportional to SGE rates and some-
what less sensitive to clock speed.

A more subtle example is systematic errors in quantum cir-
cuits. A systematic error is when an operation on a particular gate
erroneously affects all other gates in the circuit. In environments
where there is a radiation source, the fact that one gate experi-
ences an SEU indicates that other gates may experience SEUs as
well. In these situations the correlations between gate errors make
PMGE higher while also making MGEs somewhat easier to handle.
In this section we discuss several examples of correlated errors.

Example 2 Suppose that a high-altitude environment has a neu-
tron flux rate of F particles per unit area per second. For a circuit
with N gates and area A, this makes all combinations of F×N×A
errors more likely than other error combinations. The total num-
ber of errors can be described by a normal distribution with a
mean of µ = F ×N ×A errors.

Px =
1

2π
exp(

−(x−µ)

2
) (10)

Any particular combination of x errors has probability

Px/

(

n
x

)

(11)

PMGE = 1−F(2) = 1− 1√
2π

Z 2

0
exp(

−(x−2)

2
)dx (12)

Example 3 Quantum circuits often experience systematic error
due to similar resonant frequencies for all qubits in a quantum
system. When one qubit is operated upon, all other qubits expe-
rience a rotational error. This situation can be described by a
bimodal distribution with the modes at 0 and n−1. A probability
distribution of this type can be a sum of two normal distributions

Px =
1

4π
(exp(

−(x−1)

2
)+ exp(

−(x− (n−1))

2
)) (13)

PMGE can be calculated as in Example 2 as the average of the two
normal distributions.

Example 4 In the case of time-related failures of circuit compo-
nents, the fault probabilities of different components are related by
the hidden time variable. The failure rate of any component as a
function of time can be described by the bathtub curve. The fail-
ure rate is the conditional probability per unit time that a failure
occurs at a specific (possibly infinitesimally small) time interval.
The bathtub curve is piece-wise defined and has three regions: the
first region is the infant mortality region, the second region is a
constant failure rate, the third region is the wear-out region which
is characterized by an increasing failure rate.

Perr(g|t) = {
k0 − k1t +λ i f 0 < t ≤ k0/k1
λ i f k0/k1 < t ≤ t0
c2(t − t0)+λ i f t0 ≤ t

(14)

PMGE is calculated by a method similar to that of Equation 3 with
Perr(g) replaced by Perr(g|t).

5 Calculating MGE Probabilities

The total output error in a circuit consisting of unreliable gates can
be derived by the union of the probabilities of gate errors. For a
circuit with n gates, this probability is found using the principle of
inclusion and exclusion:

Perr(circuit) =
n

∑
i=1

(−1)i+1
(

n
k

)

Perr(g)i (15)

However, if Perr(g) < Pcrit , then the total output error proba-
bility in the circuit can be estimated as the sum of all single gate
error probabilities.

Perr(circuit) = n×Perr(g) (16)

The absolute error in this estimate is:
(

n
2

)

Perr(g)2

In practice, the error is smaller since many gate errors become
attenuated before they latch as output errors. In addition, even in
some cases where Perr(g) > Pcrit , there are some types of circuits
where mutual error masking does not occur often. In these circuits,
the probability of an MGE is calculated by the sum of probabilities
of constituent SGE.

The probability of two errors mutually masking each other can
be upper bounded by the number of pairs of convergent paths in a
circuit. This is calculated by counting the number of gates in each
of the output logic cones of the circuit. For a circuit with n gates,
k outputs and logic cone sizes {l1, l2, . . . lk} the number of pairs of
gate with potential convergence is:

Cpaths =

(

n
2

)

−
k

∑
i=1

(

li
2

)

(17)
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We can upper bound the probability of mutual masking by:

Cpaths
(

n
2

) (18)

Circuits which have relatively little fan-in have a lower prob-
ability of mutual masking. A decoder is an example of such a
circuit.

Example 5 A decoder with 3-inputs and 8-outputs (as shown in
Figure 4) has logic cones of sizes {4,3,3,3,2,2,2,1}. For this cir-
cuit, Cpaths = 18 and the total number of path-pairs is 55, therefore
the probability of mutual masking can be bounded by 18/55. For
a 4-input decoder this bound decreases to 65/190.

Figure 4: 3-input decoder.

In general, output error probabilities may be predicted by ran-
dom or partial simulation methods which handle single errors as
long as the number of multiple errors to consider is reasonably
small. There may be prohibitively many combinations of SGEs
that could form an MGE, however, correlation between SGEs can
lessen the number of combinations that need to be considered. For
instance, in Example 2, we can simply consider all combinations
of F SGEs since the probability of fewer or more errors is small.
This reduces the number of combinations from 2n to nF . In Exam-
ple 4, we can test for all possible combinations of µ errors where
µ is the average probability of error for the binomial distribution
with each component having independent error rate Perr(g|t).

Alternatively, probabilistic reasoning methods can be used to
encode dependencies between errors and gates. In order to capture
all of the dependencies between gate errors it is necessary to have
the complete joint fault probability table. For instance, in order
to calculate PSGE it is necessary to calculate the joint probability
error of the following form:

PSGE = Perr(g1,g2, . . .gn)+Perr(g1,g2, . . .gn) . . . (19)

Here gi indicates that gate gi has no error. We can often identify
causal links among SGEs and hidden variables such that the joint
probability can be expressed as a chain of conditional probabili-
ties.

Example 6 Suppose the hazard function of a device was as in Ex-
ample 4. In this case Perr(g1,g2, . . .gn) can be calculated by

P(t)Perr(g1|t)(1−Perr(g2|g1,t)) . . . (20)

However, since g1 and g2 are conditionally independent, Equation
20 can be calculated by:

P(t)Perr(g1|t)(1−Perr(g2|t)) . . . (21)

In [5] gate error probabilities are encoded in probabilistic trans-
fer matrices (PTM). An MGE is modeled by a collection of PTMs
with a non-zero probability of error. These probabilities are com-
bined by gate connectivity to determine the effect of MGEs on
the output. This work treats gate errors as independent. However,

error correlations of the type discussed above can be encoded as
Bayesian networks once the parent nodes are identified and the lo-
cal implications are determined. Probabilistic reasoning can then
be used to determine the impact of these correlated errors on the
outputs.

6 Conclusion

In this paper we determined conditions under which simultaneous
multiple gate errors (MGEs) become significant. We discussed
how trends in nanotechnology will affect the likelihood of these
errors. We analyze MGE probabilities under independent and cor-
related gate error assumptions with various examples of correlated
gate errors. Correlations between gate errors can often make them
easier to simulate and analyze. Future work seeks to develop a
probabilistic model which captures gate error correlations.
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