
Toward a Software Architecture for Quantum
Computing Design Tools

K. Svore∗

Columbia
A. Cross

MIT
A. Aho

Columbia
I. Chuang

MIT
I. Markov

U. of Mich.

Abstract

Compilers and computer-aided design tools will be essential for quantum
computing. We present a computer-aided design flow that transforms a high-
level language program representing a quantum computing algorithm into a
technology-specific implementation. We trace the significant steps in this
flow and illustrate the transformations to the representation of the quantum
program. The focus of this paper is on the languages and transformations
needed to represent and optimize a quantum algorithm along the design flow.
Our software architecture provides significant benefits to algorithm design-
ers, tool builders, and experimentalists. Of particular interest are the trade-
offs in performance and accuracy that can be obtained by weighing different
optimization and error-correction procedures at given levels in the design hi-
erarchy.

1 Introduction
Just as they are for classical computing, compilers and design tools are going to
be indispensable for quantum computing. In this paper, we present a layered soft-
ware architecture for a four-phase computer-aided design flow mapping a high-
level language source program representing a quantum algorithm to a technology-
specific implementation. We trace the series of steps in this flow and show the
corresponding transformations in the intermediate representations of the quantum
algorithm. We use results from our work on optimization and simulation tools to
illustrate the overall design flow and individual design transformations.

We discuss the languages and notational representations needed to support this
design flow. Of particular importance is the high-level programming language
∗contact:kmsvore@cs.columbia.edu

1



used to specify quantum algorithms. We also need optimizing compilers that will
map the quantum programming language programs into efficient and robust low-
level programs that can be executed on a quantum device or simulated on classical
computers using high-performance tools.

In the next section we discuss the toolsuite and the benefits of the layered
software architecture and the design flow. We then describe properties needed
in a quantum programming language, a proposed quantum computer compiler,
a quantum assembly language, a quantum physical operations language, and a
simulator with layout tools. Sample design flows for ion-trap computers illustrate
what is practical today. In conclusion, we discuss challenges in building software
architectures for quantum design automation and point out areas where software
support may soon be required.

2 Quantum Design Tools

2.1 Toolsuite
We envision a layered hierarchy of notations and tools that includes programming
languages, compilers, optimizers, simulators, and layout tools. The programming
languages and compilers at the top level of our toolsuite need to support the ab-
stractions used to specify quantum algorithms and need to accommodate changes
in technology-independent and dependent optimizations as our understanding of
new quantum technologies matures. The simulation and layout tools at the bottom
end need to incorporate details of the emerging quantum technologies that would
ultimately implement the algorithms described in the high-level programming lan-
guage. The tools need to balance tradeoffs involving performance, minimization
of qubits, and fault-tolerant implementations. For these reasons, we propose a
layered hierarchy of design tools with simple interfaces between each layer.

2.2 Benefits of an Open Software Architecture
There are several benefits to having a layered software architecture with well-
defined interfaces for quantum computing. On the technical front, a layered ar-
chitecture facilitates tool interoperability and makes it easier to add new tools to
an existing toolsuite. It also makes it easier to maintain and add improvements
to existing tools. At this time our knowledge of how best to optimize quantum
circuits for noise avoidance is limited as is our ability to minimize errors and
maximize speed. A layered architecture would allow researchers to experiment
with new algorithms and through simulation determine their benefits with given
quantum technologies before constructing actual physical device components. On
the economic side, no single group can afford the huge software development cost
required to develop all the tools needed to make quantum devices.

2



All stakeholders in quantum computing would benefit from the open software
architecture, which allows wider community participation in the creation and use
of needed tools. Quantum algorithm designers can explore new algorithms in
more realistic settings involving actual noise and physical resource constraints.
Researchers developing quantum circuit optimizations can evaluate tradeoffs tak-
ing into account quantum noise and physical parameters. Experimentalists and
device designers can do simulations of important quantum algorithms on pro-
posed new technologies before doing expensive lab experiments. Tools design-
ers can experiment with new algorithms and can evaluate their overall impact on
the design process. Researchers can also develop more refined noise models for
tailored-correction procedures.

2.3 The Design Flow
The design flow (Figure 1) is a four-phase process that maps a high-level program
representing a quantum algorithm into a technology-specific implementation or
simulation. The first three phases of the design flow are part of the quantum
computer compiler (QCC). The last phase is a simulation or an implementation of
the quantum algorithm on a quantum device.

Design Flow:

Machine 
Instructions

Quantum 
Circuit

Quantum 
Circuit

Quantum 
Program

Quantum 
Algorithm

QIR QASM QCPOL

Abstraction:

Technology
Dependent 
Optimizer

Technology
Independent 

Optimizer
Front End Technology

Simulator

Figure 1: Proposed design flow.

The representations of the quantum algorithm between the phases are the key
to an interoperable tools hierarchy. The first phase, the front-end of the compiler,
maps a high-level specification of a quantum algorithm into a quantum intermedi-
ate representation (QIR). The most popular choice for the quantum intermediate
representation is an encoding of quantum circuits where the gates are drawn from
some universal basis set.

The second phase is a technology-independent optimizer, which maps the QIR
representation of the quantum algorithm into an equivalent lower-level circuit rep-
resentation of single-qubit and CNOT gates. We call the lower-level notation
QASM, for quantum assembly language. The second phase attempts to produce
as good a QASM representation as possible, where the metric of goodness can be
varied, such as circuit size, circuit depth, accuracy or fault tolerance.

The third phase performs optimizations suited to the quantum computing tech-
nology used to simulate or implement the quantum algorithm. It outputs a physical-

3



language representation with technology-specific parameters called QCPOL, for
quantum computing physical operations language. The third phase is divided into
several subphases. The first subphase maps the QASM representation of single-
qubit and CNOT gates into a QASM representation using a fault-tolerant discrete
universal set of gates. In mapping the gates to a discrete set, we must approx-
imate the original gate set using the Solovay-Kitaev method [17]. In the sec-
ond subphase, these gates are mapped into a QCPOL representation containing
the physical instructions for the fault-tolerant operations, including the required
movements. Knowledge of the physical layout enters at this step.

The final phase includes technology-dependent tools such as circuit or phys-
ical operations simulators and layout modules, as well as execution on an actual
quantum device.

Note that it is likely that any real design will be iterative in nature, requiring
several passes through one or more of these phases. Also, a fault-tolerant physical
implementation of a quantum algorithm is crucial. At present, it is not known
where in the design flow is the best place to introduce error-correction circuitry
but, as described in Section 8, this design flow can accommodate it at any level
in the hierarchy. Particularly, it is interesting to determine if the compiler can
automatically introduce error-correction and produce a fault-tolerant QASM or
QCPOL representation. The remainder of this paper describes these phases in
detail, focusing on the representations, algorithms, and design issues relevant to
each phase. Section 8 of the paper gives some example design flows.

3 Quantum Programming Source Languages
Designing a quantum programming language is a difficult task since there is cur-
rently a limited repertoire of quantum algorithms. Moreover, at this point, we
do not know whether a quantum computer will be a special-purpose ASIC or a
general processor. However, we assume the communication between the quantum
device and the classical processor follows the QRAM model described in [5, 15].

The high-level quantum programming language must offer both experimen-
tal physicists and algorithm designers the necessary abstractions to perform any
quantum computation. Many programming languages have been proposed for
representing quantum algorithms [5, 18, 19, 20, 23, 25, 38]. Most of these lan-
guages offer abstractions based either on the quantum circuit model or on Dirac
notation [17].

A quantum programming environment should possess several key character-
istics [5]. First, the environment needs a quantum programming language that is
complete in the sense that every current and future quantum algorithm can be writ-
ten and expressed in the language. Basically, the language should support com-

4



plex numbers and be capable of expressing and composing unitary transforms and
measurements, as well as describing the classical pre- and post-processing calcu-
lations. The enviroment should also have reusable subroutines or gate libraries
that can be called by the programmer to implement a quantum algorithm. The ex-
act modularization of a quantum programming environment, however, is an open
research question.

Second, it is advantageous if the language and environment are based on fa-
miliar concepts and constructs. This way, learning how to write, debug and run a
quantum program will be easier than if a totally new environment were used.

Third, the environment should allow easy separation of classical computa-
tions from quantum computations. Since a quantum computer has noise and lim-
ited coherence time, the separation can help determine and limit the length of
time needed to implement the quantum computations on the quantum device. The
compiler for a quantum programming language should be able to translate a source
program into an efficient and robust quantum circuit or physical implementation;
it should be easy to translate into different gate sets or optimize with respect to a
desired cost function using algorithms that are simple, efficient and effective.

Fourth, the high-level programming language should be hardware independent
since the source program should be able to run on different quantum technologies.
However, the language and environment should allow the inclusion of technology-
specific modules.

Lastly, it would be advantageous to have a language that supports high-level
abstractions that would allow the easy development of new algorithms using quantum-
mechanical phenomena such as entanglement and superposition. Although there
are several existing quantum programming languages, such as QCL [18, 19],
Q [5], and others [20, 23, 25, 38], the abstractions captured in these languages
do not take full advantage of the quantum-mechanical principles used in quantum
computations. For example, QCL [18, 19] is an interpreted language that contains
many usual programming constructs such as arrays and subroutines. It allows
the implementation of new procedures by the programmer and provides a univer-
sal set of gates. However, the descriptions of the operators and states are based
on matrices and vectors, and thus provides us with no further insight beyond the
usual Dirac notation. Q [5] is an extension of C++ that is designed with a clear
separation of quantum and classical procedures. It builds a quantum operator as a
data object rather than as a function to allow for run-time optimizations and easy
compositions. But again, this language is based on Dirac notation and does not
provide us with further insights.

By incorporating appropriate abstractions into a language and environment for
quantum computing, we will hopefully develop an environment that makes both

5



the design and programming of quantum algorithms an easier task. In addition,
we seek a language from which robust, optimized target programs can be easily
created.

4 Quantum Computer Compiler (QCC)
We now investigate the compilation steps of our quantum computer compiler (Fig-
ure 1). A generic compiler for a classical language on a classical machine consists
of a sequence of phases, each of which transforms the source program from one
representation into another [3]. The lexical analyzer tokenizes the source program
into logical sequences of characters. The tokens are passed to the syntax analyzer
to translate into a syntax tree. This representation is passed to the semantic ana-
lyzer, which further analyzes the representation for semantic errors and compati-
ble operations on types. The output is then sent to the intermediate code generator
to create an intermediate representation for the program being compiled. The in-
termediate code optimization phase searches for possible machine independent
optimizations to improve the efficiency of the code. After these optimizations, the
code generation phase produces the target code for the machine to execute. Before
outputting a target program, machine dependent optimizations are performed.

This partitioning of the compilation process into a sequence of phases has led
to the development of efficient algorithms and tools for building components for
each of the phases [3]. Since the front-end processes for quantum compilers are
similar to those of classical compilers, we can use the algorithms and tools for
building lexical, syntactic and semantic analyzers for QCCs. However, the inter-
mediate representations and the optimization and code generation phases of QCCs
are very different from classical compilers and require novel approaches, such as
a way to insert error-correction operations into the target language program. This
section describes the current state of the art concerning intermediate representa-
tions, code generation, and optimization.

4.1 Front End and the Quantum Intermediate Representation
In the first phase of our QCC, a high-level specification of a quantum algorithm
is mapped into a quantum intermediate representation (QIR) that is based on the
quantum circuit model [17]. Since other representations of quantum computation,
such as adiabatic quantum computing, can be converted to the quantum circuit
model, this is an appropriate formalism. In particular, by choosing the circuit
formalism, we can consider fault-tolerant constructions at various phases in our
design flow (see Section 8). Also, by using the quantum circuit model, we can
incorporate circuit synthesis and optimization techniques in both the technology-
independent and technology-dependent phases of our design flow.

6



4.2 Circuit Synthesis and Optimization
The second and third phases of our QCC synthesize and optimize a QASM rep-
resentation of a quantum circuit. In this section, we discuss possible optimiza-
tion and synthesis procedures that can be applied in these two phases, by analogy
with classical chip design techniques. Algorithms for classical logic circuit syn-
thesis [13] map a Boolean function into a circuit that implements the function
using gates from a given gate library. These algorithms are typically applied after
high-level synthesis or in conjunction with compilers in traditional chip design
methodologies. Similarly, we can talk about quantum circuit synthesis, where a
quantum circuit is created that “computes” a given unitary matrix, up to a relative
phase or up to a prescribed quantum measurement.

Given the truth table of a Boolean function, a two-level circuit, linear in the
size of the truth table, can be constructed immediately. Yet, the optimization of
the circuit structure is nontrivial. In contrast, given a2n × 2n unitary matrix, it is
not even easy to find a good quantum circuit to implement it. Only very recently
have constructive algorithms been developed that yield an asymptotically optimal
circuit with 4n gates for a2n × 2n unitary matrix [30]. However, the constant
numerical factor between the lower and upper bounds remains high, except for
special cases, such as two-qubit circuits [26] and for diagonal circuits [6]. An
arbitrary two-qubit operator requires up to three CNOT gates, and either six ad-
ditional generic (basic) single-qubit gates or fifteen additional elementary single-
qubit gates.

The difference between basic and elementary gates deserves particular atten-
tion. Basic gates can be decomposed, up to phase, into a product of one-parameter
rotations according to the Euler-angles formula [17]. Therefore we view only one-
parameter rotations as elementary. Some results in terms of such elementary gates
can be reformulated in terms of coarser gates, but coarser gates do not always
correspond to realistic costs of physical implementations. It is thus necessary in
the third phase to map the representation into a universal set of gates depending
on the choice of a particular technology. For example, single-qubit basic gates
appear equally cheap in many NMR implementations [17]. However, when work-
ing with ion traps,Rz gates are significantly easier to implement thanRx andRy
gates [35].

When developing reusable software for automating the design of quantum cir-
cuits, it is desirable, to some extent, to avoid such fundamental dependence on
technology. Indeed, this problem is not new. Recall the standard choice of elemen-
tary logic gates in classical computing (AND-OR-NOT) was suggested in the19th

century by Boole for abstract reasons rather than based on specific technologies.
Today theNANDgate is easier to implement than theANDgate in CMOS-based

7



integrated circuits. This fact is addressed by commercial circuit synthesis tools by
decouplinglibraryless logic synthesisfrom technology-mapping[13]. The former
uses an abstract gate library, such asAND-OR-NOT, and emphasizes the scala-
bility of synthesis algorithms that capture the global structure of the given com-
putation. The latter step maps logic circuits to a technology-specific gate library,
often supplied by a semiconductor manufacturer, and is based on local optimiza-
tions. Technology-specific libraries may contain composite multi-input gates with
optimized layouts such as theAOI gate (AND/OR/INVERTER). From a theoret-
ical point of view, re-expression of circuits in terms of a different set of universal
gates may increase circuit sizes by at most a constant, under certain reasonable
assumptions about the gate libraries involved.

We expect the distinction between technology-independent circuit synthesis
and technology mapping to carry over to quantum circuits as well. To this end,
the work in [26] shows that basic-gate circuits can be simplified by temporarily
decomposing basic gates into elementary gates, so as to apply convenient circuit
identities. This is precisely our reason, in the second phase, for mapping the quan-
tum algorithm into a QASM representation consisting of single-qubit and CNOT
gates. Indeed, all lower bounds for two-qubit circuits from [26] and also their
lower bound for the number of CNOTS in ann-qubit circuit (d(4n − 3n− 1)/4e)
rely on such circuit identities. Additionally, temporary decompositions into ele-
mentary gates may help optimizing pulse sequences in physical implementations.
In terms of technology mapping in the third phase, the work in [26] shows how to
map a CNOT gate into a specific implementation technology by appropriately tim-
ing a given two-qubit Hamiltonian and applying additional single-qubit operators.
Circuits resulting after such substitutions may potentially be optimized further.

Ongoing work in quantum circuit synthesis and optimization involves au-
tomatically instantiating error-correction, a potentially key feature for scalable
quantum computing. Additionally, circuit synthesis and optimization with dis-
crete gate libraries, required for the technology-dependent optimization phase, re-
mains largely unexplored. To this end, we point out that the Gottesman-Knill the-
orem [11] suggests a mapping between stabilizer circuits, key to quantum error-
correction, and classical reversible circuits consisting of CNOT and Toffoli gates.
Optimizing the latter [27] could help optimizing stabilizer circuits. An alterna-
tive approach to optimizing stabilizer circuits was suggested by Aaronson [1] and
entails partitioning them into eight groups of Phase, Hadamard and CNOT gates
(H-P-C-P-H-P-C-P). Given that the Phase and Hadamard are single-qubit gates,
the respective groups cannot have more than linear size (in the number of qubits)
after cancellations. Thus, all the complexity is concentrated in two CNOT groups,
to which the asymptotically optimal algorithm from [21] can be applied to find

8



circuits with at mostcn2/ log2(n) gates. Another interesting observation is that
the work in [27] proposes to partition classical reversible circuits into four groups
Toffoli, CNOT, NOT, Toffoli (T-C-N-T). The study of such universal circuit par-
titions may lead to canonical forms, potentially useful in optimizing compilers.
Additionally, circuit partitions suggest cirucit layouts and can lead to new archi-
tectures for reprogrammable circuits. Methods such as those discussed above will
be needed in the second and third phases of our QCC to produce good circuits for
implementation on a quantum device.

5 A Quantum Assembly Language (QASM)
The technology-independent phase of our QCC maps a representation of the quan-
tum algorithm into an equivalent set of quantum assembly language (QASM) in-
structions. QASM is an extension of a RISC assembly language with the classical
RISC instruction sets and a set of quantum instructions based on the quantum cir-
cuit model of quantum computation. Just as the quantum circuit model contains
qubits and classical bits (cbits), QASM uses qubits and cbits as the basic units of
information. To ensure the usability of the classical RISC instruction set, each cbit
is stored in a separate classical register. However, there are no quantum registers
in QASM. Each qubit and classical register used in a QASM program is a static
resource and must be declared at the beginning of the program.

Quantum operations consist solely of unitary operations and measurements.
In QASM, each unitary operator is expressed in terms of an equivalent sequence
of single-qubit and CNOT gates. We have chosen these gates as the universal gate
set since it can express any quantum circuit exactly. The single-qubit operations
are stored as a triple of rationals, since single-qubit operations are specified by
three Euler-angles. We assume that each rational number in the triple is implic-
itly multplied byπ. The non-reversible measurement operation on a single-qubit
copies the measurement result to a classical register by first zeroing out the clas-
sical register and then copying the measurement result into the classical register.
The qubit is also set to the resulting value of the measurement. In QASM, clas-
sical control of a qubit is performed by conditioning off of the classical register
with an OR of the bit values. Thus, in order to classically control with the result of
multiple measurements, the bits must be masked and shifted into a single register.

6 A Quantum Physical Operations Language (QCPOL)
The quantum physical operations language (QCPOL) describes precisely how a
given quantum circuit should be executed on a particular physical system. The
instruction set of a physical operations language is specific to the target system
and contains enough low-level information to execute the quantum circuit unam-

9



biguously. We now describe the general properties of a QCPOL and proceed to a
specific example of a physical language for the trapped-ion quantum processor.

6.1 General Properties of a QCPOL
We classify physical operations as initialization, computation, communication,
classical control, and system-specific instructions. This classification admits de-
vices that have realized quantum information processing to date and is general
enough to admit future devices.

Initialization instructions specify how to prepare the initial state of the system.
These include operations to load qubits into the system and put those qubits into
a valid, known starting state. In practice this requires manipulating the physical
qubit carriers and controlling the carrier’s degrees of freedom that might affect an
internal qubit or the ability to control an internal qubit.

Computation instructions include both gates and measurements. For most
physical systems gates correspond to controlled electromagnetic pulses. Gate
types and speeds depend strongly on the interaction that couples qubits, so typical
systems permit only a limited set of gates. Measurement methods rely on coupling
to a measurement apparatus and will be limited to particular operators in practice
as well.

Movement instructions control the relative distance between qubits, bringing
groups of qubits together to participate in local gates. Some systems have station-
ary qubit carriers and will spend a majority of their time performing swap gates.
Other systems have mobile qubit carriers, or perhaps a mixture of mobile and
immobile carriers. These systems will have machine-specific movement instruc-
tions.

Quantum information processors will contain at least a subset of classical logic
operations. In the simplest case, quantum processors will be controlled by external
computers and have access to a complete classical instruction set. Future quantum
processors, however, may have integrated classical logic with specific low-level
functions and interfaces.

Finally, a physical operations language includes system-specific instructions
that may not fall into general categories. These instructions are likely to con-
trol other degrees of freedom of the qubit carriers or nondestructively detect the
presence or absence of carriers.

QCPOL instructions are organized into a coherent program by specifying the
starting time and duration of each instruction. If the machine can operate in par-
allel, instructions can be organized into streams or groups that execute simultane-
ously. Essentially, physical constraints yield further semantic constraints.

10



6.2 QCPOL Example: Trapped-ion QCPOL
Physical operations languages may vary considerably over different physical sys-
tems. This section describes one example of a physical operations language for
the operation of a trapped-ion quantum computer system.

Trapped-ion devices use charged, electromagnetically trapped atoms as qubit
carriers. Each qubit is represented by internal electronic and nuclear states of a
single ion. Laser pulses of specific frequencies addressing one or more ions apply
single and multi-qubit quantum gates. Laser pulses, appropriately tuned, can also
perform measurement, by causing ions to fluoresce when they are in the|0〉 state.
Two or more ions can be contained in a single trap, where they couple to each other
through Coulomb repulsion, thus providing a qubit-qubit interaction through their
collective vibrational modes. These modes can serve as a “bus” qubit, as long as
ion temperatures are kept low, and vibrational states controlled. We say that ion-
qubits arechainedif they are close enough to interact using the bus qubit. This
bus qubit is also manipulated optically usingsidebandlaser pulses.

Trapped-ion systems have shown considerable potential as a future technology
for quantum information processing. Several groups have demonstrated a uni-
versal set of gates and measurements for trapped-ion quantum information pro-
cessing [16, 24], including basic multi-qubit quantum algorithms, and recently,
quantum teleportation. Further, experiments have demonstrated that static volt-
ages can move ion-qubits between traps [22]. Together these experiments offer a
route toward a scalable system, possibly configured in a large microarray akin to
charge-coupled-devices [14].

We have designed an instance of QCPOL targeted to ion traps, consisting of
initialization, computation, movement, classical control, and system-specific in-
structions.

Initialization of an ion trap processor has two stages: loading of multiple ions
into a special loading region, and laser cooling to reduce ion temperatures. Mea-
surement is then performed, followed by conditional rotations, to put all qubits in
the|0〉 state.

Computationwith quantum gates is naturally described in terms of single-
qubit rotations in thêx − ŷ plane, achieved using pulsed laser excitation, and
a controlled-phase gate between ions in the same trap, implemented using three
sideband pulses. Chained ions may also participate in a multiply-controlled phase
gate, useful for creating large entangled states [28]. Qubit readout with a readout
laser pulse is described by a projective measurement.

Movementof ions is accomplished into and out of traps (and chains) using
electrostatic fields. We assume a set of movement instructions sufficient for a pla-
nar rectangular trap configuration with “T” and “X” junctions. Additional splitting

11



and joining instructions separate and rejoin chains.
Classical controlof ions is assumed to be universal, and implemented by a

fast, external classical processor. In practice, this can either be a remote control
PC, or a local microprocessor chip integrated nearby the trap.

System-specific instructionsfor trapped ions are necessary to deal with the
heating and decoherence of ion-qubits and bus qubits caused throughout a compu-
tation, in the movement, splitting, and joining operations. In the worst case, high
temperatures may eject ions from the trap. Thus, the instruction set includes a
system-specific method to reinitialize the bus qubit, using recooling pulses. These
are also sideband pulses like those used in multi-qubit gates, but they are applied
differently and must be treated specially by the design tools.

7 High-performance Simulation of Quantum Circuits
The intrinsic computational difficulty of simulating quantum computation on clas-
sical computers was pointed out by Richard Feynman in the 1980s [8]. Moreover,
this led him to suggest the use of quantum-mechanical effects to speed up classi-
cal computing. Even though such speed-ups have been theoretically identified by
Shor and Grover, numerical simulation of quantum computers on classical com-
puters remains attractive for engineering reasons. Similarly, in classical Electronic
Design Automation, chip designers always test independent modules and com-
plete systems by simulating them on test vectors, before costly manufacturing.
Numerical simulations can also help to evaluate “quantum heuristics” that defy
formal worst-case analysis or only work well for a fraction of inputs.

For the numerical simulation phase, the quantum circuit formalism seems
most suitable for reasons discussed in Section 4.1. Mathematical models of quan-
tum states and circuits involve linear algebra [17]:n-qubit quantum states can be
represented by2n-dimensional vectors, and gates by square matrices of various
sizes. The parallel composition of gates corresponds to the tensor (Kronecker)
product, and serial composition to the ordinary matrix product. A quantum cir-
cuit can be simulated naively by a sequence of2n × 2n matrices that are applied
sequentially to a state vector. This reduces quantum simulation to standard lin-
ear algebraic operations with exponentially sized matrices and vectors. Quantum
measurement is also simulated via linear algebra. A key insight to efficient sim-
ulation is to use structure in matrices and vectors that may arise from quantum
circuits. To this end, polynomial-time simulation techniques were proposed for
circuits with restricted gate types [11] and for “slightly entangled” quantum com-
putation [33]. The Gottesman-Knill technique [11] targets circuits used for quan-
tum error-correction and states that can be produced with such circuits (stabilizer
states). In the next sections, we describe two possible simulation tools for use in

12



the fourth phase of our design flow.

7.1 QuIDDPro: A Generic Graph-based Simulator
Viamontes et al. [31] proposed a generic simulation technique based on data com-
pression using the QuIDD data structure. Its worst-case performance is no better
than what can be achieved with basic linear algebra, but it can dramatically com-
press structured vectors and matrices, including all basis states, small gates and
some tensor products. A QuIDD is a directed acyclic graph with one source and
multiple sinks, where each sink is labeled with a complex number. Matrix and
vector elements are modeled by directed paths in the graph; any given vector
or matrix can be encoded as a QuIDD, and vice versa (subject to memory con-
straints). Surprisingly, all linear-algebraic operations can then be implemented as
graph algorithms in terms of compressed data representations.

QuIDDs simulate a useful class of quantum circuits using time and memory
that scale polynomially with the number of qubits [31]. For example, all the com-
ponents of Grover’s algorithm, except for the application-dependent oracle, fall
into this class. Furthermore, QuIDD-based simulation of Grover’s algorithm re-
quires time and memory resources that are polynomial in the size of the oracle
p(·) function represented as a QuIDD [31]. Thus, if a particularp(·) for some
search problem can be represented as a QuIDD using polynomial time and mem-
ory resources (including conversion of an original specification into a QuIDD),
then classical simulation of Grover’s algorithm performs the search nearly as fast
as an ideal quantum circuit. That is because the complexity of Grover’s algorithm
is dominated by the number of iterations.

Unlike other simulation techniques proposed in the physics literature and tied
to the state-vector representation, QuIDDs are a formal data structure for com-
pressed linear algebra operations used in quantum computing. Extending QuIDDs
to simulate density matrices only requires implementing several additional oper-
ations, such as trace-overs, in terms of graph traversals. Such extensions have
been described in [32], along with empirical performance results on several types
of circuits up to 24 qubits. For a comparison, straightforward modelling of any
16-qubit density matrix would require 64TB of memory. For a reversible 16-qubit
adder circuit that uses CNOT and Toffoli gates, the QuIDDPro package requires
less than 2MB of memory. This package is currently available from the authors
with an ASCII front end that supports input language similar to Matlab.

7.2 Layout Tools, Scheduling Tools, and the Trapped-Ion Simulator
This section discusses initial tools that we have implemented for studying trapped-
ion systems. Layout, scheduling, and simulation tools can be used to aid in design
and testing of large-scale devices or device components. Layout tools use the

13



structure of a quantum network to infer both an initial geometric arrangement of
qubits and the valid locations that qubits can be moved to during computation.
Scheduling tools determine movement patterns during a computation and insert
machine-specific operations related to movement. Finally, simulation tools evalu-
ate the layout and movement sequence.

A general layout tool that we have implemented maps an arbitrary quantum
circuit onto a Turing machine with a single head and a circular tape (Figure 2(a)).
The simple structure of the single-headed Turing machine makes scheduling oper-
ations particularly simple. Qubits are moved into the head before each multi-qubit
gate and returned to the tape after the gate.

We have also implemented a more specialized layout tool that maps circuits
constructed from concatenated quantum codes onto anH-tree. An H-tree is con-
structed recursively in the same way as a Koch curve or other fractal. Concate-
nated quantum codes have a self-similar structure, so fewer movement operations
are required per gate because qubits for the inner codes are kept near one an-
other. We currently schedule operations onto the H-tree by specifying paths for
basic operations, but expect that this procedure can be automated by use of more
sophisticated techniques.

Both of these layout and scheduling methods lead to physical operation se-
quences that can be simulated to verify correctness, reliability, and total running
time. For large-scale trapped ion systems, we have developed a simulation tool
that implements the model of a trapped-ion quantum computer described in Sec-
tion 6. The simulator accepts a layout and a QCPOL program implementing a
quantum circuit, each generated by scheduling and layout tools. Simulator output
includes the final quantum state, single-shot measurement and failure histories,
total execution time, and overall circuit reliability. In addition, the simulator can
graphically display the QCPOL instructions as they are simulated. An example of
this output is shown in Figure 2(b).

We believe that the performance of quantum-circuit simulators and layout
tools can be significantly improved in the near future. These improvements will
stem from better algorithms and from deeper understanding of structure present
in useful quantum circuits. A particularly interesting approach suggested recently
by Aaronson [1] is to automatically restructure a given quantum circuit so that the
new circuit produces the same output, but is easier to simulate (e.g., has fewer
gates). We are currently exploring another connection between simulation and
synthesis where optimized simulation primitives directly support only a small uni-
versal set of quantum gates. Simulating more complicated gates requires decom-
posing them into low-level primitives [4, 26]. Such decompositions also appear
central from the physics perspective, where a given Hamiltonian can be numeri-

14



(a) (b)

Figure 2: (a)Turing machine layout for a trapped ion processor produced by an automatic
layout tool.(b)Snapshot of the simulator graphical display showing an H-tree layout. Qubits
are ions represented by spheres, and gates are applied using laser pulses, represented by
lines. The qubits can move within the black regions of the figure and are prohibited from
moving into the substrate which is drawn using light squares. In the right window the
simulator displays feedback regarding the current operations, noise induced failures, and
estimated execution time.

cally simulated after being decomposed into a quantum circuit.

8 Design Flow for a Fault-tolerant Ion-trap Architecture
In this section, we introduce the concept of fault-tolerance and detail a process
that inserts fault-tolerant components. The process can be applied manually by a
system architect in a hardware-driven design flow, or it can be applied automati-
cally by a compiler in a software-driven design flow. Both of these design flows
are being implemented specifically for trapped-ion systems, though the principles
may extend to other devices. The central goal of both design approaches is to
guarantee that the final stream of physical operations will execute fault-tolerantly.
These examples demonstrate the utility and generality of the high-level design
flow for organized study of quantum device design approaches.

8.1 Classical Fault-Tolerant Components
We begin by reviewing triple modular redundancy (TMR) as the canonical method
for implementing fault-tolerant computation in modern digital computers [34, 36].
If the basic gates in digital computers were not naturally error-rejecting, this con-
struction would be a standard element of computer architectures. To construct a
fault-tolerant gate, the inputs are encoded using the TMR code and fed into three
basic gates. The output lines of each logic gate fan-out into three majority voting
gates. The majority gates output the encoded computation result.

15



By applying this fault-tolerant procedure recursivelyk times, as illustrated in
Figure 3, fault-tolerant components can be made to fail with probability(cp)2k/c
for a constantc determined by the number of ways basic gates in the component
can fail. For the NAND gate,c = 6 because there are 6 ways for two basic gate
failures to cause a component failure. If each basic gate fails with probability
p < 1/6 then the fault-tolerant NAND can be made arbitrarily reliable in princi-
ple. We say that this construction exhibits afault-tolerance thresholdpth = 1/6.
The fault-tolerant NAND component must then be placed onto a layout in such a
way that wire delays are not too long and cross-talk does not introduce too much
additional noise.

M

M

M

M

M

M

M

M

M

M

M

M

N

N

N

M

M

M

N

N

N

M

M

M

N

N

N

Figure 3: A TMR fault-tolerant NAND gate at the second level of recursion, constructed
from three fault-tolerant NAND gates.N andM denote NAND and majority gates. All
gates are assumed to fail with probabilityp, such that the boxed TMR NAND gate (up-
per left) fails with probability< 6p2. The entire circuit shown in this figure fails with
probability< 63p4. If p < 1/6 then this circuit is more reliable than a basic gate.

8.2 Fault-Tolerant Quantum Components
Fault-tolerant quantum components are constructed using similar procedures to
those used for classical fault-tolerance. Quantum information can be encoded us-
ing quantum computation codes[2] that allow fault-tolerant computation using a
discrete universal set of gates. The CSS codes [7, 29] are one family of quan-
tum computation codes with the useful property that CNOT gates can be applied
transversally[9]. Transversal gates are always fault tolerant since they are im-
plemented in a bitwise fashion. Figure 4(a) illustrates transversal Hadamard and
CNOT gates.

Nontrivial fault-tolerant quantum gates such as the Toffoli gate (Figure 4(b))
can be constructed using a general method based on quantum teleportation [37].
Fault-tolerant gates constructed in this manner consist entirely of Clifford group

16



H

H

H

q1

q2

(a)

phi

H

Z

Z X

X x

y

z + x y

x

y

z

(b)

Figure 4: (a)Transversal Hadamard and CNOT gates acting on two logical qubits repre-
sented by 3 physical qubits. Transversal CNOT is a valid operation for a quantum code
iff that code is a CSS code [9]. Transversal Hadamard is a valid operation for a doubly-
even self-dual CSS code.(b)Fault-tolerant Toffoli gate constructed using quantum telepor-
tation [37]. Each gate in this circuit can be applied transversally when using a punctured,
self-dual, doubly-even CSS code such as the[[7, 1, 3]] code [10]. The gate requires an an-
cilla |φ〉 that can be prepared fault-tolerantly as well by applying Clifford group operators
and fault-tolerant measurements of Clifford group operators.

gates and measurements, both of which can be applied transversally. These gates
are applied to a tensor product of input qubit states and a specially-prepared ancilla
state.

Performing these gates in practice requires fault-tolerant preparation of several
kinds of ancilla. First, a specially-prepared ancilla state must be prepared for each
nontrivial gate, like the Toffoli gate or theπ/8 gate. These states can be prepared
fault-tolerantly through measurement. A recovery operation on each qubit has
to follow each nontrivial gate. The generic structure of a recovery operation is
shown in Figure 5(a). Recovery operations consume a syndrome extraction ancilla
for every syndrome bit they acquire. This ancilla must also be prepared fault-
tolerantly and be available in great supply. Figure 5(b) also shows the generic
structure of a single syndrome bit extraction. The final ancilla, a cold verification
qubit, must be available for every extraction ancilla in order to check for critical
errors.

All of these operations must remain fault tolerant when qubits can only interact
locally. If the target machine permits a geometry that allows frequentintermediate
error-correction, then movement errors can be corrected on each level of code
concatenation before becoming too large [12]. This can be true for a device with
an engineered layout, such as the “quantum CCD” proposal for a trapped ion
quantum device [14].

17



data
S1 S2 … Sm

creg

R

a1,a2,…

(a)

data

V
P

restart?

C
Danc

v
syndrome bit

(b)

Figure 5: The left network (a) is arecovery network. A recovery operation interacts fault-
tolerantly with the data via syndrome bit extraction networksSi. Each syndrome bit is
measured, possibly several times, and stored to a classical register. A classical computer
processes the register and applies the appropriate error correctionR to the data. Recovery
operations must follow every fault-tolerant gate to correct errors introduced by that gate.
The right network (b) is asyndrome extraction network. Extracting a single syndrome bit
fault-tolerantly first requires an ancilla state|anc〉. The ancilla is prepared and verified
by the network in the outlined box. A verification qubit indicates if the verification failed.
Once an ancilla has been successfully prepared, theC network interacts with the data fault-
tolerantly to collect a syndrome bit. This bit is decoded byD and measured. Some classical
post processing may take the place of the quantum networkD.

8.3 Design flows
We now describe the software and hardware driven design flows in more detail.
Both approaches fundamentally apply the same replacement rules described in
this section by taking advantage of the conceptual separation of the logical and
physical machine.

A software-driven design flow applies the replacement rules we have described
to insert fault-tolerance before technology-dependent code is generated. Schedul-
ing algorithms and layout tools like those in Section 7.2 both minimize movement
and insert machine-specific instructions to preserve fault-tolerance. The software
approach relies on fine-grained replacements and transformations at the lowest
levels of the design flow. These tools may operate in several stages but must ul-
timately generate physical operations in the QCPOL language because moving
qubits may make frequent use of device dependent details.

In a hardware-driven design flow, a system architect creates universal, fault-
tolerant, technology-specific components through a combination of replacement
rules and heuristic methods. The set of components is published together with
design rules for connecting them. The lowest levels of the design flow then target
the machine architecture rather than the physical device. The hardware approach
abstracts the technological details of fault-tolerance into a machine architecture

18



and supplies coarse component placement rules.

9 Conclusions and Important Challenges
This paper has presented a design flow in which a high-level language represent-
ing a quantum algorithm is mapped into a quantum device or quantum device
simulator. The paper has focused on the languages and notations needed along the
design flow and open problems that need to be solved to make this design flow a
reality. We conclude by listing the most important challenges.

1. Design a high-level programming language for creating quantum algorithms
that encapsulates the principles of quantum mechanics such as superposi-
tion and entanglement in a natural way for physicistsandprogrammers.

2. Find efficient technology-independent optimization algorithms that work
well on realistic classes of quantum circuits, and develop strategies for
adapting generic circuits to specific implementation technologies.

3. Develop simulation techniques for quantum circuits and high-level pro-
grams that will allow designers to evaluate meaningful design blocks.

4. Identify fault-tolerant architectural strategies that can be used with emerg-
ing quantum device technologies such as ion traps.

5. Find efficient optimization algorithms for fault-tolerant circuits that mini-
mize the number of fault paths, size of code and the number of gates.

As the scale of quantum computing increases, design verification and device
testing may also require software support, e.g., for circuit-equivalence checking
and test-vector generation. However, such topics have not been widely covered in
quantum computing literature, and there still seems to be little empirical context
for these aspects of automation.

AcknowledgementsThe authors are grateful to Stephen Edwards for many
helpful comments on computer-aided design flows.

References
[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits.Unpublished, 2003.

[2] D. Aharonov and M. Ben-Or. Fault tolerant computation with constant error.Proc. ACM Symposium on the
Theory of Computing (STOC), pages 176–188, 1997.

[3] A. Aho, R. Sethi, and J. Ullman.Compilers, Principles, Techniques, and Tools. Addison-Wesley, 1986.

[4] A. Barenco et al. Elementary gates for quantum computation.PRA, 52:3457–3467, 1995. arXive e-print
quant-ph/9503016.

[5] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum programming.Eur. Phys. J.,
25:181–200, 2003.

[6] S. S. Bullock and I. L. Markov. Asymptotically optimal circuits for arbitrary n-qubit diagonal computations.
Quantum Inf. and Computation, 4(1):27–47, January 2004.

[7] A. R. Calderbank and P. W. Shor.Good quantum error-correcting codes exist. Phys. Rev. A., 54:1098–1105,
1996.

19



[8] A. J. G. Hey ed.Feynman and Computation: Exploring the Limits of Computers. 1999.
[9] D. Gottesman. Stabilizer codes and quantum error correction.PhD thesis, Cal. Inst. Tech, 1997.

[10] D. Gottesman. Theory of fault-tolerant quantum computation.Phys. Rev. A, 57:1, January 1998.
[11] D. Gottesman. The Heisenberg representation of quantum computers.Intl. Conf. on Group Theoretic Methods

in Physics, 1998. quant-ph/9807006.
[12] D. Gottesman. Fault-tolerant quantum computation with local gates.Unpublished, 1999. arXive e-print quant-

ph/9903099.
[13] G. Hachtel and F. Somenzi.Synthesis and Verification of Logic Circuits. Kluwer, 2000.
[14] D. Kielpinski, C. Monroe, and D.J. Wineland. Architecture for a large-scale ion-trap quantum computer.

Nature, 417:709–711, 2002.
[15] E. Knill. Conventions for quantum pseudocode.Technical Report LAUR-96-2186, Los Alamos National Lab-

oratory, 1996.
[16] D. Leibfried et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate.

Nature, 422:412–415, 2003.
[17] M. A. Nielsen and I. L. Chuang.Quantum computation and quantum information. Cambridge University

Press, Cambridge, England, 2000.
[18] B. Oemer. A procedural formalism for quantum computing.Ph.D. Thesis, Univ. of Vienna, 1998.
[19] B. Oemer. Quantum programming in QCL.Masters Thesis, Univ. of Vienna, 2000.
[20] M. Oskin and A. Petersen. A new algebraic foundation for quantum programming languages.Second Workshop

on Non-Silicon Computing, 2003.
[21] K. N. Patel, I. L. Markov and J. P. Hayes. Efficient synthesis of linear reversible circuits.Intl. Workshop on

Logic and Synthesis, June 2004. arXive e-print quant-ph/0302002.
[22] M. A. Rowe et al. Transport of quantum states and separation of ions in a dual RF ion trap.Quantum Informa-

tion and Computation, 2:257–271, 2002. arXive e-print quant-ph/0205094.
[23] J. Sanders and P. Zuliani. Quantum programming.Technical report, Oxford Univ., 1999.
[24] F. Schmidt-Kaler et al. Realization of the Cirac-Zoller controlled-NOT quantum gate.Nature, 422:408–411,

2003.
[25] P. Selinger. Towards a quantum programming language.Math. Struct. in Comp. Sci., 2004.
[26] V. V. Shende, I. L. Markov and S. S. Bullock. Finding small two-qubit circuits.Proc. SPIE, volume 5436,

April 2004.
[27] V. V. Shende, A.K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of reversible logic circuits.IEEE Trans.

on CAD 22, pp. 710–722, June 2003.
[28] A. Sorensen and K. Molmer. Entanglement and quantum computation with ions in thermal motion. 2000.

arXive e-print quant-ph/0002024.
[29] A. M. Steane. Error correcting codes in quantum theory.Phys. Rev. Lett., 77:793, 1996.
[30] J. J. Vartiainen, M. Mottonen, and M. Salomaa. Efficient decomposition of quantum gates.Phys. Rev. Lett.,

92:177902, 2004.
[31] G. F. Viamontes, I. L. Markov, and J. P. Hayes. More efficient gate-level simulation of quantum circuits.

Quantum Info. Processing, 2(5):347–380, 2003. arXive e-print quant-ph/0309060.
[32] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-based simulation of quantum computation in the state-

vector and density-matrix representation.Proc. SPIE, 5436, April 2004.
[33] G. Vidal. Efficient classical simulation of slightly entangled quantum computations.Phys. Rev. Lett.,

(91):147902, 2003.
[34] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components.

Automata Studies, Princeton Univ. Press, 329–378, 1956.
[35] D. J. Wineland et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions.

Journal of Research of the National Institute of Standards and Technology, 103:259–328, 1998.
[36] S. Winograd and J. D. Cowan. Reliable computation in the presence of noise. MIT Press, Cambridge, MA.

1967.
[37] X. Zhou, D. Leung, and I. L. Chuang. Methodology for quantum logic gate construction.Phys. Rev. A

62:52316, 2000.
[38] P. Zuliani. Quantum programming.PhD thesis, St. Cross, Oxford Univ., 2001.

20


