
Fast Verification of Retiming
Kai-hui Chang, Igor L. Markov and Valeria Bertacco

University of Michigan, Ann Arbor, MI 48109
{changkh, imarkov, valeria}@umich.edu

ABSTRACT
Retiming is a powerful logic optimization technique that reposi-
tions registers in a circuit. However, its verification is difficult. In
this work we implement a classical retiming algorithm and check it
using a sequential verification methodology that evaluates the cor-
rectness of retiming using fast simulation. Unlike traditional veri-
fication techniques that are demanding in memory and computing
power, this methodology quickly discovers and isolates most errors
caused by retiming, thus reducing verification effort.
1. INTRODUCTION

In order to satisfy required performance and power constraints
in modern circuits, it is now common to apply aggressive optimiza-
tions, such as retiming. Unlike combinational logic optimizations,
retiming changes the number and locations of registers to optimize
various objectives such as clock period, area and power. Verifying
the correctness of retiming, however, is much harder than combina-
tional equivalence checking. Given that subtle and unexpected bugs
still appear in physical synthesis tools today [4], the complexity of
retiming verification greatly limits its practical use.

In this work we implement a retiming algorithm based on [2]
to enrich the logic optimization capability of OAGear which cur-
rently lacks this functionality. In addition, we propose a fast se-
quential verification methodology to verify the correctness of re-
timing. To this end, we define a Sequential Similarity Factor (SSF)
that can quickly estimate the correctness of retiming using simu-
lation. We also implement a formal equivalence checker based on
Bounded Model Checking (BMC) to verify these estimates. Our
empirical results show that SSF calculation can be up to three or-
ders of magnitude faster than formal methods and requires consid-
erably less memory. Therefore, it can be applied much more often
during physical synthesis to localize any errors introduced by logic
transformations, thus facilitating error isolation and debugging.

The rest of the paper is organized as follows. In Section 2 we
outline our retiming implementation and initial state calculation.
Our verification methodology is described in Section 3. Empirical
results are shown in Section 4, and Section 5 concludes this paper.

2. RETIMING
Retiming is a sequential circuit optimization technique that repo-

sitions the registers while leaving the combinational cells untouched.
It can be used to optimize various objectives, such as the clock pe-
riod or register count in a circuit. The functional behavior of the
circuit, however, is still preserved, as Figure 1 illustrates. In this
section, we first describe our implementation of retiming, and then
outline how new initial states are calculated for the retimed circuit.

2.1 Implementation
In our retiming package we implemented algorithm OPT1 de-

scribed in [2] that optimizes clock period. The inputs to our pack-
age include a mapped netlist and the delays of its combinational
cells. The output of the package is a retimed netlist whose clock
period is minimized. If the delays for the cells are not given, unit
delay is assumed. Our implementation utilizes the SimEqui, Ai,
Func and Util packages. We followed the OAGear programming
guidelines, provided comprehensive documentation, and included
a regression testing environment.

(a)

(b)
Figure 1: A retiming example: (a) is the original circuit, and
(b) is its retimed version. The tables above the wires show their
signatures, where the nth row is for the nth cycle. Four traces are
used to generate the signatures, producing four bits per signa-
ture. Registers, initialized to 0, are represented by black rectan-
gles. As wire w shows, retiming may change the cycle at which a
signatures appears, but it does not change the signatures them-
selves. Identical signatures highlighted in blue (boldface).

2.2 Initial State Calculation
After a circuit is retimed, its initial state may be different due to

the change in register locations. While the new states for forward-
retimed registers (lag < 0) can be calculated easily via simulation,
the computation of new states for backward-retimed registers (lag
> 0) is unfortunately an NP-complete problem [3]. In our imple-
mentation, we use SAT to find new values for backward-retimed
registers. Currently, we support the calculation of new states for
unlimited negative lag, but we restrict the maximum positive lag
to 1. The user is allowed to specify the initial state of the original
circuit for new state calculation. If this information is not available,
it is assumed that all the registers are initialized to 0.

3. VERIFICATION OF RETIMING
To reliably implement retiming, it is necessary to have a verifi-

cation methodology that can quickly identify most problems and
point out their sources. In this section, we first propose the concept
of Sequential Similarity Factor (SSF) that can predict the sequen-
tial equivalence between a netlist and its retimed variant with high
accuracy. Next, we describe a formal equivalence checker based on
Bounded Model Checking (BMC) and illustrate our overall verifi-
cation methodology for retiming.

3.1 Sequential Similarity Factor
The SSF between two sequential circuits is defined as follows.

Assume two netlists, ckt1 and ckt2, where the total number of sig-
nals (wires) in both circuits is N. After simulating C cycles, N×C
signatures will be generated, where a k-bit signature is a sequence
holding the simulation values on each of the k input patterns. Out
of those signatures, we distinguish M matching signatures — a sig-
nature is considered matching if and only if both circuits include



Benchmark Gate DFF Retiming Verification (k=1024) (k = 10240)
count count Delay Runtime Mean SSF after retiming Runtime (sec) Mean SSF

improv. (sec) Without errors With errors SSF SEC Speed-up with errors
s1196 483 18 0.00% 4.6 100.0000% 98.3631% 0.4 5.1 12.7× 97.6040%
usb phy 546 98 11.90% 4.1 100.0000% 99.9852% 0.3 0.4 1.3× 99.9852%
sasc 549 117 16.95% 3.8 99.9399% 99.9470% 0.6 5.2 8.7× 99.9470%
s1494 643 6 7.28% 11.1 100.0000% 99.0518% 0.5 2.9 5.8× 99.0342%
i2c 1142 128 12.50% 44.9 100.0000% 99.9545% 1.4 2491.0 1779.3× 99.9485%
des area 3132 64 0.17% 4294.5 100.0000% 95.9460% 14.5 49382.2 3405.7× 95.8700%

Table 1: Circuit delay improvement due to retiming, and results of our verification methodology: mean sequential similarity factors
(SSFs) for retimed circuits with and without errors. Runtime is shown for retiming, SSF calculation and sequential equivalence
checking (SEC). The speed of our verification methodology allows it to be applied frequently to facilitate debugging. In addition, SSF
uses significantly smaller amount of memory than SEC (16M vs. 1386M for des area). In the table, k is the number of patterns per
cycle used for SSF calculation. Larger k causes larger drop in SSF when errors are introduced, which improves the accuracy of SSF.
the signature (this can be found efficiently by hashing). The SSF
between ckt1 and ckt2 is then M/(N×C). In other words:

SSF =
number o f matching signatures f or all cycles

total number o f signatures f or all cycles (1)

The intuition behind this definition is that retiming only changes
the register positions but leaves combinational gates intact. As a
result, the signatures of the retimed circuit should mostly remain
the same although they may appear at different cycles, as can be
observed from Figure 1 [1]. By considering multiple cycles in SSF,
we can capture most identical signatures that appear at different
cycles. When errors are introduced by a retiming operation, signa-
tures that only exist in the new netlist will appear, which will cause
a drop in SSF between the original and the retimed netlists.

3.2 BMC-based Equivalence Checking
To formally validate the sequential equivalence between two cir-

cuits and to evaluate our SSF methodology, we implemented a
BMC-based checker that verifies equivalence up to C cycles. Given
two circuits, we first unroll both circuits C times. Next, we connect
the primary inputs of both circuits for each unrolled copy and con-
strain the circuits using their initial states. We then add miters to
the primary outputs between two circuits, feed their outputs to an
OR gate, and set the output of the gate to 1. The circuit is converted
to a CNF and solved by a SAT solver. If the CNF is unsatisfiable,
then the circuits are equivalent up to C cycles; otherwise, a coun-
terexample will be returned to show their discrepancy. Although
this technique can only check equivalence up to C cycles, it should
be able to catch most bugs introduced during retiming.

3.3 Overall Verification Methodology
Our verification methodology works as follows: after each re-

timing operation, we calculate the SSF between the original and
the retimed netlist. If SSF drops by more than 2 standard devia-
tions (calculated using the running average/variance of the past 30
SSFs; the threshold is determined empirically), we call sequential
equivalence checking. If verification fails, we return a counterex-
ample to the user for debugging; otherwise, it is highly likely that
the two netlists are equivalent, and the engineer can decide whether
more comprehensive sequential verification should be conducted.

4. EXPERIMENTAL RESULTS
To evaluate our retiming package, we conducted experiments us-

ing IWLS’05 benchmarks on an AMD Opteron 880 Linux work-
station. We assigned random delay to each gate to generate various
retiming configurations, and we ran each benchmark 30 times. The
delay improvement and runtime of retiming are summarized in Ta-
ble 1. In addition, we used our verification methodology to check
the correctness of our retiming implementation, and this methodol-
ogy successfully identified several subtle bugs. In our experience,

most bugs were caused by rare cases of incorrect netlist transfor-
mations when repositioning the registers, and a few bugs were due
to erroneous initial state calculation. Such bugs include: (1) incor-
rect fanout connection, when inserting a register, to a wire which
already has a register; (2) missing or spurious registers; (3) missing
wire when a register drives a primary output; and (4) incorrect state
calculation when two ore more registers are connected in a row.

To quantitatively evaluate our verification methodology, we re-
timed each circuit using the correct and the buggy implementations
of OPT1. Then we used 10 cycles of simulation to calculate mean
SSFs in these two cases. In practice, one can use many more cycles
of simulation to refine signatures as well as several different simu-
lation traces. We also show the runtime of Sequential Equivalence
Checking (SEC) for comparison, where the depth was also set to
10 cycles. The results are summarized in Table 1, which show that
the average SSF is much lower in erroneous circuits than correctly-
retimed circuits for most benchmarks. This phenomenon suggests
that SSF can effectively predict whether or not a bug has been in-
troduced. The runtime comparison between the calculation of SSF
and SEC shows that calculating SSF can be orders of magnitude
faster than SEC, especially for larger designs. As a result, it can be
applied frequently to discover and isolate bugs when they first oc-
cur. Additionally, we validated the SSF calculation on circuits with
up to 98341 cells and 8808 flip-flops, and observed linear scaling
of runtime, as expected.

Note that our SSF methodology works directly with optimized
circuits and can verify a variety of optimization techniques, not
only the OPT1 retiming algorithm. We believe that it scales better
than the majority of formal methods, not only the naive BMC vari-
ant we have implemented. However, OAGear does not currently
offer such techniques, which makes comparisons difficult.
5. CONCLUSIONS

Retiming is a powerful logic optimization technique that is gain-
ing popularity in the industry, but it is currently missing in OAGear.
Our work contributes an implementation of retiming that enriches
OAGear’s logic optimization capability. Our second contribution is
a sequential verification methodology that was used to check this
implementation — it is fast and accurate enough to be used after
every retiming step rather than as an expensive post-processor after
all optimizations.
6. REFERENCES

[1] K.-H. Chang, D. A. Papa, I. L. Markov and V. Bertacco, “InVerS: An
Incremental Verification System with Circuit Similarity Metrics and
Error Visualization”, ISQED’07, pp.487-492.

[2] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry”,
Algorithmica, 1991, Vol. 6, pp. 5-35.

[3] L. Stok, I. Spillinger, and G. Even, “Improving Initialization through
Reversed Retiming”, EDTC’95, pp. 150-154.

[4] Anonymous, “Conformal finds DC/PhysOpt was missing 40 DFFs!”,
ESNUG 464 Item 4, Mar. 30, 2007.


