AnSER: A Lightweight Reliability Evaluator
for use in Logic Synthesis

Smita Krishnaswamy, Stephen M. Plaza, Igor L. Markov, and John P. Hayes
{smita, splaza, imarkov, jhayes}@eecs.umich.edu
Advanced Computer Architecture Lab, University Of Michigan
2260 Hayward St., Ann Arbor 48109-2121

ABSTRACT

As device features continue to scale, traditional circuit optimiza-
tions targeting area and delay have to be closely monitored for
their effect on reliability. Yet, existing reliability analysis algo-
rithms suffer from poor scalability and technology-dependent ap-
proaches which are unable to efficiently guide synthesis optimiza-
tions. Therefore, we present a new reliability analysis framework
known as Analysis of Soft Error Rate (AnSER) that runs in linear
time and outperforms state-of-the-art by two to three orders of mag-
nitude. Moreover, our algorithms are amenable to uses in logic
synthesis due to their technology independence and scalability.

1. INTRODUCTION

Reliability is becoming an increasingly important concern in logic
synthesis due to unstable behavior resulting from soft errors and
trends in device technology. Therefore it is important for designers
to assess the impact of their decisions on reliability. Since logic
masking is a key mechanism by which errors can be mitigated, the
synthesis phase is especially important in maintaining reliability.
However, the integration of reliability into design flows has been
difficult due to the computational complexity of reliability evalua-
tors and their reliance on detailed technology-dependent informa-
tion. Past reliability evaluators rely on laborious calculations using
several types of decision diagrams and electrical simulation [8, 7].

To address these problems, we develop a technology-independent
reliability evaluator in OAGear known as AnSER that scales linearly
in the size of the circuit. AnSER can be used before or after tech-
nology mapping. Additionally, we embed AnSER into OAGear —
an emerging software platform for circuit analysis and logic syn-
thesis tools. The key contributions of this work include:

e A fast soft-error rate (SER) evaluation algorithm that uses
the SimEqi package in OAGear for logic simulations.

e Animplemenation of the reliability analysis framework AnSER

native to OAGear, to facilitate the integration of reliability
concerns into logic synthesis and technology mapping.

e Extensible software design to facilitate the integration of new
error models and future algorithms for reliability analysis.

The remainder of this paper is organized as follows: Section 2
presents our SER evaluation algorithm, Section 3 describes our
software design, Section 4 gives validation and runtime results.
Section 5 concludes the paper. Finally, the Appendix gives algo-
rithms for SER under a multiple-error assumption and a node im-
pact measure that identifies critical areas of the circuit. We added
these algorithms to extend our AnSER framework.

2. SER EVALUATION

To evaluate the soft-error rate (SER), we utilize signal signa-
tures computed by bit-parallel logic simulation [2]. A given node
f in a logic circuit can be characterized by its signature, St, i.e.,
logic values observed in response to K input vectors Xz - - - Xk, St =
{f(X1),..., f(Xk)} where f(X;) = {0,1} indicates the output of f
for a given input vector. In addition to signatures, we also compute
don’t-care masks (denoted S¢x) using simulation. Observability
don’t-cares (ODCs) occur when the value of an internal node does
not affect primary outputs for a certain input pattern. We use meth-
ods from [6] compute the ODC mask for nodes in the circuit. A
similar algorithm was given in [9]. In an ODC mask S¢x, a 1 indi-
cates a care-bit and 0 indicates a don’t-care.

Our SER evaluation algorithm uses a logic-level fault model that
extends the standard stuck-at (SA) fault model. For every clock cy-
cle, we assume that each node g in the circuit has a temporary sin-
gle SA-1 (TSA-1) fault, with probability Perr1(g) if g is controlled
to 0 and a temporary SA-0 (TSA-0) with PerrO(g) otherwise. We
derive our single-error SER using the TSA fault model. Due to the
similarity to SA faults, TSA faults inherit the wide applicability of
SA faults. For instance, in a cycle where a node n is controlled to 1,
Perr0(g) can be the probability of a bit flip due to a particle strike.

In testing, an estimation of the number of input vectors that result
in a node f being 0 is f’s 0-controllability. The observability of a
node measures the likelihood that the node itself controls the out-
put. Together observability and controllability form testability. In
other words, the number of test vectors for an error is the number of
vectors that simultaneously sensitize and propagate the error. We
analyze the testability probabilistically by using signatures. For
a node f in circuit C, and input distribution i, we denote its 1-
controllability as conjy (f) and compute it by counting the number
of zeros in the signature:

cony (f) =numOnes(S)/K (1)

The 0-controllability is denoted cong(f) and can be computed as
1 —cony(f). The observability of a node is the probability that
the value at the node is propagated to the primary output. It is
computed as follows:

obs(f) = numOnes(S})/K (2)

Together, the observability and controllability information can tell
us about the testability of a node. The 1-testability is computed by
counting the number of bits where both the ODC mask and sig-
nature have a 1, i.e., where the node is both controllable to 1 and
observable. The O-testability is the number of bits where the ODC
mask has a 1 and the signature have a 0.

test; (f) = numOnes(S;&S')/K ®3)
If we assume that each node g has TSA-0 and TSA-1 probabilities

Perr0(g) and Perr1(g), we can write the SER as a sum of the error
contributions from each node g in the circuit C.

Perr(C) = Zc(testo(g)PerrO(g)+test1(g)Perr1(g)) 4
ge

Since testg and test; include error sensitization and propagation
conditions, Equation 4 takes into account the possibility of the error
being logically masked before reaching the output. We summarize
our SER algorithm for TSA faults is given in Figure 1.

After the gates are topologically sorted, bit-parallel simulation
is performed. Next the ODCs are computed in reverse topological
order. Then testabilities are computed in the compute_test func-
tion using Equation 3. Finally, the testabilities are weighted by the
probability of error and summed to obtain the SER.

3. SOFTWARE DESIGN

We implement AnSER as an extensible framework for the relia-
bility analysis of large gate-level netlists in the OpenAccess database
[2]. Figure 2 shows a flow diagram of our implementation. The ma-
jor features of this framework include the user interface, algorithms
manager, and reliability algorithm objects. Algorithm objects are
created by the algorithm manager, and computation is done on-
demand. The manager can be interfaced in two different ways, as a
stand-alone program or as an API. The user interface is minimally
coupled with algorithm internals using a compiler firewall design
pattern [3] to reduce compile-time. The algorithm manager is im-

double compute_SER(Circuit C){
double SER = 0;
topol ogical _sort(C);
compute_simulation_sigs(C);
rever se_topol ogical _sort(C);
compute_ODCs(C);
for(gateg € C){
test1(g) = compute_test1(g);
testO(g) = compute_testO(g);
SER+ = C.perrOxtest1(g);
SER+ = C.perrlxtest0(g);
}

return SER;
}
Figure 1: The AnSER Single Error algorithm.

OAGear

AnSER User
Interface

Algorithm
Manager

Framework

Py

eliability |Algorithms

Single Error
SER

Multiple

[« Testability — Error SER

OAGear
Bit-Parallel
Logic
Simulation

OpenAccess
Design

Figure 2: Reliability evaluation framework within OAGear.

plemented as a singleton [3] data structure to facilitate user access
with restricted privileges. The algorithm, in turn, accesses the Ope-
nAccess database and SimEqui.

In order to add new algorithms to AnSER, the manager is given
a reference to a base algorithm object and the interface is automat-
ically updated. With this arrangement in mind, we implemented
algorithms that evaluate the following important metrics:

Single-Error SER (see Figure 1)
Multiple-Error SER (see Appendix)
Node Testability (see Section 2)
Node Impact (see Appendix)

When computing SER it is common to assume either a single er-
ror per cycle or allow multiple simultaneous errors. Testability and
node impact evaluators can both be used to drive synthesis changes
that improve the circuit. In addition, our framework is flexible in
that precision of computation can be controlled by the user when
algorithm objects are instantiated. For instance, the number of sim-
ulation vectors used for reliability can be specified by the user.

Synthesis tools can use AnSER to check the impact of design
decisions on reliability. This is tracked through notification by the
oaObserver object. However, recomputation of invalid data is done
on the subsequent query. We also extend the OpenAccess database
by storing node testability and impact information in oaAppDef ob-
jects for consumption by other optimization algorithms. In partic-
ular, this information can be used to target sensitive circuit areas
for re-synthesis and can further the integration of reliability into
synthesis algorithms.

In the more detailed companion paper [4] we demonstrate the
ability of our reliability evaluation methods to guide synthesis al-
gorithms and selectively duplicate nodes. For instance, we guide
the ABC synthesis tool [1] to simultaneously optimize area and re-
liability. Our results show that we achieve a 13% reliability im-
provement with a 1% area decrease. In OAGear, we provide a
demonstration and regression tests of the native SAT-sweeping tool
Ssw. In this application we analyze changes in the netlist triggered
by oaObserver during SAT-sweeping in order to reject mergers that
decrease circuit reliability.

4. EMPIRICAL RESULTS

We validate our approximate SER algorithm against an exact
computation using the ATPG software ATALANTA [5]. We pro-
vide ATALANTA with a list of all possible stuck-at faults in the
circuit to generate tests in “diagnostic mode” where all of the test
vectors for each fault are derived. Since TSA faults are SA faults
that last only for one cycle, the probability of a TSA fault caus-
ing an output error is equal to the number of test vectors for the
corresponding SA fault weighted by their frequency of appearance
on the input. Assuming uniform input distribution, the fraction of
vectors that test a fault is an exact measure of its testability. Then,
we compute the exact SER using Equation 4. Table 1 compares
ANSER from ATALANTA on small benchmark circuits (since the
ATPG-bhased method does not scale to large benchmarks). The av-
erage error is only 3% for 2048 simulation vectors.

Table 2 shows runtime comparisons with other evaluators in the
literature. Results show that our evaluator runs orders of magni-
tude faster than FASER [8] and SERD [7]. These benchmarks
were run on 2GHz Pentium Centrino Duo. Table 3 shows SER
and runtime results on IWLS benchmarks. The largest circuit only
takes 11.7 seconds to complete. SER numbers are given in units
of FIT (failures/10%s) assuming that each gate has a failure rate
of 8.0E — 5, a value we obtained for a 100nm technology from the
gate characterizations of [7]. Note that AnSER scales linearly in
the size of the circuit through these benchmarks.

Circuit ATALANTA | AnSER % Error

bl 1.28E-05 1.31E-05 | 281
cl7 6.96E-07 6.96E-07 | 0.01
X2 3.78E-05 3.87E-05 | 2.20
decod 2.60E-05 2.62E-05 | 0.83
tcon 5.30E-05 5.39E-05 | 1.67
z4ml 5.29E-05 5.37E-05 | 1.50

parity | 7.60E-05 7.69E-05 | 1.24
majority | 6.25E-06 6.63E-06 | 6.05

mux 1.58E-05 1.38E-05 | 12.54
pml 2.86E-05 3.00E-05 | 4.70
pcler8 7.06E-05 7.24E-05 | 2.52
pcle 5.38E-05 5.34E-05 | 0.75
average 3.06

Table 1: Comparison of AnSER with exact reliability
evaluation using the ATALANTA ATPG software.

Circuit Time(s)

AnSER | SERD | FASER
il 0.020 20 —
i2 0.000 20 —
i3 0.057 20 —
i4 0.072 20 —
i5 0.046 20 —
i6 0.059 20 —
i7 0.067 20 —
i8 0.20 20 —
i9 0.013 40 —
i10 0.000 60 —
c432 0.006 10 22
c880 0.015 10 —
c1355 0.021 20 40
c1908 0.015 20 66
3540 0.000 60 149
6280 1.000 120 278

Table 2: Runtime comparisonswith several reliability
evaluatorsfrom theliterature. The dashed linesindicate
that thereisno published data from thetool in question.

Circuit No. Gates | SER(FIT) | Runtime(s)
pci_conf_cyc_addr_dec | 97 4.89E-3 0.23
steppermotordrive 226 8.006E-3 | 0.27
ss_pcm 470 1.68E-2 0.3
usb_phy 546 1.53E-2 0.28
sasc 549 2.10E-2 0.26
simple_spi 821 2.50E-2 0.3
i2c 1142 2.7E-2 0.34
pci_spoci _ctrl 1267 0.029 0.342
des_area 3132 0.019 0.782
spi 3227 0.118 0.68
systemcdes 3322 0.127 0.55
tv80 7161 0.104 091
systemcaes 7959 0.267 0.97
mem._ctrl 11440 0.494 1.36
ac97_ctrl 11855 0.409 1.38
usb_funct 12808 0.390 142
pci_bridge32 16816 0.656 1.78
aes_core 20795 0.550 21
whb_conmax 29034 1.030 4.18
ethernet 46771 1.480 577
des_perf 98341 3.620 9.34
vgalcd 124031 4.800 117

Table 3: Runtime of AnSER on IWL S 2005 benchmarks,
and SER values computed by AnSER.

5. CONCLUSIONS

We presented a lightweight reliability evaluation framework for
use in logic synthesis that utilizes the logic simulator within OAGear.
Results show that our methods are significantly faster than existing
SER evaluators while maintaining high accuracy as compared to
exact evaluation. Furthermore, AnSER can be used in early stages
of design due to its technology independence. We also demonstrate
the extensibility of our method by incorporating an alternative error
model and random pattern testability computations.

6. REFERENCES

[1] Berkeley Logic Synthesis and Verification Group,
“ABC: a system for sequential synthesis and verification”,
htt p: // www. eecs. ber kel ey. edu/ ~al anm / abc/ .

[2] K-H. Chang, et al., "Fast Simulation and Equivalence Checking using
OAGear,” IWLS 2006.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[4] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes, “Enhancing
Design Robustness using Reliability-aware Resynthesis and Logic
Simulation,” IWLS 2007.,

[5] H.K.LeeandD.S. Ha, “On the Generation of Test Patterns for Combinational
Circuits,” TR No. 12-93, Dept. of Electrical Eng., Virginia Polytechnic Inst.

[6] S.Plaza, K-H. Chang, I. Markov, and V. Bertacco, “Node Mergers in the
Presence of Don’t Cares” ASP-DAC 2007.

[7] R.Rao, et al., “An Efficient Static Algorithm for Computing the Soft Error
Rates of Combinational Circuits,” DATE 2006, pp. 164-169.

[8] B.Zhang, W. S. Wang, and M. Orshansky, "FASER: Fast Analysis of Soft
Error Susceptibility for Cell-Based Designs,” |SQED 2006, pp. 755-760.

[9] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “SAT
sweeping with Local Observability Don’t-cares”, DAC 2006, pp. 229-234.

Appendix: Multiple Errorsand Impact

To further extend the AnSER framework, we implement a reliabil-
ity calculation based on multiple temporary faults (TMSA). Here
each gate has independent probabilities Perr0(g) and Perr1(g).

In topological order, for each gate g with inputs x, y, output z, and
gate error probabilities Perr1(g),Perr0(g), we compute the cumu-
lative output error probabilities (Perrlin(z), PerrOin(z)) considering
cumulative error probabilities at the inputs Perrlin(x), PerrOin(x),
Perrlin(y), PerrOin(y) and the logical functionality of the gate. As
we propagate error probabilities to the POs, we compute the SER
of the circuit under the multiple error assumption in linear time.
The SER for the output of a circuit C, o(C), is given by

Perr(C) = Perr0jn(0(C))cony (0(C)) + Perrlin(o(C))cong(o(C))

We also define the impact metric for each gate which estimates
the gate’s influence on circuit reliability. This metric accounts for
the probabilities PerrOjn(n),Perrlin(n) that errors propagate to the
node and for the probability obs(n) that these errors propagate to
the output:

impact(n) = PerrOjn(n)obs(n) + Perrliy(n)obs(n)

Another natural extension of our framework is to directly give testa-
bility and testing information for synthesized circuits. The testabil-
ity of circuits may decrease as synthesis tools optimize for relia-
bility, thereby making circuits resistant to random-pattern testing.
However, since our tool maintains testability information, we can
output vectors that test selected components of the design.

