
Enhancing Design Robustness with
Reliability-aware Resynthesis and Logic Simulation

Smita Krishnaswamy, Stephen M. Plaza, Igor L. Markov, and John P. Hayes
{smita, splaza, imarkov, jhayes}@eecs.umich.edu

Advanced Computer Architecture Lab, University Of Michigan
2260 Hayward, Ann Arbor 48109-2121

ABSTRACT
While the density of integrated circuits tends to double with each
new process technology generation, reliability tends to decrease.
Known ways of improving reliability result in high area overhead,
often negating any improvements achieved in device density and
power. In this work, we seek circuit restructuring techniques to
improve reliability while incurring minimal area overhead. To this
end, we develop novel synthesis strategies to improve selected parts
of the circuit and fast methods to re-evaluate reliability. We utilize
fast bit-parallel logic simulation to generate signatures and derive
don’t-care information to compute testability measures. These are
in turn used to compute the soft error rate (SER) of the circuit and
the impact of circuit nodes on the SER. The result is a fast, incre-
mental reliability evaluator that is orders of magnitude faster than
other SER evaluators. We leverage this to efficiently guide synthesis
for reliability. In particular, our don’t-care analysis uses redundan-
cies within the circuit to increase logic masking. Empirical results
show 29-40% average improvement in reliability with only 5-13%
average area overhead.

1. INTRODUCTION
Reliability under soft (transient) errors is becoming a key con-

cern in digital logic. The rates at which individual devices fail can
be statistically estimated or empirically measured in terms of the
soft error rate (SER). However, not every failure results in circuit
errors, due to several masking mechanisms. Therefore, reliability
can be improved by increasing the amount of masking in a cir-
cuit. For example, earlier design methods such as TMR [15] and
quadded-logic [14] add significant redundancy to increase the logic
masking in the circuit.

We observe that an increase in logic masking does not necessar-
ily require an increase in area. In this paper, we focus on restruc-
turing techniques that take advantage of circuit flexibility in the
form of observability don’t-cares (ODCs) to increase logic masking
while incurring minimal area overhead. In order to guide synthesis
techniques, we need fast methods for targeting critical areas of the
circuit and re-evaluating SER after each logic transformation.

Several reliability evaluation tools have been presented recently
[16, 17, 8, 12]. However, their algorithms cannot be practically
used to guide synthesis applications. They often rely on detailed
electrical modeling and use layout and technology mapping infor-
mation not available during synthesis. Motivated by these differ-
ences, we develop a fast, technology-independent SER evaluator
that is designed for use in logic synthesis.

Figure 1 describes our overall reliability-aware synthesis method-
ology. Our techniques are driven by bit-parallel logic simulation to
compute signatures and don’t-care masks for all nodes in the cir-
cuit. Signatures are used to derive node controllability information,
and don’t-care masks give us node observability information — to-

Figure 1: Our reliability-aware synthesis methodology.

gether these facilitate linear-time computation of circuit reliability.
In addition, we compute a measure called node impact to identify
critical areas of the circuit for resynthesis. We resynthesize critical
regions of the circuit using ODC-based logic cloning. A key insight
is that logic masking is intimately related to the observability of a
node. We take advantage of this fact by finding nodes within logic
circuits which cover other nodes up to observability don’t-cares and
facilitate a form of logic cloning. Results show that several ODC-
based logic covers exist for almost every node in a circuit. In addi-
tion, we use our reliability evaluator to guide a technique known as
local rewriting in order to improve reliability and area.

Our SER algorithms provide support for the incremental use
model according to which the reliability impact of local changes in
circuits can be assessed on the fly. When a node is changed in a cir-
cuit the SER can be incrementally updated by simply re-simulating
and propagating the error through its fanout cone. In addition, we
propose a means for evaluating the susceptibility of a subcircuit in
order to quickly evaluate potential changes and select a node with
the most promise for improvement.

Our main contributions are:

• A fast, incremental reliability evaluator based on bit-parallel
simulation that can be used stand-alone or integrated with
logic synthesis.

• A novel technique based on observability don’t-cares to im-
prove reliability with minimal logic replication.

• A reliability-guided synthesis tool based on powerful local
logic transformations, which improves reliability while de-
creasing area.

The remainder of this paper is organized as follows: Section
2 describes previous work in reliability evaluation and reliability-
driven synthesis. Section 3 gives background in bit-parallel simu-
lation and signatures. Section 4 presents our reliability evaluation
methodology. Section 4.4 presents reliability evaluation in the pres-
ence of multiple errors in the circuit. In Section 5, we propose two
synthesis-based strategies we use to improve reliability. We pro-
pose a technique we call ODC-based logic cloning in Section 5.1.
In Section 5.2 we describe guiding local rewrites to improve area
and reliability. Section 6 presents empirical results, and Section 7
concludes the paper.

2. PREVIOUS WORK
Recently several pioneering SER computation tools have appeared

in the literature, examples include SERA [17], FASER [16], MARS-
C [8], and the tool from [12] based on SER-descriptors (SERD).
These tools use SPICE simulation for gate pre-characterization,
i.e., to determine the probability with which a single-event upset
(SEU) causes an erroneous glitch in a circuit and to determine
the probability that such a glitch propagates through a gate under
the main masking mechanisms. These masking mechanisms were
identified in [13].

• Logic masking: when glitches occur in a non-sensitized por-
tion of the circuit.

• Electrical masking: when a glitch becomes attenuated and
does not propagate through due to the gates’ electrical trans-
fer characteristics.

• Temporal masking: when the result of glitch does not latch
because of its timing within the clock cycle. This is also
called latching-window masking.

Several methods have been proposed to reduce the impact of soft
errors on logic circuits. In [11], the authors use the algorithm from
[12] to selectively size gates and flip-flops. Gate sizing increases
the stored charge of constituent transistors such that low-energy
particle strikes are less likely to affect the state. Gate sizing uses
electrical masking to reduce the susceptibility to soft errors.

Generally, circuit reliability can be improved by adding logic
redundancy. Two classic techniques, triple-modular redundancy
(TMR) and quadded-logic [15, 14], add redundancy by systemati-
cally replicating logic. Quadded logic is a paradigm in which each
gate is replaced by a network of four gates which logically mask
single errors. TMR involves replicating the entire circuit thrice and
using a majority voter block to choose the most common output.
This technique will mask any SEU in the main circuit. Cascaded
TMR (CTMR) can be used to mitigate errors in the voter block as
well. Mohanram and Touba [9] propose a more cost-effective ver-
sion of this technique, where only susceptible nodes are triplicated
(or duplicated in some cases). However, even partial replication
can result in large area overhead without careful node selection.

Most recently, Almukhaizim et al. [2] proposed optimizing SER
using circuit rewiring, i.e., logic transformations that reconnect wires
without modifying gates. This work is apparently the first illustra-
tion of reliability-guided synthesis, but has a number of limitations.
Rewiring is much more restrictive than other synthesis techniques,
e.g., compared to rewriting, which can also add and remove gates.

3. BIT-PARALLEL SIMULATION
We utilize bit-parallel manipulation of signatures extensively in

our work to compute reliability, target critical areas of the circuit,
and identify matching nodes for resynthesis. Previous authors [18,
10, 4] used signatures to check equivalence and prune non-equivalent
nodes. In [18, 10] don’t-care information is encoded in signatures
to merge nodes in the presence of don’t-cares.

A given node f in a logic circuit can be characterized by its sig-
nature, S f (denoted SIG in Figure 2), i.e., logic values observed
in response to K input vectors X1 · · ·XK , S f = { f (X1), . . . , f (XK)}.
Here, f (Xi) = {0,1} indicates the output of f for a given input vec-
tor. Typically, random simulation is used to generate the input vec-
tors. We set K = 2048 in this paper, this value can be determined
on a case-by-case basis or set by an engineer.

Bit-parallel operations are used to derive signatures for each node
in a circuit. For instance, signatures can be AND-ed or OR-ed using
bitwise operations. For a circuit with N nodes, the time complexity
of generating signatures is O(NK). This logic-simulation signa-
ture is a partial specification of the Boolean function that the node
realizes. If the simulation were exhaustive, then the specification
would be complete.

We can also compute don’t-care masks using simulation. ODCs
occur when the value of an internal node does not affect primary
outputs for a certain input pattern. For example, in a circuit that
computes AND(a,OR(a,b)), the output of the OR gates does not
affect the primary output when a = 0. For a node f , S∗f = {X1 6∈

ODC(f), . . . ,XK 6∈ ODC(f)}. When an input vector Xi is in the
don’t-care set of f , that bit position is denoted by a 0. Don’t-care
masks are denoted ODC in Figure 2.

We use the algorithm from [10] for computing the ODC mask
of a set of nodes in the circuit. This algorithm involves a reverse
topological traversal of the circuit where, for each input of a node,
a local ODC mask is computed and then bitwise ANDed with the
global ODC mask at the output of the node. The local ODC mask
is derived by flipping each value in the signature to see if the output
of the gate changes. Don’t-cares are represented by a 0 in the ODC
mask and cares are represented by 1.

Figure 2: Signatures, ODC masks, and testability information
associated with circuit nodes.

EXAMPLE 1. Figure 2 presents a sample signature and accom-
panying ODC mask for each node of the circuit. The ODC of c
is derived by obtaining ODC’s via nodes f and g respectively and
then ORing the two. The local ODC via f is 10101100. When this
is ANDed with the ODC mask of f , we get the global ODC via f
00000100. Similarly, the ODC via g is 01110101 and the global
ODC via g is 01110101. We get the ODC mask of c by ORing the
ODCs via f and g, which is 01110101.

Note that reconvergence can cause ODC simulation to produce
incorrect ODC masks. However, one can handle reconvergence
by performing exact downstream simulation from each node. Al-
though this requires more computation, such simulation can be
heuristically limited by the number of downstream levels visited.

We utilize bit-parallel manipulation of signatures extensively in
our work to compute reliability, target critical areas of the circuit,
and identify matching nodes for resynthesis. Previous authors [18,
10, 4] used signatures to check equivalence and prune non-equivalent
nodes. In [18, 10] don’t-care information is encoded in signatures
to merge nodes in the presence of don’t-cares. In the next section,
we show how to use signatures and don’t-cares to derive testability
information used in our SER calculations.

4. RELIABILITY EVALUATION
Here, we present our reliability evaluator that is specifically de-

signed for logic-level evaluation. The discussion includes design
objectives, fault modeling, and SER algorithms.

4.1 Requirements for Logic-Level
Reliability Evaluation

As soft errors become more common in circuits, we need mea-
sures earlier in the design flow to ensure reliability. While other
forms of masking (such as electrical and timing masking) are closely
related to the layout of the circuit, logic masking can be analyzed
earlier in the design flow. Furthermore, as circuits are clocked at
faster speeds and gate threshold voltages decrease, electrical and
timing masking become weaker while logic masking remains a
dominant mechanism of error mitigation in any technology. We
identify three main requirements for the integration of reliability
evaluation with logic synthesis. These in turn motivate our fault
model and computation techniques.

• Logic-level fault modeling: Existing tools use laborious SPICE-
based gate characterizations to model soft errors. For exam-
ple, the tool from [12] models faults as an averaged glitch
waveform, described using a probability distribution over the
distribution of Weibull parameters. Such detailed fault mod-
els are difficult to translate into synthesis concerns. There-
fore, we need a transient fault model that directly describes
the effects of soft errors on logic-level behavior [12].

• Scalable re-evaluation: In synthesis, a netlist can be trans-
formed through several iterations of incremental changes.
Reliability evaluation becomes a bottleneck if small changes
require re-computation of the circuit’s decision diagram or
enumeration of all paths. Further, the symbolic techniques
from [5, 16, 8] are memory- and time-intensive due to input-
space explosion. Re-evaluating circuits using these methods
would severely limit the number of changes considered.

• Technology independence: In order to choose between de-
sign decisions during synthesis, we need evaluators that pre-
dict trends without detailed technology or layout informa-
tion. Existing tools report prototypes that only work with a

single process technology and limited sets of gates (usually
only 3)[16, 12].

We propose a reliability evaluator that targets each of these re-
quirements. It uses a probabilistic logic-level fault model for both
single and multiple fault assumptions that allows efficient reason-
ing about error. A fast bit-parallel simulation engine is used to im-
plement a linear time algorithm for SER evaluation and incremental
methods of updating reliability after changing circuits. In order to
achieve technology independence, we focus on logic masking.

4.2 Logic-Level Fault Model for Soft Errors
We propose a logic-level fault model based on the standard stuck-

at (SA) fault models. For every clock cycle, we assume that each
node g in the circuit has a temporary single SA-1 (TSA-1) fault,
with probability Perr1(g) if g is controlled to 0 and a temporary
SA-0 (TSA-0) with Perr0(g) otherwise. These faults can occur
randomly in each clock cycle. Due to the resemblance to SA faults,
TSA faults inherit the wide applicability of SA faults. For instance,
in a cycle where a node n is controlled to 1, Perr0(g) can be the
probability of a bit flip due to a particle strike.

While the TSA model focuses on logic masking, it can also can
also incorporate other masking mechanisms if they are deemed im-
portant at the logic level. Electrical masking causes low-energy
glitches to dissipate after three to four levels of logic [12]. This
effect can be approximated by derating Perr0 and Perr1 by a fac-
tor pd(g,neighbors(g)), dependent on near-neighbor gates. Timing
masking is moderated (more than electrical masking) by the logical
path through which an error propagates. However, Zhang et al.[16,
8] successfully demonstrated the incorporation of timing masking,
by dividing the probabilities of error by a constant dependent on
the clock period. We can capture timing masking similarly after
deriving error probabilities.

Given the TSA faults, our aim is to compute the SER of the en-
tire circuit by considering primarily logic masking. Our SER is
given as a probability of error per cycle. However this can easily
be converted into units of FIT, or failures per 109 seconds. If the
soft error probability per cycle is p, then the expected number of
failures per 109 seconds is simply p× f req∗109 where f req is the
clock frequency.

We also consider multiple temporary faults (TMSA). Here, each
gate has independent probabilities of Perr0(g) and Perr1(g). For
instance, the probability of gates g1 and g2 experiencing TSA-0
simultaneously is Perr0(g1)Perr0(g2).

4.3 SER and Sensitivity Analysis
In this section we use testability measures, computed through

bit-parallel simulations, to develop an SER evaluation method whose
runtime is linear in the size of he circuit. We also motivate and
compute a measure for the impact of an internal node on the SER
of the circuit. Due to space constraints, SER formulas are given for
a single output, however, as in [16, 17, 8] we can compute the SER
on each bit and take the average.

Testability measures originated in automatic control theory and
are often used in circuit testing for guiding ATPG programs [3].
In testing, an estimation of the number of input vectors that re-
sult in a node f being 0 is f ’s 0-controllability. The observability
of a node measures the likelihood that the node itself controls the
output. Together observability and controllability define testabil-
ity. In other words, the number of test vectors for an error is the
number of vectors that simultaneously sensitize and propagate the
error. However, counting the number of test vectors for a fault is a
computationally complex problem. Therefore, we propose to ana-
lyze the testability probabilistically by using signatures computed

through bit-parallel simulations.
For a node f in circuit C, and input distribution i, we denote its 1-

controllability as coni1(f) and compute it by counting the number
of zeros in the signature:

con1i(f) = numOnes(S f)/K (1)

The 0-controllability is denoted coni0(f) and can be computed
as 1−coni1(f). The subscript i denotes the input distribution which
we omit for notational convenience for the remainder of this paper.
We assume uniformly random inputs although simulations can be
conducted for any input distribution. In addition to the controlla-
bility of a node, we also define the joint b1,b2-controllability two
nodes f1 and f2, denoted conb1b2(f1, f2) as the probability that f1 is
sensitized to b1 and f2 is sensitized to b2. The joint controllability
of the inputs of a gate can be used to accurately compute the con-
trollability of the output. Joint controllability of a pair of signals is
computed as follows:

con11(x,y) = numOnes(Sx&Sy)/K (2)

Joint controllability is necessary for considering signal probabili-
ties in the presence of reconvergent fanout. Reconvergent fanout
creates correlations between signals that can only be captured in a
joint probability distribution. The use of simulations ensures that
we obtain accurate joint probabilities as the number of simulation
vectors grows, by the law of large numbers.

The observability of a node is the probability that the value at the
node is propagated to the primary output. In the case of multiple-
output circuits, this analysis can be separately done for each output,
but for the purposes of this definition we assume a single output.
The observability of a node is computed by counting the number of
ones in its ODC mask.

obs(f) = numOnes(S∗f)/K (3)

Together, the observability and controllability information can
tell us about the testability of a node. The 1-testability is computed
by counting the number of positions where both the ODC mask
and signature have a 1, the 0-testability is the number of positions
where the ODC mask has a 1 and the signature has a 0.

test1(f) = numOnes(S∗f &S f)/K (4)

EXAMPLE 2. Consider the circuit in Figure 2. Node g has sig-
nature Sg = 01011011 and ODC mask S∗g = 01000100. There-
fore, con0(g) = numOnes(Sg) = 5/8, con1(g) = 3/8, obs(g) =
numOnes(S∗g) = 2/8, test0(g) = 1/8 and test1(g) = 1/8.

If we assume that each node g has TSA-0 an TSA-1 probabilities
Perr0(g) and Perr1(g), we can write the SER as a sum of error
contributions from each node g in the circuit C.

Perr(C) = ∑
g∈C

[

test1(g)Perr0(g)+ test0(g)Perr1(g)
]

(5)

Since test0 and test1 include error sensitization and propagation
conditions, Equation 5 accounts for the possibility of errors being
logically masked before reaching the output. We summarize the
SER algorithm for TSA faults below:

1. In topological order, for each node in C, compute signatures
and controllabilities.

2. In reverse-topological order, for each node in C, compute
ODCs and observabilities.

3. For each node in C, compute the testabilities.

4. For each node g in C compute its error contribution :

test1(g)Perr0(g)+ test0(g)Perr1(g)

5. Sum error contributions of each node to obtain the SER.

EXAMPLE 3. The test0 and test1 measures for all of the nodes
in the circuit are given in Figure 2. If we suppose that each gate
has TSA-1 probability p and TSA-0 probability q then, the total
probability of error is 2.5p+3.75q.

In addition to the SER, we compute the impact of each node in a
circuit. The impact of a node on the SER of the circuit is propor-
tional to 1) the probability that faults arrive at the node and 2) the
probability that those faults are observed as errors at the output.
In other words, a gate has high impact if many observable faults
“flow” through it. Therefore, we compute the probability that faults
originating at other nodes get propagated to n In other words, we
treat n as a primary output and compute the relative testability of
each node g with respect to n, denoted test0(g,n),test1(g,n). The
relative testability is computed as follows:

test1(f ,n) = numOnes((S∗f &S∗n)&S f)/K (6)
Intuitively, the probability of any fault in the fanin cone of n,

reaching the output is limited by the observability of n. In general,
nodes closer to the primary output are more observable than nodes
closer to the primary input. However, a node f in the fanin-cone of
n may have observability greater than n due to high fanout. In this
case, the probability of the fault being observed on a path through n
is still limited to the observability of n. Thus, we can mask the ODC
of nodes f by the ODC mask of n to compute relative testability.
Therefore, the impact of n on the SER is:

impact(n) = ∑
g∈ f anin(n)

[

Perr0(g)test1(g,n)+Perr1(g)test0(g,n)
]

(7)
The impact algorithm is summarized below:

1. For each node f in the fanout cone of n, compute test0(f ,n),
test1(f ,n).

2. For each node f , compute its contribution:

Perr0(g)test1(g,n)+Perr1(g)test0(g,n)

3. Sum the contribution to the impact.

EXAMPLE 4. For the circuit in Figure 2, test1(g,h) is given by
numOnes((01000100 & 01110111) & 01011011) = 1/8. Suppose
that each gate has a probability of TSA-1 p and TSA-0 q. Then,
the impact of h is (1/8)p +(1/8)q +(2/8)p +(5/8)q = (3/4)q +
(3/8)p.

This impact measure allows us to target critical areas of the cir-
cuit. If the obs(n) is decreased, then fewer fault coming in to n
will be propagated to the output. If a subcircuit C′ is hardened, the
errors propagating to nodes in the fanout of C′ will decrease and
obs of nodes in the fanin cone of C′ also decrease. Therefore, once
local changes are made, these measures are incrementally updated
as follows:

1. Update the signatures and controllabilities in topological or-
der through the fanout cone of C′. Only propagate changes
through bits whose values change.

2. Update the ODCs and observabilities in reverse-topological
order through the fanin cone of any changed signatures.

4.4 Multiple Errors and Mutual Masking
In this section we consider multiple simultaneous faults using

the the TMSA fault model. For TMSA faults, error cancellation
due to mutual masking can change fault sensitization. To account
for such cancellation, we compute the faulty observability, faulty
controllability, and cumulative error probabilities.

Given the controllabilities of nodes, we compute the probability
of error at each node in the circuit due to a combination of errors
in the fanout cone of the node in topological order. We compute
Perr0in and Perr1in, the probabilities of an erroneous 0 or an erro-
neous 1 coming into each node n due to errors in previous gates.
The probability of error at the output of each gate is a culmination
of the probabilities of error at its inputs and error probability at the
gate itself. For an AND gate g with independent inputs x,y, output
z, and error probability Perr1in(z) considering errors at its input
and gate is:

F ′con1(z) = con0(x)con0(y)Perr1in(x)Perr1in(y)

+con0(x)con1(y)Perr1in(x)(1−Perr0in(y))

+con1(x)con0(y)(1−Perr0in(x))Perr1in(y)

C′con1(z) = con0(x)con0(y) [1−Perr1in(x)Perr1in(y)]

+con0(x)con1(y) [1−Perr1in(x)(1−Perr0in(y))]

+con1(x)con0(y) [1− (1−Perr0in(x))Perr1in(y)]

Fcon1(z) = F ′con1(z)(1−Perr0(z))+C′con0(z)(Perr1(z))

Ccon1(z) = F ′con0(z)(Perr1(z))+C′con1(z)(1−Perr0(z))

Perr1in(z) = (con0(z)−Fcon1(z))/con0(z) (8)
Recall that Perr0(z) and Perr1(z) are the fault probabilities of

z itself. We call Fcon1(x) the faulty 1-controllability of x, and
Ccon1(x) the correct 1-controllability of x. If the inputs are cor-
related, then as in the previous section, we can use the joint con-
trollabilities and joint probabilities of error. If the errors are as-
sumed to be independent then Perr00(x,y) = Perr0(x) ∗Perr0(y).
Correlations between different errors can be taken into account by
computing correlation coefficients between pairs of signals. The
coefficients need only be computed for signals that are in the same
level of a levelized circuit. For instance, if the signals are corre-
lated then Perr00(x,y) = Perr0(x)Perr0(y)Cx,y where Cx,y is the
correlation between the errors on x and y. Note that Fcon1(x) +
Ccon1(x)+ Fcon0(x)+Ccon0(x) = 1. Other types of gates can be
analyzed similarly on a case by case basis, or we can locally use
transfer matrices [5] in the general case to compute the output error
of a gate given the input error and input probability distribution.

In addition, we can compute the probability that errors at a gate
will be observed at the output including the probability that the er-
ror will be canceled in the future. For an AND gate g with indepen-
dent inputs x,y, output z, the probability of the error being observed
Fobs(x) is computed reverse topological order given Fobs0(z):

Fobs0(x) = (Fcon1(y)+Ccon1(y))Fobs0(z)

Given this analysis of how multiple errors propagate and cancel,
we can derive the SER and calculate impact that gates have on the
error probability.

In topological order, if we compute the Perr0in and Perr1in of all
the gates up to the primary output of a circuit, then we immediately
have an algorithm for the SER of a circuit. The SER for the output
of a circuit C, o(C), is given by

Perr(C) = Perr0in(o(C))con1(o(C))+Perr1in(o(C))con0(o(C))
(9)

We summarize our SER algorithm for the TMSA faults below:

1. For each node, compute signatures and controllabilities.
2. In topological order compute Perr0in and Perr1in.
3. Weight Perr0in(o(C)) by the probability that the correct cir-

cuit C would output 1, i.e., con1(o(C)) and similarly for
Perr1in(o(C)) to derive the SER for that output.

Therefore, the impact of a gate on the SER of the circuit is given
by Equation 10. Note that since the error propagation analysis han-
dles the cancellation of errors, the impact is easier to calculate in
the multiple error case.

impact(n) = Perr0in(n)Fobs0(n)+Perr1in(n)Fobs1(n) (10)

If the Fobs of n is decreased, then fewer errors coming in to n will
be propagated to the output. After an update the faulty controllabil-
ity and faulty observability of nodes in the fanout and fanin are also
recomputed. This algorithm requires only two additional topolog-
ical traversals to compute the faulty probabilities, therefore it also
runs in linear time.

5. SYNTHESIS FOR RELIABILITY
We present two synthesis techniques that improve the reliability

of circuits by leveraging our fast evaluation methods. The first tech-
nique chooses high-impact nodes and decreases their observability
by using redundancy already present in the circuit. The second
technique guides logic rewriting [7] to optimize for reliability in
addition to area.

5.1 ODC-based Logic Cloning
We propose a novel logic replication strategy that increases re-

liability by replicating nodes using redundancy already within the
circuit. Hence, we get logic cloning by strategically adding single
gates to the immediate fanout of critical nodes. First, we discuss the
concept of logic covers in the presence of ODCs. Then, we explain
how to utilize the ODC masks already computed for our reliability
evaluator to find logic covers.

We increase logic masking, literally the number of don’t-cares
in the ODC mask, through targeted replication by identifying logic
covers in a circuit. Given two nodes g and f that realize Boolean
functions G and F respectively, we say that G logically covers F if
the following relationship holds:

F ⊆ G
In other words, G is 1 for every input pattern that makes F = 1. In
the presence of ODCs, this can be generalized to:

F ⊆C(G)+ODC(G)

Here, C(G) and ODC(G) represent the care and observability don’t-
care set for G respectively. In other words, G covers F if and only
if G is 1 or a don’t-care wherever F is 1. We define node G as an
anti-cover of node F when:

C(G)−ODC(G) ⊆ F

In the special case where F = G, G is a cover and anti-cover of F .

We exploit logic covers that exist within a circuit. Our strategy,
uses signatures to quickly identify many possible replication op-
portunities and use the impact measure to choose the opportunity
that gives the most improvement. Note that the impact measure can
be used in two different ways, the first way is to target high-impact
areas of the circuit. Second, we can use impact to decide between
resynthesis choices.

For a high-impact node x, we find other candidate nodes that
it covers or anti-covers. Given a candidate node y that x covers,
we can add redundant logic by transforming node x into OR(x,y).
Because y⊆ x, OR(x,y) = x. Therefore, we achieve replication of x
through the addition of a single gate. This relation can be expressed
and identified using signatures:

DEFINITION 1. Sy ⊆ Sx if and only if Sx|Sy = Sx where | repre-
sents bit-wise OR.

Similarly, if x is an anti-cover of y, we can transform node x
into AND(x,y). To generalize, we identify y such that x = OP(x,y)
where OP can be AND or OR.

In the trivial case where x is chosen as a candidate cover for
itself, the redundant logic generated by x = OP(x,x) will not lead
to reliability improvements since sensitized paths in x’s fanin cone
will remain unchanged for all input stimuli. At the other extreme,
if x and y have disjoint fanin cones and x = y, then all errors that
cause x to flip erroneous from a 0 to a 1 will be masked when x is
replaced by AND(x,y). Similarly, all errors which cause x to flip
from a 1 to 0 can be masked by OR(x,y). In the more general case
of x = OP(x,y) where x and y are different nodes, the impact of x
and the portion of its fanin that is disjoint from y will be reduced
according to the operation. This occurs because sensitized paths in
the fanin cone that include x but not y will benefit from the extra
logic masking generated by OP(x,y).

In contrast to techniques like TMR, it is not necessary for repli-
cated nodes to have the same function. We drastically increase the
number of candidates by allowing nodes that simply cover other
nodes. For instance, suppose x has signature Sx = 11000 and Sy =
11001. By definition, x covers y, therefore x can be replaced by
AND(x,y), in this case all 0 to 1 flips on the third and fourth input
vectors will be masked, as long as they are not propagated through
both x and y. Similarly if y is replaced by OR(x,y) then all 1 to 0
flips in the first two bits will be masked. In cases where multiple
covers exist for a node, we break ties using the change in impact
between the replicated and old nodes. The expression for impact
from Equation 10 considers the change in observability and error
propagation probabilities conditions.

Since we maintain signatures for each node based on simula-
tion along with observability information in our evaluator, we can
quickly find covers that use don’t-cares. First, simulation vectors
implicitly handle satisfiability don’t-cares because impossible input
combinations will not occur in a node’s signature. Also, we can ex-
ploit the observability information stored at each node by noting
that input vectors where a node is unobservable at the outputs indi-
cate ODCs. Using this circuit flexibility allows us to find covers or
anti-cover for x where x 6= OP(x,y) but the functionality of the en-
tire circuit remains the same. Figure 3b contains an example where
replicated logic for node a is derived by utilizing don’t-care values
stored with its signature.

Replication derived through signature manipulation needs to be
formally verified. We use a SAT solver to prove equivalence by
constructing miters along a cut in the fanout cone of x between the
original circuit and the new circuit with cover OP(x,y). The cut is
chosen where the logical differences between OP(x,y) and x satu-
rate and the cut is extended if new differences are identified from

counter-examples found during equivalence checks. In the worst
case, miters need to be constructed at the primary outputs of the
fanout cone. This approach to equivalence checking is discussed in
more detail in [10].

5.2 A Strategy Based on Rewriting
In this section we develop a synthesis strategy that optimizes

area and reliability simultaneously. In [7], an efficient synthesis
strategy is developed that generates substantial area reductions by
performing several local logic rewritings (or restructurings). First,
a 4-input cut is derived for a given node in a circuit, which defines
a one-output subcircuit. Several candidate, functionally-equivalent
subcircuits are considered as potential replacements. In order to
effectively guide this strategy, we harness the scalability of our re-
liability evaluator by computing the effect of hundreds of candidate
rewrites on circuit reliability. We only accept candidates that im-
prove reliability without increasing area.

Figure 3: a) Rewriting a subcircuit to improve area. b) Find-
ing a candidate cover for node a using simulation by exploiting
don’t-care values in its signature (shown as crossed out bits).
This candidate can be later verified using SAT.

As shown in Figure 3a, one can rewrite the original subcircuit
with three gates into a subcircuit with two gates. In general, it is
also possible for the newly rewritten subcircuit to share logic with
the rest of circuit. By using structural hashing described in [6],
one can quickly identify new nodal equivalences for the rewritten
subcircuit and further reduce area. In Figure 3a, observe that the
impact of the two equivalent subcircuits on the SER is different.
The circuit with redundant input a allows for more logic masking.

We recognize that there is an inherent trade-off between relia-
bility and testability. To this end, our synthesis techniques may in-
crease the difficulty of post-manufacturing test. However, this trade
off may be necessary if reliability challenges drastically increase in
future technology generations, as currently expected. On the pos-
itive side, improvements in BIST and other techniques for circuit
test can offset the effect of reliability improvement on testability.

6. EMPIRICAL RESULTS
In this section we present empirical results for reliability eval-

uation, ODC-based replication, and local rewriting. Table 1 is a
comparison of runtimes on standard benchmarks between our tool
and other popular SER evaluation tools In [12], the authors report
results per input vector. We therefore multiply their normalized
runtimes by 2048 (the number of random input vectors we use) to
obtain comparable times. We use our TMSA fault model and the
corresponding algorithm to derive Table 1. These results show that
our runtimes differ by several orders of magnitude from those of
other evaluators. One of the reasons is that our internal bit-parallel
simulations allow our algorithm to run in linear time. Further, we

do not use decision diagrams or complex gate characterizations in
our calculations.

Circuit Time(s)
Ours SERD FASER

i1 0.022 20 —
i2 0.000 20 —
i3 0.057 20 —
i4 0.072 20 —
i5 0.046 20 —
i6 0.059 20 —
i7 0.067 20 —
i8 0.20 20 —
i9 0.013 40 —
i10 0.015 60 —
c432 0.007 10 22
c880 0.007 10 —
c1355 0.014 20 40
c1908 0.015 20 66
c3540 0.000 60 149
c6280 1.000 120 278

Table 1: Runtime comparisons with several reliability evalua-
tors from the literature.

We validate our logic masking approximations by comparison
with the exact reliability evaluator from [5]. While the method in
[5] does not scale to large benchmarks, we use small circuits and
logic blocks commonly found in larger benchmarks for compari-
son. Table 2 shows representative with perr = 0.05 for each gate.

In order to incorporate gate characterization information for base-
line gate error probabilities, we extrapolate from the characteriza-
tion results of [12]. The program from [12] only characterizes three
gates, we use an average SER value of 4E − 7 for all gates. Their
characterization was done using SPICE on 130nm, 1.2Vdd technol-
ogy. However, we note that the reliability evaluators from [17, 16,
12] all report error rates that differ by orders of magnitude. SERA
reports SER values on the order of 10−3 for 180nm technology
nodes, and FASER reports SER on the order of 10−5 for 100nm.

Further, we use mechanisms for electrical derating by scaling
our error probabilities at nodes by a small factor to obtain trends
similar to [12]. In Figures 4, we compare trends on inverter chains
of growing length. Exactly one path is always sensitized in an in-
verter chain. Therefore we can determine the derating factor due to
electrical masking alone using such chains.

Table 3 shows improvements in SER and area overhead due to
logic replication. The benchmarks are all initially structurally hashed
using [1]. The first set of results are for exact covers, the second
set of results considers equivalences up to ODC values and uses
AND/OR gates as appropriate. For exact covers, we average of
29.1% SER improvement with only 5% area overhead. The im-
provements for the ODC covers are 39.8% with an average area
overhead of 13.1%. This is in contrast to partial TMR techniques
such as [9] which achieve an average of 91% improvement using
104% increase in area. Our results suggest that guiding reliability
carefully can offer more gain per unit area added to logic circuits.

Table 4 shows the ability of our fast reliability evaluations to

Circuit Exact SER Approx SER %error
C17 0.154 0.135 12
majority 0.095 0.095 0.0
parity 0.398 0.397 0.25
mux 0.093 0.102 8.8
xor4 0.244 0.244 0.0
and4 0.141 0.141 0.0

Table 2: Comparison of our approximate SER computation
with an exact evaluator on small circuits.

Figure 4: Comparison of SER trends on inverter chains pro-
duced by SERD and our evaluator.

With exact covers With approx ODCs
Circuit SER Area % improv % area % improv % area

SER overhead SER overhead
cordic 5.334 E-5 84 1.7 1.2 27.3 45.2
b9 1.89E-5 114 18.1 14.9 30.7 31.6
C432 1.39E-3 215 37.6 14.0 38.7 14.9
C880 5.17E-5 341 9.6 0.9 13.1 2.3
C499 4.24E-4 432 1.0 3.2 32.2 20.6
C1908 1.92E-4 432 5.9 9.0 32.4 24.1
C1355 1.09E-2 536 25.3 9.0 30.7 8.6
alu4 6.12E-4 740 55.9 0.9 55.9 1.6
i9 1.66E-4 952 65.4 6.6 65.4 6.6
C3540 2.38E-3 1055 31.1 2.2 49.4 3.6
dalu 3.08E-4 1387 74.3 1.2 74.3 1.2
i10 1.0E-4 2824 40.4 5.4 40.4 5.6
des 9.84E-5 4252 11.4 2.9 26.7 4.4
Average 29.1 5.5 39.8 13.1

Table 3: Improvements in reliability with ODC-based logic
replication.

guide a general synthesis technique such as local rewriting. Note
that the global reliability impact of each local change has to be
considered before any rewrites are done. We check hundreds of
rewriting possibilities and only keep those that simultaneously im-
prove area and SER simultaneously. Hence, scalability is a key for
this application. Table 4 shows improvements in SER with an av-
erage of 2.3% decrease in area when a synthesis strategy based on
rewriting is used. For instance, on alu4, a circuit with 740 gates, we
achieve 30% better reliability while reducing area by 0.5%. While
it is often thought that area optimization techniques hurt reliabil-
ity, our results show that area and reliability can be simultaneously
optimized by careful guiding. This emphasizes a key observation
from our work that a decrease in area does not necessitate a de-
crease in logic masking.

Circuits SER Area No. %improv %area Time
rewrites SER decrease (s)

alu4 6.12E-4 740 13 29.3 0.5 24.5
b1 8.62E-6 14 0 0.0 0.0 0.2
b9 1.89E-5 114 8 6.8 0.9 0.3
C1355 1.09E-2 536 97 1.2 9.0 37.6
C3540 2.38E-3 1055 23 5.8 0.9 51.5
C432 1.38E-3 215 68 5.5 1.4 12.1
C499 4.23E-4 432 37 0.0 0.5 13.0
C880 5.17E-5 341 7 0.2 0.0 5.4
cordic 5.33E-5 84 5 1.2 1.2 0.5
dalu 3.08E-4 1387 58 24.0 3.2 35.0
des 9.84E-5 4252 282 11.2 0.1 12.3
frg2 1.98E-5 1228 96 27.9 2.0 8.9
i10 2.00E-4 2824 143 5.0 0.6 16.7
i9 1.66E-4 952 83 31.4 11.7 35.3
Average 10.7 2.3 18.1

Table 4: Improvements in SER and area by applying reliability-
guided rewriting to existing circuits.

7. CONCLUSIONS
We have presented a new technology-independent fast reliabil-

ity evaluator designed for logic synthesis. We have also presented
a method for identifying critical high-impact areas of the circuit
to target for replications. Our algorithms are able to handle both
single and multiple errors per cycle. As demonstrated by the exper-
imental results, we produce SER trends similar to those in [12, 11],
but 2 to 3 orders of magnitude faster.

We also proposed a novel strategy for replicating vulnerable nodes
with the addition of a single gate for each replicated node. This
strategy manipulates previously-stored signatures to find observ-
ability don’t-care values. We found that this technique improves
reliability by an average of 29-40% while using only 5-13% area
overhead, depending on the desired trade-off.

We successfully applied our reliability evaluation method to a
popular synthesis technique known as local rewriting. Our tech-
niques can also improve the reliability of existing circuits by ap-
plying reliability-guided rewriting — our experiments show a 2.3%
area decrease and a 10% improvement in reliability.

8. REFERENCES
[1] Berkeley Logic Synthesis and Verification Group,

“ABC: a system for sequential synthesis and verification”,
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[2] S. Almukhaizim, Y. Makris, et al., “Seamless Integration of
SER in Rewiring-Based Design Space Exploration,” ITC
2006.

[3] M. Bushnell, V. Agrawal, Essentials of Electronic Testing,
Kluwer, 2000, pp. 129-150.

[4] E. Goldberg, M. Prasad, R. Brayton, “Using SAT for
combinational equivalence checking”, DATE 2001, pp.
114-121.

[5] S. Krishnaswamy, G. F. Viamontes, et al., “Accurate
Reliability Evaluation and Enhancement via Probabilistic
Transfer Matrices”, DATE 2005, pp. 282-287.

[6] A. Kuehlmann, V. Paruthi, et al., “Robust Boolean Reasoning
for Equivalence Checking and Functional Property
Verification,” TCAD vol. 21(12), 2002, pp. 1377-1394.

[7] A. Mischenko, S. Chatterjee, R. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis”,
DAC 2006.

[8] N. Miskov-Zivanov, D. Marculescu, “MARS-C: Modeling
and Reduction of Soft Errors in Combinational Circuits,”
DAC 2006, pp.767-772.

[9] K. Mohanram, N. A. Touba, “Partial Error Masking to
Reduce Soft Error Failure Rate in Logic Circuits” DFT 2003,
pp. 433-440.

[10] S. Plaza, K-H. Chang, et al., “Node Mergers in the Presence
of Don’t Cares” ASP-DAC 2007.

[11] R. Rao, D. Blaauw, D. Sylvester, “Soft Error Reduction in
Combinational Logic Using Gate Resizing and Flipflop
Selection,” ICCAD 2006.

[12] R. Rao, K. Chopra, et al., “An Efficient Static Algorithm for
Computing the Soft Error Rates of Combinational Circuits,”
DATE 2006, pp. 164-169.

[13] P. Shivakumar, M. Kistler, et al., “Modeling the Effect of
Technology Trends on Soft Error Rate of Combinational
Logic” DSN 2002, pp. 389-398.

[14] J.G. Tryon, “Quadded Logic,” Redundancy Techniques for
Computing Systems, 1962, pp. 205-228.

[15] J. von Neumann,“Probabilistic Logics and Synthesis of
Reliable Organisms from Unreliable Components,”

Automata Studies, 1956, pp. 43-98.
[16] B. Zhang, W. S. Wang, M. Orshansky, “FASER: Fast

Analysis of Soft Error Susceptibility for Cell-Based
Designs,” ISQED 2006, pp. 755-760.

[17] M. Zhang, N.R. Shanbhag, “A Soft Error Rate Analysis
(SERA) Methodology,” ICCAD 2004, pp. 111-118.

[18] Q. Zhu, N. Kitchen, et al.,“SAT Sweeping with Local
Observability Don’t-Cares”, DAC 2006, pp. 229-234.

