
Post-Placement Rewiring and Rebuffering
by Exhaustive Search for Functional Symmetries

Kai-hui Chang
University of Michigan

EECS Department
Ann Arbor, MI 48109-2122

changkh@umich.edu

Igor L. Markov
University of Michigan

EECS Department
Ann Arbor, MI 48109-2122

imarkov@umich.edu

Valeria Bertacco
University of Michigan

EECS Department
Ann Arbor, MI 48109-2122

valeria@umich.edu

ABSTRACT
Separate optimizations of logic and layout have been thoroughly
studied in the past and are well documented for common bench-
marks. However, to be competitive, modern circuit optimizations
must use physical and logic information simultaneously.

In this work, we propose new algorithms for rewiring and rebuffer-
ing — a post-placement optimization that reconnects pins of a given
netlist without changing the logic function and gate locations. These
techniques are compatible with separate layout and logic optimiza-
tions, and appear independent of them. In particular, when the new
optimization is applied before or after detailed placement, it approx-
imately doubles the improvement in wirelength.

Our contributions are based on exhaustive search for functional
symmetries in sub-circuits consisting of several gates. Our graph-
based symmetry finding is more comprehensive than previously known
algorithms — it detects permutational and phase-shift symmetries on
multiple input and output wires, as well as hybrid symmetries, cre-
ating more opportunities for rewiring and rebuffering.

1. INTRODUCTION
Power consumption and the speed of a circuit are two major met-

rics to evaluate the performance of a circuit — rewiring and rebuffer-
ing allow optimizing these design objectives. As illustrated in Fig-
ure 1, rewiring can reduce wirelength and improve congestion, while
rebuffering allows one to replace some buffers with inverters to opti-
mize timing and reduce power consumption. A key insight in our
work is the importance of functional symmetries in rewiring and
rebuffering. We propose new algorithms for these post-placement
optimizations based on the knowledge of functional symmetries in
small sub-circuits. A new symmetry detection technique is also pro-
posed in this paper. It is more comprehensive than previous symme-
try detection techniques in that it detects all possible input and output
symmetries and uses a very compact representation of symmetries.
Although in general, the new technique is potentially less scalable
than existing techniques, its runtime in rewiring and rebuffering ap-
plications is reasonable.

For a given Boolean function, the simplest form of symmetry is
the swap of two inputs that does not change the output under any cir-
cumstances. In some multi-output functions, outputs can be swapped
simultaneously with inputs. Given that many common gates (NAND,
NOR, XOR, etc.) are symmetric, pins of many standard cells can be
swapped without changing circuit function. Performing such swaps
after placement may shorten the wires connected to the swapped
pins. This possibility has been known before, and sets of logically
equivalent pins of a standard cell can be represented in the Cadence
LEF (Library Exchange Format) files. However, LEF files do not
carry other functional information and prevent detecting equivalent
pins on different cells. Several publications discuss the detection of

(a)

(b) (c)

(d)

Figure 1: Rewiring and rebuffering examples: (a) multiple in-
puts and outputs are rewired simultaneously using pin-swap
symmetry, (b) buffers on wires i1 and i2 are changed to inverters
using phase-shift symmetry to reduce gate delay, (c) the buffer
on wire i1 is replaced with an inverter using phase-shift sym-
metry and an extra inverter is inserted into either o1 or i2 to
preserve logic correctness, (d) two inputs to a multiplexer are
rewired by inverting one of the select bits. Bold lines represent
changes made in the circuit.

equivalent pins and uses in rewiring [11, 10, 13, 6], mostly focusing
on two-variable input symmetries. The work in [8] extends symme-
try detection to multi-variable input symmetries, but simultaneous
permutations of inputs and outputs are not considered. Published
symmetry detection algorithms typically manipulate circuit or BDD-
based representations of Boolean functions, which in some cases
limits detectable symmetries. Indeed, the topology of any AND-tree
fails to carry all symmetries of the n-input AND function.

During rewiring, detecting fewer symmetries creates fewer pos-
sibilities for improving wirelength. While previous work considers
input symmetries only, our comprehensive symmetry detection han-
dles both input and output permutations, as well as their composi-
tions. For example, the rewiring in the Figure 1(a) cannot happen



unless both input and output symmetries can be detected. “Phase-
shift” symmetries considered in [8] can also be detected, and they
can be used for rewiring or rebuffering to optimize timing. Exam-
ples of these applications are given in Figure 1(b), 1(c) and 1(d).

The post-placement rewiring and rebuffering approach proposed
in our work is particularly convenient with min-cut placement al-
gorithms, which in addition to cell locations produce a hierarchi-
cal collection of “placement bins” (buckets) that contain tightly con-
nected cells. Other subcircuits suitable for rewiring and rebuffering
include buckets of cells found by depth-first or breadth-first traversal
starting from a cell. For rewiring, we exhaustively search for pin-
swap symmetries and redundant pins within each bucket, rewire the
netlist where possible, and proceed from smaller buckets to larger
buckets. The experimental results show that this approach can re-
duce total wirelength by about 4.3%. Since this approach is or-
thogonal to other wirelength reduction techniques, it is an effective
post-placement processing to reduce the wirelength of circuits. For
rebuffering, we exhaustively search for phase-shift symmetries in-
volving the buffered wires and replace the buffers with inverters if
such a symmetry exists.

The remainder of the paper is organized as follows. Section 2 in-
troduces the basic ideas and describes some relevant previous work
on symmetry detection, circuit rewiring, and min-cut placement. In
Section 3 the problem mapping and the algorithm of the symme-
try detection technique are illustrated. Section 4 discusses the post
placement rewiring algorithm used in this paper and proposed a new
way to do buffer insertion using phase-shift symmetry. Experimental
results are given in Section 5 and Section 6 concludes this paper.

2. BACKGROUND
The rewiring technique proposed in our paper is based on sym-

metry detection. Therefore in this section, some background on
symmetry detection and related work is described. Previous work
on post-placement rewiring and an a brief introduction on min-cut
placement are also given.

2.1 Symmetries in Boolean Functions
One can distinguish semantic (functional) symmetries of Boolean

functions from the symmetries of specific representations (syntactic
symmetries). All syntactic symmetries are also semantic, but not
vice versa. For example, no AND tree exhibits all permutational
symmetries of the n-bit AND function for n≥ 3.

DEFINITION 1. Functional (semantic) symmetries are transfor-
mations of inputs and outputs that do not change the functional re-
lation between them.

DEFINITION 2. Syntactic symmetries are transformations that pre-
serve a specific representation of the function (a circuit, a Boolean
formula, a BDD, etc).

EXAMPLE 1. Consider the multi-output function z = x1 XOR y1
and w = x2 XOR y2. The variable-permutation symmetries include:
(1) x1 ↔ y1, (2) x2 ↔ y2, (3) x1 ↔ x2, y1 ↔ y2, and z ↔ w (all
swaps are performed simultaneously). In fact, all the symmetries of
this function can be generated from combinations of the symmetries
listed above. A set of symmetries with this property are called “sym-
metry generators”. For example, the symmetry “ x1↔ y2, y1↔ x2,
and z↔ w” can be generated by applying the symmetries (1), (2)
and (3).

Much of previous work focuses on two-variable symmetries —
the simplest and most common type, described below.

DEFINITION 3. Consider two variables, xi and x j , of function
F(...xi, ...,x j, ...). They are symmetric if the function does not change
when the variables are swapped:

F(...xi, ...,x j, ...) = F(...x j, ...,xi, ...).

This type of of symmetry is known as the classical symmetry,
or the non-skew non-equivalence symmetry, denoted xiNEx j . This
symmetry is also denoted as F01 = F10 in [10].

There are other relationships among two-variable cofactors which
lead to other symmetry types: F00 = F11 yields non-skew equiva-
lence symmetry, and is denoted xiEx j . If one of the two cofactors
are complemented, then two more symmetry relationships will be
produced: F01 = F10 is skew non-equivalence symmetry, and is also
denoted xi!NEx j . F00 = F11 is the skew equivalence symmetry and
is denoted xi!Ex j .

Kravets et al.[8] generalized the symmetries discussed above by
considering swaps of groups of ordered variables as higher-order
symmetries. For example, if variables a, b, c, and d in the support of
function f satisfy the condition:

F(..,a, ..,b, ..,c, ..,d, ..) = F(..,c, ..,d, ..,a, ..,b, ..)

then we say that f has a second-order symmetry between ordered
variable groups (a,b) and (c,d). Such higher-order symmetries are
common in realistic designs. For example, in a 4-bit adder, all bits
of the two input numbers can be swapped as groups (preserving the
order of the bits), but no two input bits are symmetric by themselves.
They also introduced phase-shift symmetry, which is defined below.

DEFINITION 4. Traditionally, phase-shift symmetries are function-
preserving transformations involving the inversion of one or more
inputs, which nevertheless do not permute any of the inputs. This
concept is generalized in this paper in that output symmetries involv-
ing inversion are also considered phase-shift symmetries. If input
or output permutation is allowed, then it is a composite phase-shift
symmetry, which consists of phase-shift and permutational symme-
tries. In this paper we will typically refer to composite phase-shift
symmetries as just phase-shift symmetries, except for pure phase-
shift symmetries which do not include permutations.

EXAMPLE 2. Consider again the multi-output function z = x1
XOR y1 and w = x2 XOR y2 given in Example 1. Besides the pin-
swap symmetries discussed in Example 1, the following phase-shift
symmetries also exist in the circuit: (1) x2 ↔ y′2, (2) x1 ↔ y′1, (3)
x2↔ x′2 and w↔ w′, (4) x1↔ x′1 and z↔ z′. Among these symme-
tries, (1) and (2) are composite phase-shift symmetries because they
involve both inversion and permutation of inputs, while (3) and (4)
are pure phase-shift symmetries because only inversion of inputs and
outputs are used.

Pure phase-shift symmetry generators can be used with permuta-
tional symmetry generators to generate more symmetries. For exam-
ple, “y2↔ y′2 and w↔ w′” can be generated with the combination
of (3) in this example and (2) from Example 1.

In this work, we restrict the transforms in functional symmetries
to bipartite composite phase-shift symmetries of inputs and outputs,
i.e., inputs cannot be swapped with outputs, but both types of vari-
ables can be permuted and/or phase-shifted simultaneously.

While handling a variety of symmetries is often desirable, the
number of permutational symmetries on n variables can grow ex-
ponentially. Restricting the types of symmetries considered is one
practical solution, and another is to develop compact representations.
Aloul et al. [2] implicitly represented all symmetries of a graph by a
small number of group generators. This representation has not been
used to capture all functional symmetries of a Boolean function, but
is employed in our work via the SAUCY tool [7].



Data
structure
used

Target Symmetries
detected

Main appli-
cations

Time com-
plexity

BDD
[10]

Boolean
functions

All 1st order in-
put symmetries

Synthesis O(n3)

Circuit
[6]

Gate-level
circuits

1st order input
symmetries in
supergates, op-
portunistically

Rewiring,
technology
mapping

O(n)

Graph
(this
work)

Both (with
small number
of inputs)

All input, out-
put, phase-shift
symmetries
and all orders,
exhaustively

Exhaustive
small group
rewiring

Ω(2n)

Table 1: A comparison of different symmetry detection methods. Cur-
rently known BDD and circuit-based methods can only detect a fraction
of all symmetries in some cases while graph-based method (this work)
can detect all symmetries exhaustively. Additionally, the symmetry-
detection techniques in this work find all phase-shift symmetries as well
as composite (hybrid) symmetries that simultaneously involve both per-
mutations and phase-shifts. In contrast, existing literature on functional
symmetries does not consider such composite symmetries.

2.2 Semantic & Syntactic Symmetry Detection
Symmetry detection in Boolean functions has been studied for a

long time and has several applications, including technology map-
ping, technology-independent logic synthesis [9], BDD minimiza-
tion [12], and circuit rewiring [6]. Methods for symmetry detection
can be classified in three categories: BDD based, graph-based, and
circuit-based. However, it is relatively difficult to find all symmetries
of a Boolean function regardless of the representation used.

BDDs are particularly convenient for semantic symmetry detec-
tion because they support abstract functional operations, and research
has been done on finding symmetries using BDD. One naive way to
find two-variable symmetries is to compute the cofactors for each
variable and for every pair of variables check if F01 = F10 or F00 =
F11. Recent research [10] indicates that symmetries can be found
or disproved without computing all the cofactors independently and
thus significantly speed up symmetry detection. However, work on
BDD-based symmetry detection has been limited to swaps of vari-
ables and swaps of groups of variables. This is probably because
the single-output nature of BDD made symmetry detection involving
multiple outputs more difficult. Another problem is that the symme-
tries found by this method are often enumerated and this list is not
very compact. For example, if there is a symmetry group involving
five inputs, this method will enumerate all 5!=120 permutations.

Graph-based symmetry detection methods rely on efficient algo-
rithms for the graph automorphism problem (i.e., finding all symme-
tries of a given graph). They construct a graph whose symmetries
faithfully capture the symmetries of the original object, find its auto-
morphisms (symmetries) and map them back to the original object.
Aloul et al. [2] proposed a way to find symmetries for SAT clauses
using this approach, which was very effective. The symmetry detec-
tion algorithm proposed in our work is inspired by their work.

Circuit-based symmetry detection methods assume an existing cir-
cuit for the function in question and usually convert it to a more reg-
ular form, where symmetry detection is more practical and efficient.
For example, Wang et al. [13] transforms the circuit to NOR gates.
Chang et al. [6] use a more elaborate approach by converting the
circuit to XOR, AND, OR, INV and BUF first, and then partition the
circuit so that each subcircuit is fanout free. Next, they form “super-
gates” from the gates and detect symmetries for those supergates.

A comparison of BDD-based symmetry detection [10], circuit-
based symmetry detection [6] and the method proposed in this paper
is summarized in Table 1.

Figure 2: High-level overview of min-cut placement. The rect-
angles represent bins that partition the layout region, and the
lines represent wires. Movable objects assigned to a given bin
are tentatively assigned to the geometric center of the bin.

2.3 Graph-based Algorithms
Darga et al. [7] have recently improved symmetry detection al-

gorithms used by older software. Their symmetry detector Saucy
and finds all symmetries of a given colored undirected graph. To
this end, consider an undirected graph G with n vertices, and let
V = {0, ...,n−1}. Each vertex in G is labeled with a unique value in
V . A permutation on V is a bijection π : V →V . An automorphism
of G is a permutation π of the labels assigned to vertices in G such
that π(G) = G; we say that π is a structure-preserving mapping or
symmetry. The set of all such valid relabellings is called the auto-
morphism group of G. A coloring is a restriction on the permutation
of vertices – only vertices in the same color can map to each other.
Given G, possibly with colored vertices, Saucy produces symmetry
generators that form a compact description of all symmetries. Saucy
is available at: http://vlsicad.eecs.umich.edu/BK/SAUCY/

2.4 Post-Placement Rewiring
Since rewiring using the symmetries detected will not affect the

function of the circuit, it can be used to optimize circuit characteris-
tics. Some rewiring examples are illustrated in Figure 1(a) and 1(d).
Here the goal is to reduce wirelength, and swapping symmetric input
and output pins accomplishes this.

Chang et al. [6] use the symmetry detection technique described
above to optimize delay, power, and reliability. In general, the sym-
metry detection in their work is done opportunistically rather than
exhaustively. Besides rewiring, their work uses symmetries for logic
restructuring. Experimental results show that their approach can
achieve these goals effectively using the symmetries detected. How-
ever, they cannot find the rewiring opportunity in Figure 1(a) and
1(d) because their symmetry detection technique lacks the ability to
detect output and phase-shift symmetries.

2.5 Min-Cut Placement
Min-cut placement is a particularly convenient framework for re-

wiring because it identifies small sub-circuits that are good candi-
dates for pin permutations. Min-cut placement uses a top-down ap-
proach to decompose a given placement instance into smaller in-
stances by sub-dividing the placement region, assigning modules to
subregions and cutting the netlist hypergraph. In this context a place-
ment bin is used to represent (i) a placement region with allowed
module locations, (ii) a collection of circuit modules to be placed
in this region, (iii) all signal nets incident to the modules in the re-
gion, and (iv) fixed cells and pins outside the region that are adjacent
to modules in the region. The top-down placement process can be
viewed as a sequence of passes where each pass examines all bins
and divides some of them into smaller bins. Eventually, bins become



so small that individual standard cells can be placed by exhaustive
enumeration or branch-and-bound. The most commonly used tech-
nique is to divide the bins according to balanced min-cut partitioning
algorithms. A high-level overview on min-cut placement is given in
Figure 2. In the figure, each rectangle is a bin that partition the layout
region and wires are represented by lines. Min-cut partition is used
at each step until the bins are small enough. At that time, exhaustive
enumeration of cells is used, as the right bottom circle shows.

In this work we use the top-down placer Capo [3, 1]. The bins cre-
ated by Capo contain tightly connected cells and are used for sym-
metry detection and rewiring.

3. EXHAUSTIVE SEARCH
FOR FUNCTIONAL SYMMETRIES

The symmetry detection method presented in our work can find all
input, output, multi-variable and phase-shift symmetries including
composite (hybrid) symmetries. It relies on symmetry detection of
graphs, thus the original Boolean function must be converted to a
graph first. After that, symmetry detection is used on the graph, and
then the symmetries found are converted back to symmetries of the
original Boolean function. This section describes the mapping from
a Boolean function to a graph and explains how to use it to find
symmetries of the Boolean function.

3.1 Problem Mapping
To reduce functional symmetry-detection to the graph automor-

phism problem, we represent Boolean functions by graphs. Such
a construction must admit a one-to-one mapping between the func-
tional symmetries and graph symmetries. Clearly, the graph should
have the following properties: (1) the inputs and outputs of the func-
tion must be represented in the graph and are permutable, (2) the
graph must be unique for each Boolean function. The following con-
structs are used to achieve these goals.

1. Each input and its complement are represented by two vertices
in the graph, and there is an edge between them to maintain
Boolean consistency (i.e. x↔ y and x′ ↔ y′ must happen si-
multaneously). These vertices are called input vertices.

2. Outputs are handled similarly to inputs, and the vertices are
represented by output vertices.

3. Each minterm and maxterm of the Boolean function is repre-
sented by a term vertex. Since minterm and maxterm repre-
sentations of a Boolean function are canonical, the graph built
is also canonical.

4. We introduce an edge from every minterm vertex to the output
and an edge from every maxterm vertex to the complement of
the output. These edges are used to maintain the relationship
between terms and outputs.

5. We introduce an edge between every term vertex and every
input vertex or its complement, depending on that input is 1 or
0 in the term. It is used to maintain the relationship between
terms and inputs.

6. Since inputs and outputs are bipartite permutable, all input
vertices have the same color and all outputs vertices have an-
other color.

7. All term vertices have the same color.

The idea behind this construction is that if an input vertex swaps
with another input vertex, the term vertices connected to them will

(a) (b)
Figure 3: Mapped graph of a 2-input XOR gate: (a) original
graph, (b) modified graph for faster symmetry detection.

also need to be swapped. However, since there are edges between
term vertices and output vertices, the swapping is restricted to the
following situations: (1) the swapping of term vertices does not af-
fect the connections to output vertices, which means the outputs are
not changed, (2) due to the connections between term vertices and
output vertices, swapping term vertices may also require swapping
output vertices, which captures output symmetries. The complete
proof of correctness will be added in the full version of the paper.

Figure 3(a) gives an example of the mapped graph for a 2-input
XOR gate. In the example, x and y are the first and the second inputs,
and o is the output. The numbers in the circles are vertex indice
assigned by the following rule: Suppose there are n inputs and m
outputs. The ith input has number 2i, while its complement is 2i+1.
There are 2n terms, and the ith term is numbered 2n + i. The ith
output is numbered 2n + 2n + 2i, while its complement is numbered
2n+2n +2i+1.

The symmetry detector Saucy [7] used in this work runs faster
when there are more colors in the graph. Therefore if output sym-
metries do not need to be detected, a modified version of the graph
can be used to detect input symmetries faster. It is constructed sim-
ilarly to the previous graph, except that no output vertices are used.
Assume that a “pattern” is a set of output vertices in the full graph
that are connected to the given term vertex, the term vertices are col-
ored according to their output patterns — each pattern has its own
color. Figure 3(b) illustrates the modified graph for the two-input
XOR function considered in our earlier examples.

All the minterms and maxterms of the Boolean function are used
in the graph because we are focused on fully specified Boolean func-
tions. However, it is also possible to extend our work to partially
specified Boolean functions. Since we are not using such extensions
in rewiring, they are not going to be discussed further.

3.2 Symmetry Detection Algorithm
Our algorithm is given in Figure 4. N is the number of inputs, O

is the number of outputs, Vi is a vertex, procedure create(Vi) creates
a vertex, and procedure connect(V1,V2) adds an edge between V1
and V2. Connect ports(Vi) connects a term vertex Vi to input/output
vertices according to mapping rules 4 and 5. Each call to Saucy()
returns symmetry generators in A, and reverse map(A) maps A back
to symmetries in inputs/outputs.

Since the output of every input combination needs to be calcu-
lated, and there are 2n combinations, the time complexity of this
algorithm is Ω(2n).

3.3 Discussion
Compared with other symmetry detection methods, the symme-

try detection method proposed in our work has the following ad-
vantages: (1) it can detect all possible input and output symmetries



1 for i from 0 to 2N +2N +2O−1
2 create Vi;
3 for i from 0 to N−1
4 connect(V2i,V2i+1);
5 for i from 0 to O−1
6 connect(V2N+2N+2i,V2N+2N+2i+1);
7 for i from 0 to 2N −1
8 connect ports(V2N+i);
9 A = Saucy();

10 symmetries = reverse map(A);
Figure 4: Our symmetry detection algorithm.

1 repeat using different subcircuits
2 foreach subcircuit
3 bucket← cells in subcircuit;
4 ckt=generate circuit(bucket);
5 sym=symmetry detect(ckt);
6 wl = wire length();
7 rewire(sym);
8 nwl = wire length();
9 if (wl < nwl)

10 unrewire(sym);

Figure 5: Our rewiring algorithm.

of a function, including multi-variable, higher-order and phase-shift
symmetries, (2) symmetry generators are used to represent the sym-
metries and are very compact, and the relationship between input
and output symmetries is very clear. These characteristics make the
use of the symmetries easier than other methods which enumerate
all symmetry pairs.

4. POST-PLACEMENT REWIRING
AND REBUFFERING

This section describes two important techniques for post-placement
optimization – rewiring and rebuffering. Rewiring uses symmetries
detected from exhaustive search of extracted subcircuits to reduce
wirelength or optimize timing. An innovative approach to buffer in-
sertion using phase-shift symmetries is also proposed in this section.

4.1 Rewiring
After placement, symmetries can be used to rewire the cells to re-

duce the wirelength without changing the function of the circuit. It
is achieved by exhaustive search and rewiring of functional symme-
tries found in subcircuits. Currently, subcircuits are extracted in the
following order: (1) four passes from depth-first traversal of cells.
Buckets containing 1, 2, 3 and 4 cells are used in each pass respec-
tively, (2) two passes from breadth-first traversal of cells. Buckets
containing 3 and 4 cells are used in each pass, (3) one pass using the
cells in every half-bin produced by Capo, (4) one pass using the cells
in every bin produced by Capo.

The algorithm for rewiring is given in Figure 5.
Generate circuit produces a circuit from cells in the bucket by

the following rule: Suppose the circuit generated is called ckt. If
the driver of a wire is not in ckt, it will become ckt’s input. If a
wire in ckt drives a wire which connects to some ports outside ckt, it
becomes ckt’s output.

Symmetry detect uses the symmetry detector discussed in the pre-
vious section and returns symmetries. If the symmetry group con-
tains more than 6! permutations, 1000 random permutations are used
instead of enumerating all of them. Wire length returns the wire-
length of the circuit. The procedure rewire performs rewiring of the
circuit according to the symmetry, and unrewire undoes the rewiring.

The reason why multiple passes with different sizes of buckets are

Figure 6: A rewiring opportunity for p and q that cannot be
detected by only considering one bucket.

Figure 7: Rebuffering example: The bold line represents a crit-
ical path. The buffer on wire o1 is replaced with an inverter to
reduce delay. An inverter is inserted into either i1 or i2 to pre-
serve the correctness of logic.

used is that some symmetries in small buckets cannot be detected in
larger buckets. For example, in Figure 6, if the bucket contains all
the gates, only symmetries between x, y, z and w can be detected, and
the rewiring opportunity for p and q will be lost. By using multiple
passes for symmetry detection, more symmetries can be extracted
from the circuit. It is noteworthy to know that if the buckets are cho-
sen to be disjoint, it is very easy to parallelize symmetry detection
and rewiring of the buckets.

The rewiring algorithm can be easily extended to utilize phase-
shift symmetry: If the wirelength is shorter after the necessary in-
verters are inserted or removed, then the circuit is rewired.

Another application of rewiring is to reduce the delay on critical
paths in order to shorten the clock cycle. The rewiring techniques
proposed in our paper can be used for timing optimization if an in-
cremental static timing analysis engine is available that allows us
to quickly evaluate the effect of small changes without recomputing
everything from scratch.

4.2 Rebuffering
Modern timing optimization heavily relies on buffer insertion, es-

pecially in long wires. While a single inverter is often sufficient
to amplify the signal, logic correctness requires inserting a whole
buffer, or two inverters, doubling gate delay, power consumption
and area. Removing this overhead is very attractive, but one must
find another way to compensate for the single inversion.

Phase-shift symmetries can be used to serve this purpose. Phase-
shift symmetries are symmetries that involve inversion of pins. There-
fore if buffer insertion is considered for a given wire, we can search
for phase-shift symmetries involving inversion of that wire, and then
use the symmetry found to replace some buffers with inverters, sav-
ing area as well as improving power consumption and delay. For
example, in Figure 7, if buffer insertion for o1 is necessary, we can
search for symmetries involving that wire. In the example, the fol-

1 w←wire for buffer insertion;
2 extract subcircuits with w as one of the

outputs;
3 foreach ckt ∈ subcircuits
4 sym=symmetry detect(ckt);
5 if (sym involves inversion of w)
6 insert inverter on w;
7 rewire using sym;
Figure 8: Our proposed algorithm for inverter insertion.



lowing symmetries are found: If either i1 or i2 is complemented,
o1 will be inverted. Therefore we can replace the buffer on o1 with
an inverter. To preserve the correctness of logic, other pins are also
rewired according to the symmetry, and there are multiple choices to
rewire the circuit. The bold line in the figure represents the critical
path. Since an inverter can be inserted into either i1 or i2, and i1 is
non-critical, it will be a better choice. However, if the wirelength of
i2 is also long, it may be beneficial to insert the inverter into i2. Such
a flexibility from symmetry produces more optimization opportuni-
ties – inverters can be inserted into different nets in equivalent ways.
The results of different rewiring choices are shown on the right of
Figure 7. Another example which uses composite symmetry is given
in Figure 1(d): One of the select pins is inverted and two data lines
are swapped. Such composite symmetries are very useful in prac-
tice – inserting or removing an inverter on a select wire may allow
permuting data wires, which may reduce wirelength and congestion.

The algorithm to replace buffer insertion with inverter is given in
Figure 8. If the wire has only one fanout, then symmetry detection
using that wire as an input can also be tried. In this situation, line 2
of the algorithm is changed to “with w as one of the inputs.”

4.3 Discussion
As seen from our empirical data in the next section, typical logic

circuits offer a number of opportunities for rewiring and rebuffering.
When these optimizations are applied together, timing-critical nets
can be rewired and rebuffered to optimize timing, while the remain-
ing nets can be rewired and rebuffered to optimize wirelength and
congestion.

Rewiring and rebuffering are both effective methods to optimize
timing. Another commonly used timing optimization technique is
gate and wire sizing: The sizes of specific gates or wires are carefully
chosen so that signal delay in wires can be balanced with gate delay,
and the gates have enough capability to drive the wires. Rewiring
and rebuffering may invalidate the optimality of gate and wire sizing
solutions, but they can be employed before gate and wire sizing and
achieve better optimization than using the sizing techniques alone.

5. EXPERIMENTAL RESULTS
Our implementation is written in C++ and integrates the search for

symmetries in multi-output Boolean functions extracted from small
groups of gates. It reads the .blif file of the circuit, the GSRC book-
shelf .nets, .nodes files describing the netlist, the .pl placement file
and bin information generated by Capo. After rewiring, it writes a
text file indicating ports rewired. It is also able to generate rewired
.blif and .nets files.

The testcases are selected from ITC99, ISCAS and MCNC bench-
marks. To better reflect modern VLSI circuits, we chose the largest
testcases from each benchmark suite, and added several small and
medium ones for completeness. Our experiments use the min-cut
placer Capo. Wirelength reduction is calculated after rewiring against
the original wirelength after placement using half-perimeter wire-
length. The platform used is Fedora 2 Linux on a Pentium-4 work-
station running at 2.26GHz with 512M RAM. The numbers are av-
erages of 5 independent runs.

We convert every testcase from BLIF to the Bookshelf placement
format (.nodes and .nets files). For this, we enhanced the script
previously available online in the Place-Utils entry of the GSRC
Bookshelf [4, 5], and posted the new converter ”blif2book.exe” at
the same location. The command line option “+real size” is used
in blif2book.exe to mimic realistic designs by the following rules:
(1) all cell heights are 1, (2) latches have width 6, (3) inverters have
width 1, buffers have width 2, (4) 2-input NAND/NOR gates have
width 2, AND/OR/ have width 3, XOR/XNOR have size 5, (5) for a

Benchmark Number Symmetries
of Input Phase- Output Phase- Input

subcircuits shift shift and
input output output

alu2 1075 1054 138 253 141 220
alu4 18137 18130 134 1004 136 1003
b02 156 144 20 24 17 23
b10 1199 1088 163 207 135 176
b17 211250 202531 25164 34301 18477 26293

C5315 20980 19850 9213 5322 4606 4270
C7552 29745 27520 12440 7715 6696 6071
dalu 18182 16956 7058 3625 2881 3204
i10 16367 15802 4701 4065 3257 2867

s38417 148996 133442 79453 68769 62688 65288
s38584 129971 124644 58650 37631 31355 35655

Average 100% 94% 28% 23% 17% 20%

Table 2: Number of symmetries found in benchmark circuits.

cell with N inputs (N > 2) and B lines in the truth table, the width is
B+N, (6) pins are distributed evenly through each cell.

The first experiment shows the symmetries found from the subcir-
cuits, and the results are summarized in Table 2. In the table, “num-
ber of subcircuits” is the number of subcircuits extracted from the
benchmark for symmetry detection. “Input” is the number of subcir-
cuits that contain input symmetries, “phase-shift input” is the num-
ber of subcircuits that contain phase-shift input symmetries. “Out-
put” and “phase-shift output” are similar. “Input and output” are
subcircuits that contain symmetries involving both inputs and out-
puts. Although experiments on timing optimization have not been
conducted, the probability of finding phase-shift symmetries for in-
verter insertion can still be observed from this result: Phase-shift
symmetry appears in 28% of subcircuit inputs and 17% of subcircuit
outputs, which suggests that it is possibile to find phase-shift sym-
metry for inverter insertion. From the results, it can also be observed
that although output symmetries do not happen as often as input sym-
metries, its number is not negligible and rewiring techniques should
take output symmetries into consideration.

Chang et al. [6] use symmetry to optimize timing and power, so
their results are not directly comparable with our work. However,
the number of symmetries detected from the circuits can be com-
pared and are summarized in Table 5. The numbers in Chang’s work
are from the experimental results in their paper. In the table, ”largest
inputs” is the largest number of inputs that appear in their supergates
for symmetry detection. Their runtime includes the time to perform
symmetry detection and rewiring. The “number of symmetries de-
tected” in “this work” are limited to pin-swap input symmetries be-
cause Chang can only detect this type of symmetries, and it is cal-
culated by subtracting the number of phase-shift input symmetries
from the number of input symmetries. However, since symmetry
generators are used in this work, the number of symmetries detected
in this work can be potentially much larger than the numbers shown
in the table. Note that the authors of [6] use a Sun Ultra10 worksta-
tion with 128M memory for their experiments, which is much slower
than the machine used in our paper. Table 5 indicates that our algo-
rithm finds more symmetries than the work in [6], mostly because
the supergates used in [6] are very limited in size. We believe that
our method can find all symmetries found by the methods from [6],
as well as some additional symmetries. On average, we can detect
twice as many symmetries than their method using additional time.

The second experiment compares the wirelength reduction gained
from rewiring and detailed placement. It also compares the wire-
length reduction of rewiring before and after detailed placement. The
maximum number of inputs allowed for symmetry detection is 16 in
this experiment. From the results, it is found that our method can
effectively reduce wirelength by about 4.3%, which is comparable
to the improvement due to detailed-placement. That the wirelength
reduction is almost the same when rewiring is used before and after



Benchmark This work Chang’s work [6]
Number of Runtime Number of Largest Runtime
symmetries (seconds) symmetries inputs (seconds)

alu2 916 8.4 760 7 3.5
alu4 17996 77.8 1827 12 14.2

C5315 10637 9 2977 9 5.6
C7552 15080 9.8 2147 7 5.5

i10 11101 62.2 4472 11 11.3
s38417 53989 47 18579 21 81.6

Average 18286.5 35.7 5127 11.17 20.28

Table 3: A comparison of our work and Chang et al [6] in terms of
runtime and symmetries found.

Benchmark Wirelength Wirelength reduction Runtime (seconds)
Rewiring Detailed Rewiring Capo

placement
alu2 5532.83 7.11% 10.93% 8.4 2.2
alu4 40064.93 9.51% 4.69% 77.8 22.2
b02 142.9 8.29% 0% 0.5 2.6
b10 1556.7 5.2% 3.98% 2.2 3.8
b17 364912.8 2.93% 2.29% 648.79 416.6

C5315 35667.36 1.9% 2.31% 9 21.6
C7552 46758.46 2.02% 2.36% 9.8 31
dalu 23385.26 3.47% 4.32% 5.8 17.6
i10 54782.3 2.36% 2.95% 62.2 20

s38417 129967.6 1.96% 2.05% 47 208
s38584 174475.8 2.49% 2.25% 152 186.6

Average 79749.72 4.29% 3.47% 93.04 84.75

Table 4: Performance and runtime comparisons between rewiring and
detailed placement.

detailed placement shows that wirelength reduction from rewiring
is independent of detailed placement and can be used as an addi-
tion to detailed placement. Furthermore, the runtime of rewiring is
close to the runtime of the placer, which shows that our method is
efficient and effective for wirelength reduction. The results of the
experiments are shown in Table 4 and Table 5.

The third experiment shows the relationship between the number
of inputs allowed in symmetry detection, wirelength reduction, and
runtime. Since our symmetry detection method is most efficient with
small number of inputs, this relationship represents the trade-off be-
tween performance and runtime. The results indicate that the longer
the rewiring program runs, the better the reduction will be. How-
ever, most improvement occurs with small number of inputs and can
be achieved quickly. Given half the runtime of the placer, about 4%
wirelength reduction can be achieved. The results of the experiment
are shown in Table 6.

6. CONCLUSIONS
In this paper we proposed a new exhaustive search for functional

symmetries and applied it to small subcircuits of common circuit
benchmarks in the context of post-placement rewiring. We also de-
veloped a novel approach to rebuffering based on phase-shift and

Benchmark Wirelength reduction Runtime (seconds)
Before After Before After
detailed detailed detailed detailed

placement placement placement placement
alu2 7.09% 7.11% 7.2 8.4
alu4 8.82% 9.51% 70.8 77.8
b02 8.29% 8.29% 0.5 0.5
b10 5.19% 5.2% 1.6 2.2
b17 3.06% 2.93% 585.79 648.79

C5315 1.92% 1.9% 9 9
C7552 2.16% 2.02% 9.6 9.8
dalu 3.52% 3.47% 5.6 5.8
i10 2.49% 2.36% 56.2 62.2

s38417 2.02% 1.96% 45.2 47
s38584 2.55% 2.49% 149.4 152

Average 4.29% 4.29% 85.54 93.04

Table 5: The impact of rewiring before and after detailed placement.

Number of Runtime Wirelength
inputs allowed (seconds) reduction

2 3.25 1.52%
3 4.8 2.83%
4 7.27 3.3%
5 11.18 3.66%
6 15.2 3.8%
7 22.78 4.07%
8 34.92 4.15%
9 55.09 4.21%
10 67.98 4.25%
11 100.67 4.22%
12 101.7 4.32%
13 107.78 4.26%
14 117.9 4.21%
15 129.65 4.16%
16 158.16 4.3%

Table 6: The impact of the number of inputs allowed in symmetry de-
tection on performance and runtime.

permutational symmetries. Such optimizations appear particularly
useful for multiplexers, but are not restricted by gate type.

Compared with other symmetry detection techniques, ours finds
more symmetries than other methods, including multi-variable per-
mutational and phase-shift symmetries for both inputs and outputs.
This is important in circuit rewiring because the more symmetries
are detected, the more rewiring opportunities will be created.

Our experimental results on common circuit benchmarks indicate
that in addition to many permutational symmetries, 28% of subcir-
cuits possess phase-shift symmetry on their inputs and 17% on their
outputs. These numbers suggest that rebuffering and rewiring using
phase-shift symmetry are practical optimization methods. Experi-
mental results also show that the wirelength reduction in our method
is comparable to detailed placement but is orthogonal to it — our
method can be used after detailed placement to double the wirelength
reduction and improve pin access. Empirical trade-offs between run-
time and wirelength reduction indicate that most wirelength reduc-
tion can be found relatively quickly, while achieving additional im-
provement takes much longer. This feature of our rewiring method
can be convenient in practice: Since each rewiring step is indepen-
dent of other steps, significant wirelength reduction can be found in
a short time, and extra runtime can be used to further improve the re-
sult. An average of 4.3% wirelength reduction is observed from the
benchmarks using similar amount of time as the placer, which shows
that our rewiring method is very efficient and effective. However, the
improvement due to rewiring is very different from improvements
that may occur in global placement — rewiring can enhance pin ac-
cess, improving the routability of good and poor global placements.

7. REFERENCES
[1] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L.

Markov, “Unification of Partitioning, Floorplanning and
Placement”, ICCAD, 2004, pp. 550-557.

[2] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah,
“Solving Difficult Instances of Boolean Satisfiability in the
Presence of Symmetry”, IEEE Transactions on CAD, Sep.
2003, pp. 1117-1137.

[3] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can
Recursive Bisection Alone Produce Routable Placements?”,
DAC, 2000, pp. 693-698.

[4] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Toward
CAD-IP Reuse: The MARCO GSRC Bookshelf of
Fundamental CAD Algorithms”, IEEE Design and Test, May
2002, pp. 72-81.

[5] http://vlsicad.eecs.umich.edu/BK/PlaceUtils/
[6] C. W. Chang, M. F. Hsiao, B. Hu, K. Wang, M.

Marek-Sadowska, C. H. Cheng, and S. J. Chen, “Fast



Postplacement Optimization Using Functional Symmetries”,
IEEE Transactions on CAD, Jan. 2004, pp. 102-118.

[7] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov,
“Exploiting Structure in Symmetry Detection for CNF”, DAC,
2004, pp. 530-534.

[8] V. N. Kravets and K. A. Sakallah, “Generalized Symmetries in
Boolean Functions”, ICCAD, 2000, pp. 526-523.

[9] V. N. Kravets, “Constructive Multi-Level Synthesis by Way of
Functional Properties”, Ph. D. Thesis, University of Michigan,
2001.

[10] A. Mishchenko, “Fast Computation of Symmetries in Boolean
Functions”, to appear in IEEE Transactions on CAD.

[11] D. Moller, J. Mohnke, and M. Weber, “Detection of Symmetry
of Boolean Functions Represented by ROBDDs”, ICCAD,
1993, pp. 680-684.

[12] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry Detection
and Dynamic Variable Ordering of Decision Diagrams”,
ICCAD, 1994, pp. 628-631.

[13] G. Wang, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Structural Detection of Symmetries in Boolean Functions”,
ICCD, 2003, pp. 498-503


