
Restoring Circuit Structure from SAT Instances

Jarrod A. Roy
University of Michigan

EECS Department
Ann Arbor, MI 48109-2122

royj@eecs.umich.edu

Igor L. Markov
University of Michigan

EECS Department
Ann Arbor, MI 48109-2122

imarkov@eecs.umich.edu

Valeria Bertacco
University of Michigan

EECS Department
Ann Arbor, MI 48109-2122

vale@eecs.umich.edu

ABSTRACT
SAT solvers are now frequently used in formal verification, circuit
test and other areas of EDA. In many such applications, SAT in-
stances are derived from logic circuits. It is often assumed in the
literature that circuit structure is lost when a conversion to CNF
clauses is made [9]. We aim to examine this assumption. Specif-
ically we formulate classes of combinational circuits that can be
reproduced entirely from their SAT encodings. Using this knowl-
edge, one may be able to apply Circuit-SAT techniques to a wider
range of SAT instances and benefit from their improved perfor-
mance on circuit-derived instances.

1. INTRODUCTION
Thanks to recent advances in algorithms for Boolean Satisfia-

bility, SAT solvers are now routinely used in formal verification
and circuit test, especially in equivalence checking, bounded model
checking (BMC), automatic test pattern generation (ATPG), and
microprocessor verification. Generic SAT-solvers made great strides
over the last 8 years, with such breakthrough works as GRASP
[11], Chaff [14] and BerkMin [7] that improved runtime by several
orders of magnitude on various application-derived benchmarks.
Such surprisingly good performance in solving an NP-complete
problem spawned a series of new applications not only in EDA, but
also in Artificial Intelligence and Operations Research, particularly
in planning and scheduling. In a more recent development, primar-
ily of relevance to circuit-based applications, generic SAT solvers
were extended to explicitly use the circuit from which the input
CNF instance was derived [9]. Again, runtime was improved by an
order of magnitude on some classes of benchmarks, but with the
caveat that circuit structuremust be known prior to solving. These
techniques include (i) fast parallel simulation on a small number
of random inputs, (ii) detecting signal correlations by hashing, (iii)
guiding the SAT solver to disprove the equivalence of correlated
signals, and thus helping it to generate more concise and efficient
conflict clauses. Notably, the authors assume that circuit structure
is lost in the conversion to a SAT instance [9].

Our work addresses the issue of identifying logic circuit structure
in a given SAT instance and offers a general algorithm to detect all
occurrences of a logic gate in a given SAT instance. We prove
that if a given SAT instance is derived from a combinational circuit
of AND, OR, and NOT gates, then there is only one circuit that
can lead to such a SAT instance. Furthermore, we contribute a
specialized practical algorithm to reconstruct this circuit.

An EDA engineer using circuit-SAT solvers at work may won-
der why one would want to first convert circuits to CNF formulas
and then back to circuits. Indeed, when circuit information is read-
ily available, this seems unnecessary and wasteful. However, as
our experiments show, some CNF formulas may contain a large

portion of circuit-derived clauses, and yet not be fully traceable to
combinational circuits. An obvious class of examples is from prop-
erty checking, where the circuit part describes the hardware, and
the non-circuit part represents more general properties, such as “at
most k out of n signals can be high”. Additionally, our empirical
data (e.g., onPret benchmarks) show that circuit structure may
emerge as a side-effect of mathematical constructs, unbeknownst
to people performing the encoding. Another reason to bridge the
gap between the CNF-SAT and circuit-SAT community is to facili-
tate the free flow of ideas, the exchange of solver implementations,
and their evaluation in the context of different applications.

In the more general case where the SAT instance is not circuit-
derived or involves un-oriented gates, such as XOR, our algorithms
can identify the portions of the CNF formula that are compatible
with a circuit structure. The recognition of such circuit sections
may also facilitate the use of specialized SAT solvers on generic
SAT problems, whether or not the reconstructed circuits are unique.
In general, multiple candidate sub-circuits may share some clauses,
making them incompatible. In this case, our algorithms extract only
a non-overlapping set of sub-circuits.

Our general circuit-detection algorithm operates by translating
the gate-matching problem into one of recognizing sub-hypergraph
isomorphism. This translation is done by representing the SAT in-
stance and the CNF-signature of a logic gate with directed hyper-
graphs. Further, directed hypergraphs are transformed to graphs
with labeled vertices, facilitating the use of existing algorithms and
software for the sub-graph isomorphism problem. Our contribu-
tions are backed up by solid empirical data, showing that our spe-
cialized algorithm is very scalable and can detect large amounts of
circuit structure, even in SAT instances that are not circuit-derived.

The remainder of the paper is structured as follows. Section 2
addresses the necessary preliminaries. Section 3 describes a gen-
eral algorithm for reconstructing logic gates from SAT instances.
Next, Section 4 offers more efficient restoration of circuits with
specific properties, and Section 5 extends these efficient techniques
to a larger variety of circuits. Empirical results on circuit-detection
in SAT benchmarks are described in Section 6. Section 7 wraps up
the paper with conclusions and directions for further work.

2. PRELIMINARIES
Converting combinational circuits to CNF-SAT is straightfor-

ward [16, 12]. The resulting SAT instance will contain one variable
for each primary input and one variable for the output of each gate
(i.e., a variable corresponds to a wire in the circuit). The number of
clauses in the resulting instance is determined by the number and
type of gates in the circuit. For example, a NOT gate of the form
z= NOT(x) is transformed into the clauses(x+z)(x+z). An AND
gate of the formz= AND(x1, . . . ,xj), on the other hand, is trans-

formed into the clauses reported in the first row of the list below.
The clauses for OR, NAND, and NOR gates are quite similar to
that of AND gates [16, 12]:

• z= AND(x1, . . . ,xj) ≡
[
∏ j

i=1(xi +z)
](

∑ j
i=1 xi +z

)

• z= OR(x1, . . . ,xj) ≡
[
∏ j

i=1(xi +z)
](

∑ j
i=1xi +z

)

• z= NAND(x1, . . . ,xj) ≡
[
∏ j

i=1(xi +z)
](

∑ j
i=1 xi +z

)

• z= NOR(x1, . . . ,xj) ≡
[
∏ j

i=1(xi +z)
](

∑ j
i=1 xi +z

)

The functionality of a logic gate can be described as follows.

Definition 1. The characteristic functionof a logic gate withi
inputs ando outputs is a Boolean functionχ : B i+o → B such that,
for each distinct assignment to all the inputs and output nodes,χ =
1 iff the values at the output nodes are compatible with the gate
functionality and the input assignments, otherwiseχ = 0.

As shown above, the conversion of a circuit to CNF consists
of expressing and instantiating characteristic functions of individ-
ual gates in the CNF form. Note that a completely specified gate
has a unique characteristic function, which may be represented by
many possible CNF formulae. The formulae shown are minimal
and most commonly used in deriving SAT instances from combi-
national logic circuits. In Section 4 we exploit this fact not only
to detect the occurrences of such logic gates in a SAT instance, but
also to identify which variables correspond to inputs and output of
a gate. In the sequel we distinguish a special class of logic gates:

Definition 2. A gate isunorientediff its characteristic functionχ
is symmetric, i.e., invariant under any permutation of its variables.

Examples of unoriented gates are XOR and XNOR, and any
CNF formula obtained from them must be symmetric. Therefore,
it is impossible to “guess” literals corresponding to inputs and out-
puts by only inspecting the CNF formula.

Example 1.Consider a 2-input XOR gate:z= x⊕y. The character-
istic function for this gate isχz = (z⊕x⊕y). The CNF sub-formula
generated by the gate is:(x+y+z)(x+y+z)(x+y+z)(x+y+z).
Both expressions are symmetric and the variable corresponding to
the output node is indistinguishable from the others.2

In the general case, the CNF representation of ann-input XOR
gatez = XOR(x1, . . . ,xn) contains the 2n clauses ofn+ 1 literals
each where the number of negated literals is odd. This is because
variables in ann-input XOR relation (where one of the variables is
the result) must have even parity overall. Thus an assignment to the
n+1 variables making up an XOR relation that has odd parity will
not satisfy at least one of these clauses. Similarly, the CNF repre-
sentation of ann-input XNOR gatez= XNOR(x1, . . . ,xn) contains
the 2n clauses ofn+ 1 literals each where the number of negated
literals is even.

3. A CIRCUIT-DETECTION ALGORITHM
We now describe a general circuit-detector algorithm. It is based

on gate matching for gates specified by a CNF formula as in Section
2, and identifies all occurrences of a gate in a SAT instance.

Definition 3. A CNF-signatureof a logic gate is a CNF formula
representing the characteristic function of the gate.

While a logic gate may have many distinct CNF-signatures, a given
CNF-signature identifies no more than one gate.

The gate-matching algorithm is described below and used iter-
atively to reconstruct large circuits. As its first step, the circuit-
detector identifies all occurrences of each gate. It then assembles
such gate-matches into circuits. One approach is to connect com-
patible gate inputs and outputs, expanding the circuit as much has
possible without gate overlaps. If a given SAT instance is fully
derived from combinational logic, the initial circuit may be recon-
structed, so that every variable is traced to a wire and every clause is
a part of a gate’s CNF-signature. However, in the more general case
where at least some portions of the SAT instance are not circuit-
derived, the result may consist of multiple, non-overlapping and
non-connected logic networks surrounded by unmatched clauses.
One may also have to choose among overlapping gate matches.

3.1 Matching a CNF-signature
To discover all occurrences of a given CNF-signature in a SAT

instance, we reduce this problem to one of recognizing sub-graph
isomorphisms.
Sub-graph isomorphism. Here one seeks a mapping of the ver-
tices of a smaller graphinto the vertices of a larger graph so as
to map edges to edges. The sub-graph isomorphism problem is
known to be NP-complete for general graphs [6]. However, practi-
cal algorithms are known with reasonable runtime and memory re-
quirements in special cases, such as bounded-degree graphs [8, 10]
and for typical inputs. The classic algorithm by Ullman [17] uses
backtracking to dramatically prune the search space for irregular
graphs. It is widely used and has been implemented in the VFLib
graph matching library [19], along with other graph matching algo-
rithms, such as one by Cordellaet al. [4] with better performance
and lower memory requirements.
CNF formulae and directed hypergraphs. Given the available
theory and software for the sub-graph isomorphism problem, one
would like to reduce the gate-matching problem to sub-graph iso-
morphism. We accomplish this by a series of transformations, from
the original CNF form to directed hypergraph, to bipartite digraph
and finally to undirected labeled graph, which we use as inputs
to the sub-graph isomorphism algorithm. A hypergraph is a pair
H = (V,E), whereV is a finite set of vertices andE is a set of
hyperedges,Ek = [v1,v2, . . .vk], that is, subsets ofV of cardinal-
ity > 1. A directed hypergraph has hyperedges whose components
have an associated direction. We represent the direction by prefix-
ing each vertex in a hyperedge list with a+ or − sign, depending
is the direction is incoming to the vertex or outgoing, respectively.
An example of a directed hypergraph is reported in Figure 3.1.a.
We transform a CNF formula to a directed hypergraph by generat-
ing a vertex for each clause and a hyperedge for each variable. A
hyperedge will connect all the vertices that share its corresponding
variable. The direction of each component of the hyperedge will
have a+ sign is the variable appears in the clause with positive
polarity, it will have a− sign, otherwise.

Example 2. Consider the following CNF formula:(b+d+c)(c+
a+ b)(a+ c)(d + a). Using the transformation just described, we
construct a hypergraph with four vertices and four hyperedges as
represented in Figure 3.1.a. In the Figure we labeled the hyper-
edges with the corresponding variable and the vertices with a num-
ber indicating the position of the corresponding clause. The only
purpose of these labels is to improve readability and they are not
part of the hypergraph. Observe the correspondence between the
polarity of the literals and the direction marked on the hyperedges
with arrows.2

Figure 1: Conversion of the CNF formula (b+ d +
c)(c+a+b)(a+c)(d+a) to multiple types of graphs.

So far, we can generate a canonical directed hypergraph from
a CNF formula. Vice versa, given a directed hypergraph, it is
straightforward to restore the corresponding CNF formula, once
each hyperedge has been assigned to a variable. This one-to-one
correspondence can be contrasted with a one-way translation of
CNF formulas into undirected hypergraphs [1] by mapping clauses
to hyperedges and literals to vertices, that ignores the polarity of
literals.
Graph transformations. It is well known that an undirected hy-
pergraphH = (Vh,Eh) can be represented by a bipartite graphBG=
(Vv,Ve,Eb) if we map vertices to vertices,Vh →Vv, and hyperedges
to additional vertices,Eh → Ve. A vertex inVe is adjacent to a
vertex inVv iff the corresponding hyperedge is incident upon the
corresponding hypergraph vertex. A graph such asBG is called the
incidence graph of the hypergraph. Since in our specific context
hypergraphs are directed, we can modify the construction by repre-
senting directed hypergraphs with directed bipartite graphs, where
the direction of the edges connecting the vertices inVv andVe is the
same as the direction of the corresponding hyperedge.

The final transformation step requires that we remove the direc-
tionality of the edges so that the resulting graphs can be inputs to
the sub-graph isomorphism algorithm. A simple way to achieve
this without loss of information is to construct a undirected graph
G= (Vv,Ve+,Ve−,Eg), whereVv are the same as inBG, and for each
vertex inVe there is one vertex in theVe+ set and one in theVe− set.
G has one undirected edge connecting each pair of(Ve+,Ve−) ver-
tices and one undirected edge for each directed edge ofBG: where
BG has a vertex from aVv to aVe, G has an edge from aVv to a
Ve−, if the edge inBG has opposite direction,G connects a vertex
in Vv with one inVe+. The total number of vertices in the final
graph is(clauses+ 2∗ variables), while the total number of edges
is (variables+ literals).

Example 3. Figure 3.1.b reports the transformation of the hyper-
graph from the previous example to a directed bipartite graph. Fig-
ure 3.1.c shows that directed bipartite graph converted into an undi-
rected graph.2

3.2 Restoring whole circuits
Earlier, we described gate detection as part of an overall algo-

rithm to detect logic circuits in a given SAT instance. Now we turn
to reconstructing the entire circuit from the detected gates.

The driving requirements when deciding if two logic gates shar-
ing some literal should be connected are that 1) the inputs/outputs

mappings of each gate should be compatible with the connection,
and 2) no combinational loops should be generated as a result of
the newly formed connection. For unoriented gates, any assign-
ment compatible with the second requirement and with each gate
having at least one input and output is acceptable and generates a
feasible combinational circuit.

Example 4. Consider the following SAT instance:(a+ b)(a +
c)(a+b+c)(b+a)(b+c)(b+a+c). The gate-matching algorithm
can detect two AND gates:a= bcandb= ca. However, the circuit-
detector cannot connect the two gates at nodesa and b without
generating a loop. The output of the algorithm in this case consists
of two one-gate circuits.2

We wish to produce the largest possible circuit from a CNF in-
stance such that there are no incompatibilities. One way to accom-
plish this objective is to map this problem to the maximal inde-
pendent set (MIS) optimization problem. The MIS problem is an
NP-complete problem for graphs that asks if there is a set of ver-
tices of a given size in the graph such that none of the vertices are
pairwise connected and such that adding one extra vertex to this set
would break this property [6]. The MIS optimization problem is
an extension of the MIS problem that asks for the largest MIS of a
given graph.

To reduce our problem of finding the largest possible compati-
ble circuit to the MIS optimization problem, we convert each de-
tected gate to a vertex and place an edge between vertices if their
corresponding gates are incompatible (share a CNF clause, for ex-
ample). A solution to this MIS optimization problem gives us the
largest circuit (in terms of number of gates) that is compatible with
the SAT instance. The MIS optimization problem is NP-hard, but
efficient heuristics exist. In the next section we enumerate a class
of circuits and prove that they can be reconstructed quickly and
unambiguously without the need of such an MIS technique.

4. CONVERTING AND-OR-NOT CIRCUITS
TO CNF FORMULAS AND BACK

The general algorithm given in Section 3 above will correctly
identify circuit structures from CNF instances, but it makes no
guarantee of efficiency nor uniqueness of this identification. In this
section we identify a class of circuits for which the circuit to CNF
mapping given in Section 2 is a bijection and give a fast algorithm
for these types of circuits.

We define an AND-OR-NOT circuit to be an acyclic combina-
tional circuit composed of only AND gates, OR gates, and NOT
gates. We do not impose any fanin or fanout count restrictions on
these gates. We do impose the restriction that either the input or
output of a NOT gate be an AND gate or an OR gate. This re-
striction does not allow circuits with long chains of NOT gates
or disconnected NOT gates. While not being terribly restrictive,
the reasoning for this restriction on NOT gates will become clear
shortly.

Given an AND-OR-NOT circuit and a naming of the wires of
the circuit, the method of encoding AND-NOT circuits as SAT in-
stances defined in Section 2 will produce a unique CNF instance.
We can easily see that this is true because the encoding offers no
variability in how each individual piece of the circuit is encoded.
We wish to be able to recover the initial circuit uniquely, so we
prove the following:

THEOREM 1. The mapping from AND-OR-NOT circuits with
wire labellings to CNF instances (as defined in Section 2) is unique.
In other words, if two circuits map to the same set of CNF clauses,
the circuits must be identical.

PROOF. Let us be given two circuits with wire labellings, Cir-
cuit 1 and Circuit 2 for convenience, such that their CNF mappings
are the same. One first observation is that Circuit 1 and Circuit 2
must have the same number of wires (wires being either primary
inputs or the outputs of gates). If, for example, Circuit 1 had more
wires than Circuit 2, the CNF mapping of Circuit 1 would have
more variables than the CNF mapping of Circuit 2. Since we have
assumed the CNF mappings of Circuits 1 and 2 to be the same, this
cannot be the case.

Let’s examine each clause of the CNF mapping individually. We
first begin with the 2-literal clauses. Each such clause may have
zero, one, or two literals negated. If a clause has one negated literal,
it came about because of an AND or an OR gate in the initial circuit.
Let us say the clause is of the form(a+b). From the mapping, we
can infer that this clause corresponds to either an AND gate with
output wirea and an input wireb or an OR gate with output wireb
and an input wirea. Both cannot be possible because this implies a
cyclic initial circuit.

Otherwise (the clause has zero or two negated literals), the clause
must have come about as a result of a NOT gate in the original
circuit. In fact the mapping specifies that each NOT gate pro-
duces one 2-literal clause with zero negated literals and one 2-literal
clause with two negated literals. Thus the number of NOT gates in
the initial circuit is equal to the number of 2-literal clauses with
zero negated literals which is also equal to the number of 2-literal
clauses with two negated literals. Thus both Circuits 1 and 2 must
have the same number of NOT gates. For each 2-literal clause with
zero negated literals (or equivalently with two negated literals), let
us remember a correspondence between the NOT gate in Circuit 1
that produced it and the NOT gate in Circuit 2 that produced it.

Secondly, we examine the rest of the clauses, i.e. the 3-or-more-
literal clauses. According to the circuit to CNF mapping, the only
way a clause withn > 2 literals can be produced is if the input
circuit contains an AND gate withn− 1 inputs or an OR gate
with n− 1 inputs. Further if this clause has exactly one positive
(non-negated) literal, the gate in question must be an AND gate.
Similarly, if this clause has exactly one negated literal, the original
gate must have been an OR gate. There are no other possibilities.
Thus Circuits 1 and 2 must have the same number of AND and OR
gates. For each 3-or-more-literal clause, let us remember a corre-
spondence between the gate in Circuit 1 that produced it and the
gate in Circuit 2 that produced it.

This exhausts all the CNF clauses (since the mapping does not
allow for any singleton clauses). As we have seen, each clause
corresponds to exactly one gate in each of Circuits 1 and 2. We now
know that Circuits 1 and 2 must have the same number of AND,
OR, and NOT gates. Because they must have the same number of
wires, they must also have the same number of primary inputs.

Now let us examine the connectivity of corresponding gates in
Circuits 1 and 2. The output wire of eachn-input AND and OR gate
is uniquely determined by then+1-literal clause that corresponds
to it. In the case of the AND gate, the lone positive literal in the
n+ 1-literal clause represents the wire which is the output of the
gate. Likewise, the lone negated literal in then+ 1-literal clause
representing ann-input OR gate tells us which variable represents
the wire that is the output of the gate. Then other variables in the
n+1-literal clause are the inputs of their respective gates. Thus the
connectivity of corresponding AND and OR gates in Circuits 1 and
2 are the same.

The connectivity in corresponding NOT gates in Circuits 1 and
2 is only slightly more difficult to ascertain. Because we have as-
sumed Circuits 1 and 2 to be AND-OR-NOT gates as defined in
Section 2, the input or output of each NOT gate must be connected

to either an AND or an OR gate. Thus we can determine the input
and output wires for each NOT gate by examining the other gate(s)
to which it is connected. The 2-literal clause with zero negated lit-
erals corresponding to each NOT gate tells us which two wires are
connected to the NOT gate. If one of these wires is also the output
of an AND or OR gate, that wire is the input of the NOT gate and
the other must be the output of the NOT gate. Otherwise, one of
the wires must be an input of an AND or OR gate. That wire must
be the output of the NOT gate and the other the input of the NOT
gate.

Because the inputs and outputs of each AND and OR gate of
Circuits 1 and 2 match, and the inputs and outputs of the NOT
gates are based on these, the inputs and outputs of corresponding
NOT gates in Circuits 1 and 2 must also match.

Circuits 1 and 2 have the same number of wire, AND gates, OR
gates, NOT gates, and primary inputs. Also the connectivity of
all corresponding gates match. Thus Circuits 1 and 2 must be the
same.

The proof of Theorem 1 suggests an algorithm for very effi-
ciently reconstructing the unique AND-OR-NOT circuit from a CNF
instance (assuming the CNF instance was derived from an AND-
OR-NOT circuit in the first place). The algorithm proceeds exactly
as the proof by examining each CNF clause individually. For 2-
literal clauses, NOT gates are built only when the clause has zero
negated literals (or equivalently two negated literals). For 3-or-
more-literal clauses, one AND or OR gate is generated for each
clause as appropriate. After all the gates are identified, the algo-
rithm goes about determining the output wire of each gate. The
non-trivial case comes when orienting NOT gates, but this has been
already described in the proof. The last step, not mentioned by the
proof, is to determine which of the wires are the primary inputs of
the circuit. This is quite easy: any wire that is not the output of a
gate is a primary input of the circuit.

Thus we see that AND-OR-NOT circuits can be reconstructed
completely from their SAT encodings by a relatively simple-minded
pattern matching algorithm that matches gates one at a time. More-
over, we can see that this simplistic algorithm runs in time linear in
the size of the input SAT instance.

5. ALLOWING ADDITIONAL GATE TYPES
We now extend our fast, simple-minded pattern-matching algo-

rithm for restoring circuit-structure by allowing for gates other than
AND, OR, and NOT and point out several obstacles to such gener-
alization posed by additional gate types. The results of this section
are summarized in Table 1. Note that this is not an exhaustive list-
ing of the gate types that can be detected. Other gates such as AOI
gates used frequently in CMOS technologies can be detected but
were not included due to space limitations.

5.1 NAND and NOR Gates
As we saw in Section 2, conversions from NAND and NOR gates

to CNF clauses are well-defined. Thus it seems conspicuous that
NAND and NOR gates were not part of the detection defined in
Section 4.

In fact, allowing NAND and NOR gates is a little more tricky.
All the literals in then+1-literal clause of ann-input NAND gate
are negated while all the literals in then+ 1-literal clause of an
n-input NOR gate are positive. This makes them fairly easy to rec-
ognize, but makes figuring out the orientation of the gate a little
more difficult.

This is remedied by choosing one of the literals to be the output
and checking this decision by testing the existence of the proper
2-literal clauses. For example assume that the clause(x+y+z) is

found in the instance. We recognize this as a possible NOR gate,
and so try to find the output of the gate. We choosex first and test
for the existence of the clauses(x+ y) and (x+ z). If both these
clauses exist,x is the output of the gate. Otherwisex cannot be the
output of the gate and tryy, etc. until we discover the output of the
gate. If we assume a good hash function, testing for the existence
of the 2-literal clauses can be done in constant time which makes
testing for NAND and NOR gates take time proportional to the
number of inputs of the gate.

Thus we see that NAND and NOR gates can be properly de-
tected, but slightly less efficiently than AND and OR gates. Pseu-
docode for detecting these types of gates is given in Figure 2.

1 foreach clausec with > 2 literals
2 foreach literal l in c
3 foreach literal m in c, m 6= l
4 if (l +m) not found then next l
5 // found a gate,l is its output
6 // the inputs correspond to the other
7 // literals ofc; now to determine its type
8 if l negated
9 if remaining literals are negated
10 // gate is NAND
11 else// gate is OR
12 else// l not negated
13 if remaining literals are negated
14 // gate is AND
15 else// gate is NOR
16 record this gate’s inputs and outputs

Figure 2: Detecting AND, OR, NAND, and NOR gates.

5.2 XOR and XNOR Gates
XOR and XNOR gates are common in circuit designs. They

can be constructed using only AND, OR, and NOT gates, but at
a significant size penalty. For example one 2-input XOR gate can
be equivalently represented with two 2-input AND gates, one 2-
input OR gate, and 2 NOT gates. The SAT encoding of one XOR
gate requires three variables and four 3-literal clauses while the
equivalent AND-OR-NOT encoding needs seven variables, three
3-literal clauses, and ten 2-literal clauses.

Now we consider the possibility of allowing XOR and XNOR
gates to be contained within the circuit to be encoded. Obviously
if we can allow XOR and XNOR gates, there is good potential for
savings in terms of circuit and SAT instance size. First we must
make sure that the clauses of XOR and XNOR gates can be recog-
nized from a SAT instance. Bothn-input XOR and XNOR gates
are converted into 2n CNF clauses ofn+1 literals each, as we saw
in Section 2.

The literals in each of the clauses of ann-input XOR gate form
a very interesting pattern. The 2n clauses ofn+ 1 literals repre-
senting ann-input XOR gate are the ones with an odd number of
negated literals. Similarly, the 2n clauses ofn+ 1 literals with an
even number of negated literals form the CNF representation of an
n-input XNOR gate.

Thus, when examining a clause withn+ 1 literals, it is easy to
detect if it may be part of ann-input XOR or XNOR gate (since it
cannot possibly be part of both). After making such a determina-
tion, all one must do is check for the other necessary clauses (i.e.
the other clauses with an odd number of negated literals for ann-
input XOR gate and the clauses with an even number of negated
literals for ann-input XNOR gate). If all of the other necessary

clauses are found, then we are guaranteed that ann-input XOR or
XNOR gate has been detected. The amount of time required to de-
tect an XOR or XNOR gate seems like it may quite large since an
n-input gate may possibly be detected 2n times. All we need to do
is mark each clause if we search for it and find it. When we get to a
clause that has already been marked, we can be sure that if it is part
of an XOR/XNOR gate, that XOR/XNOR gate has already been
detected. Generating the other necessary clauses will take time lin-
ear in the size of the clause for each other necessary clause, so
detecting XOR gates should take time similar to detecting NAND
and NOR gates.

Once XOR and XNOR gates are recognized, we must calculate
the orientation of the gate.However, despite what their popular
symbols may suggest, XOR and XNOR gates do not have inherent
orientations.Therefore, SAT encodings of such gates do not imply
which variable is the output of the gate, much like the encoding of
a NOT gate. To get around this difficulty for NOT gates in Section
4, we required that either the input or output of a NOT gate be
connected to an AND or OR gate. To allow XOR and XNOR gates,
we need to make a similar, but slightly more general, restriction.

To clearly explain the restriction, let us divide up gates into two
disjoint groups: those whose orientation can be known from their
SAT encodings and those whose orientation can only be derived
from their surrounding gates. As we have seen so far, AND, OR,
NAND, and NOR gates fall into the former group and NOT gates as
well as XOR/XNOR gates fall into the latter group. The restriction
that we make is that if a gate of a circuit falls into the latter group,
one must be able to determine the orientation of all its fanins or all
of its fanouts. To make this more clear, we must be able to impose
an ordering on all the unoriented gates such that by proceeding in
this ordering we can determine the orientation of the first gate in the
ordering from the orientations of its adjoining gates, and then the
second gate, etc. until all gates in the circuit are properly oriented.

To see why this restriction is sufficient, let us consider the task
of determining the orientation of XOR/XNOR gates that have been
guaranteed to have this property. Say that we are trying to deter-
mine the orientation of a detected 2-input XOR gate which has
wires x, y, andz. First let us assume that the orientation of the
fanins of this gate can be determined and further have been. This
guarantees that exactly two of the wires have been marked as out-
puts of other gates. Thus the third wire of this gate must be its
output and we have determined the orientation of this gate. Now
let us assume that the orientation of the fanouts of this gate can be
determined and have been. This guarantees that exactly one of the
wires has been marked as an input to all other gates to which it con-
nects. If a wire is connected to this gate and several others and all
the other gates claim it as an input, this wire must be the output of
this gate. Thus we have determined the orientation of this gate.

The ordering in which we attempt to orient XOR/XNOR gates
will make a difference in how quickly we determine the orientation
of all the gates, but our assumptions guarantee that at least one
ordering does exist so we will be able to eventually order all gates.
A naive process of trying to orient gates by using a static ordering
can take a number of steps quadratic in the number of unoriented
gates in the worst case, but a smarter breadth first technique can
orient in linear time.

Note that this restriction on XOR/XNOR gates and method to
figure out their orientations is not necessarily the only way nor the
best way to do it. It may even be possible that its not necessary
to find the orientations of XOR/XNOR gates for them to be use-
ful. Different ways of using XOR/XNOR gates is one direction of
further research.

Thus we can conclude that circuits with properly constrained
NOT and XOR/XNOR gates can be reconstructed from their SAT
encodings. Pseudocode for detecting these XOR and XNOR gates
is given in Figure 3.

1 foreach clausec with > 2 literals
2 if c markedthen next c
3 for i = 2; i ≤ size(c); i = i +2
4 foreach sets of i literals inc
5 clausec′ = /0
6 foreach literal l in c
7 if l ∈ s then addl to c′
8 elseaddl to c′
9 if c′ in instancethen markc′
10 else nextc
11 if c has odd number of negated literals
12 then // gate is XOR
13 else// gate is XNOR
14 record this gate’s information

Figure 3: Detecting XOR and XNOR gates.

5.3 Majority of 3 Gates
The majority of 3 gate (MAJ3) is a gate type that has many in-

teresting theoretical implications. Given three boolean inputs, the
MAJ3 gate outputs the most common of its inputs. It can be defined
asz= MAJ3(x1,x2,x3) ≡ z= x1x2 +x1x3 +x2x3. Given this defi-
nition, the SAT encoding is found to be six clauses of three literals
each:(x1 +x2 +z)(x1 +x3 +z)(x2 +x3 +z)(x1 +x2 +z)(x1 +x3 +
z)(x2 +x3 +z).

The SAT encoding of MAJ3 gates is much different than the
other gate types we have already examined. One large difference,
which makes this type of gate more difficult to detect, is the fact
that none of the clauses contain all of the variables associated with
the gate. All of the previousn-input gates had at least one clause
with n+ 1 literals. In this case, we will need to examine pairs of
clauses of the proper size to figure out all of the variables associated
with the gate.

Given that we will have to examine pairs of 3-literal clauses, this
process will require more effort since it could run in quadratic time
in the worst case. To minimize the number of pairs to consider,
we can make use of another property of the SAT encoding of the
MAJ3 gate. If a clause has any chance of being part of a MAJ3 gate
encoding, it must have either exactly one or two negated literals
and a similar clause with all of its literal negations reversed must
be present. In other words, if(x1 + x2 + z) has a chance of being
part of a MAJ3 gate encoding,(x1 +x2 +z) must also be a part of
the SAT instance. Thus we can pass over all the 3-literal clauses
and record only those which have a possibility of being in a MAJ3
encoding. In practice this eliminates a significant portion of the
3-literal clauses and the number of pairs to check is small.

Once we have only those clauses which are possible, we consider
them pairwise. First we can check to see if the two clauses match
for their output (the output is always distinguished in each of the
clauses as being the sole negated or sole positive literal), we may
proceed. Next if we can determine exactly three inputs from these
two clauses (from the four remaining literals), we can generate and
check for the other required clauses. If all required clauses are
found, we are guaranteed to have detected a MAJ3 gate. Determin-
ing orientation is automatic since the output is always distinguished
in each of the clauses. Thus it is possible to detect MAJ3 gates, but
it takes more effort than other gate types.

Gate type Difficulty of restoring circuit structure
ORandAND Straightforward pattern-matching

NOR andNAND Pattern-matching with back-tracking
NOT, XOR Can be detected by straightforward

pattern-matching, but w/o orientation,
andXNOR which can only be determined

in the context of other gate types
MAJ3 More advanced pattern matching

with back-tracking

Table 1: The relative difficulty of detecting particular
types of logic gates in CNF-SAT formulas. Note that this
is not an exhaustive listing of detectable gates.

 0

 50

 100

 150

 200

 250

 300

 1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6

R
un

tim
e

(s
ec

on
ds

)

of Clauses

Benchmark Series B25
Benchmark Series B27

Figure 4: Runtime vs. SAT instance size on
Velev’s B25 and B27 series [18] of benchmarks.

6. EMPIRICAL STUDIES ON
RESTORING CIRCUIT STRUCTURE

The techniques presented above can be generalized to detect if
an arbitrary SAT instance contains circuit structure and restore such
structure. Our initial belief was that many common SAT bench-
marks contain underlying circuit structure that may or may not
have been known when initially constructing the instances. There-
fore, we implemented the gate-matching algorithms and empir-
ically evaluated their performance on the well-known DIMACS
benchmarks [5] and theXOR-Chain series from the SAT 2002
competition [15]. The rationale behind this experiment is that suc-
cessful detection of circuit structure would facilitate the applica-
tion of specialized Circuit-SAT solvers [9] and potentially speed
up SAT-solving.

Table 2 summarizes the results of our experimentation and lists,
one per line, cumulative data for seven benchmark series. As is
evident from the table, benchmarks in these series exhibit signif-
icant circuit structure. It is interesting to note that while theBf
andSsa series are circuit-derived (and relate to testing for bridg-
ing faults and single-stuck-at faults), benchmarks in theHanoi
series describe a famous logic puzzle commonly studied in Artifi-
cial Intelligence (the Towers of Hanoi problem). The large number
of XOR gates inParity benchmarks is no surprise, but we did
not expect to find an even larger proportion of XORs inDubois
benchmarks, whose official description reads: “Randomly gener-
ated SAT instances”.Pret benchmarks also exhibit a large pro-
portion of XOR gates, and thus their official description “Encoded
2-colouring forced to be unsatisfiable” offers additional food for

Benchmark # of # of # of % variables in % clauses in % variables in % clauses in Detection
series benchmarks variables clauses simple gates simple gates XOR/XNORs XOR/XNORs runtime

Bf 4 5793 16566 54.29% 22.12% 1.18% 0.54% 0.43
Dubois 13 1275 3400 0% 0% 100% 100% 0.09
Hanoi 2 2041 12272 43.22% 10.19% 0% 0% 0.37
Parity 30 24267 83330 33.17% 13.58% 88.35% 68.42% 2.68
Pret 8 840 2240 0% 0% 100% 100% 0.09
Ssa 8 7828 17669 47.25% 18.57% 1.45% 0.69% 1.09

XOR-Chain 27 4554 12126 0% 0% 100% 99.55% 0.38

Table 2: Circuit structure detected in selected DIMACS [5] and SAT2002
[15] benchmarks. Runtime for the structure detection is given in seconds.

Benchmark % variables % clauses % variables in % clauses in % variables in % clauses in Hypre Detection
series remaining remaining simple gates simple gates XOR/XNORs XOR/XNORs runtime runtime

Bf 22.31% 31.17% 75.31% 46.41% 0.33% 0.12% 0.49 0.23
Dubois 100% 100% 0% 0% 100% 100% 0.05 0.09
Hanoi 64.97% 66.35% 52.24% 12.56% 0% 0% 0.23 0.24
Parity 54.99% 67.01% 30.70% 17.09% 100% 83.24% 1.47 2.13
Pret 100% 100% 0% 0% 100% 100% 0.03 0.09
Ssa 8.91% 8.33% 58.21% 29.86% 9.25% 4.74% 0.34 0.17

XOR-Chain 99.41% 99.55% 0% 0% 100% 100% 0.17 0.38

Table 3: Circuit structure detected in selcted DIMACS [5] and SAT2002 [15] benchmarks after applying the
Hypre SAT preprocessor [2]. Runtimes for the preprocessor and the structure detection are given in seconds.

thought. Indeed, each edge in a graph that is to be 2-colored implies
a mutual exclusion clause that may end up being a part of an XOR
gate. Although XOR gate presence in theXOR-Chain benchmark
series is also not surprising, it is worth note that the XOR-Chain
series of benchmarks contains the benchmark that won an award
at SAT 2002 for the smallest unsolved benchmark [15] and circuit
structure detection takes very little time on them.

It is common practice to apply specialized SAT preprocessors on
CNF-SAT instances in order to improve SAT-solving performance.
One such preprocessor is Hypre [2]. Hypre applies the HypBin-
Res inference rule as well as equality reduction to SAT instances.
HypBinRes is used to create new binary clauses which are further
used to detect if literals are forced to be equivalent to other literals.
Equality reduction is used to simplify the given instance based upon
the detected equivalences. While Hypre does not guarantee optimal
simplification, it can be more effective than exact logic simplifiers,
such as Espresso-exact [13], since it can remove variables from the
instance and is fairly scalable in practice.

We believe that circuit-to-CNF encodings are minimal (while the
circuits themselves may not be minimal), so we were interested in
seeing the effects of preprocessing on instances with circuit struc-
ture. We ran the Hypre preprocessor on the instances from Table 2
and the results are summarized in Table 3. In all but theDubois
andPret series, which are fully comprised of XOR and XNOR
gates, Hypre was quite effective in reducing the size of the SAT
instances. In practically all cases, the percentage of circuit struc-
ture in the instances increased after the preprocessing simplifica-
tion. This implies that the circuit structure in the instances was
more difficult to simplify than the non-circuit part.

During our testing of the DIMACs benchmarks, we noticed that
extracting circuit structure took relatively little time. To further
stress-test our gate-matching algorithms and see how well they scale
with the size of CNF formulas, we ran them on Velev’s B25 and
B27 series of benchmarks derived from formal verification of VLIW
processors [18] on a 1.2GHz machine with 2.0 GB of RAM. The

benchmarks ranged from 1.8 million to 8.1 million clauses and
contained significant circuit structure (more than 94% of variables
were part of circuit structure). A graph of runtime versus the num-
ber of clauses in the benchmark is shown in Figure 6. The figure
shows the runtime to be roughly linear, so our asymptotic calcula-
tions of runtime match the empirical results.

Lastly, we decided to compare the runtime of circuit structure
extraction with that of SAT solving. We compared runtimes of
ZChaff [14] and two modes of the Circuit-SAT solver from [9],
using the runtimes listed in [9]. Our runtimes were generated on a
machine comparable to the one used in [9]. The results are sum-
marized in Table 4. We can easily see that the runtime for circuit
structure extraction is much smaller than the runtime of ZChaff.
The Circuit-SAT solver was run in two modes: one with implicit
learning and the other with explicit learning. The total runtime for
implicit learning mode is the sum of the Implicit and Simulation
columns. Similarly, the total runtime for the explicit learning mode
is the sum of the Explicit and Simulation columns. Thus we see
the runtime for circuit structure extraction is also small when com-
pared to both modes of the Circuit-SAT solver. Thus using circuit
structure extraction is certainly viable for speeding up SAT solving.

7. CONCLUSIONS AND FURTHER WORK
The objective of this paper was to shed the light on the miscon-

ception that all circuit structure is lost when converting from com-
binational circuits to SAT instances. It may be true that some struc-
ture can be lost depending upon the encoding (for example in the
case of chains of XOR and XNOR gates), but we have shown that
it’s not always the case and summarized the relative difficulty of
detecting particular gate types in Table 1. We have articulated that
an arbitrary combinational circuit can be encoded as a CNF-SAT
instance so that its circuit structure is preserved and can readily be
extracted. In particular, we have described algorithms for restor-
ing circuit structure from CNF formulas and empirically shown its
success and scalability on very large benchmarks.A major con-

Circuit ZChaff Im- Ex- Simu- Ex-
plicit plicit lation traction

9Vliw001 1057 567 793 93 10
9Vliw004 953 804 1011 92 10
9Vliw005 3126 740 1314 88 10
9Vliw007 140 286 855 110 11
9Vliw008 1450 239 1914 114 12
9Vliw009 1006 784 829 117 10
9Vliw010 867 329 1897 96 10
9Vliw015 2209 985 1270 97 10
9Vliw017 1007 175 913 109 10
9Vliw019 2936 849 1448 129 10
9Vliw021 1666 1069 1345 99 10
9Vliw024 1375 965 1282 107 9

Table 4: Comparing the runtime of circuit structure extraction
to SAT solving by ZChaff [14] and the Circuit-SAT solver from
[9]. The Circuit-SAT solver was run in two modes: one with
implicit learning and the other with explicit learning. The total
runtime for implicit learning mode is the sum of the Implicit
and Simulation columns. Similarly, the total runtime for the
explicit learning mode is the sum of the Explicit and Simula-
tion columns. All runtimes are in seconds. Runtimes except for
structure extraction are taken from [9].

clusion of our work is that CNF-based SAT solvers should not be
considereda priori inferior to Circuit-based SAT solvers because
they have access to the same information.Even more importantly,
we have shown that some popular CNF-SAT benchmarks contain a
large amount of circuit structure, while apparently not being en-
tirely circuit-derived. This justifies extending the more general
CNF-SAT solvers to account for circuit structure, rather than fall
back on pure-circuit-SAT solvers and demand that the original cir-
cuit information be provided.

Our on-going and future work can be summarized as follows

• As mentioned in Section 5.2, there are different potentially
better ways of handling XOR and XNOR gates. Our current
method makes a very specific restriction on where XORs can
be located in the circuit and how they can be connected. We
believe there are other situations where XORs can be used
even though their orientations may not be able to be unam-
biguously determined. We have also left it undetermined as
to what should be done when XOR gates are present in the
circuit but they do not conform to the restriction. One method
is to remove the offending XOR gates and replace them with
simpler gates, if the entire structure of the input circuit is ab-
solutely necessary.

• Another approach to disambiguating the orientation of CNF-
encoded XOR gates is to look at the algorithms using this ori-
entation. For example, in [9], circuit information is used in
random simulation that allows one to detect correlations be-
tween different wires/variables. Since such correlations do
not inherently carry directionality information, they can be
produced with any valid input/output assignment of an am-
biguous circuit. However, it remains to be seen if such var-
ious I/O assignments perform equally well with the circuit-
SAT algorithm from [9].

8. REFERENCES
[1] F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Faster SAT

and Smaller BDDs via Common Function Structure,”Proc.
Intl. Conf. Computer-Aided Design, pp. 443-448, 2001.

[2] F. Bacchus and J. Winter, “Effective Preprocessing with
Hyper-Resolution and Equality Reduction”,Sixth Intl. Symp.
on Theory and Applications of Satisfiability Testing 2003.

[3] A. Biere and W. Kunz, “SAT and ATPG: Boolean Engines
for Formal Hardware Verification”,Proc. Intl. Conf. on
Computer-Aided Design 2002.

[4] L. P. Cordella, P. Foggia, C. Sansone and M. Vento,
“Evaluating Performance of the VF Graph Matching
Algorithm”, Proc. of Intl. Conf. on Image Analysis and
Processing, 1999.

[5] DIMACS Benchmark Set for SAT,
http://www.intellektik.informatik.
tu-darmstadt.de/SATLIB/benchm.html

[6] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-completeness”,
Freeman & co., New York, 1979.

[7] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust
SAT Solver”,Proc. Design Autom. and Test in Europe
(DATE) 2002, pp. 142-149.

[8] J. E. Hopcroft and J. K. Wong, “Linear Time Algorithm for
Isomorphism of Planar Graphs”,Proc. Annual ACM Symp.
Theory of Computing, 1974.

[9] F. Lu et al., “A Circuit SAT Solver With Signal Correlation
Guided Learning”,Proc. Design, Autom. and Test in Europe
2003.

[10] E. Luks, “Isomorphism of Graphs of Bounded Valence Can
Be Tested in Polynomial Time”,Journal of Computer System
Science, 1982.

[11] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A New
Search Algorithm for Satisfiability”,IEEE Trans. On
Computers, vol. 48, no. 5, May 1999, pp. 506-521.

[12] J. P. Marques-Silva and K. A. Sakallah, “Boolean
Satisfiability in Electronic Design Automation,” InProc.
Design Autom. Conf., June 2000, p. 675-680.

[13] P. C. McGeer, J. V. Sanghavi, R. K. Brayton and A. L.
Sangiovanni-Vincentelli, “ESPRESSO-Signature: A New
Exact Minimizer for Logic Functions,”IEEE Trans. on VLSI,
1(4), December 1993, pp. 432-440.

[14] M. W. Moskewicz, et al., “Chaff: Engineering an Efficient
SAT Solver”,Proc. Design Autom. Conf., 2001, pp. 530-535.

[15] L. Simon, D. LeBerre, and E. Hirsch, “The SAT2002
Competition,”http://www.satlive.org/
SATCompetition/2002/onlinereport/

[16] G. S. Tseitin, “On the Complexity of Derivation in
Propositional Calculus,” inStudies in Constructive Math.
and Mathematical Logic, Part 2, Consultants Bureau, New
York, London, 1968, pp. 115-125.

[17] J. R. Ullman, “An Algorithm for Subgraph Isomorphism,”
Journal of the ACM, vol. 23, pp. 31-42, Jan. 1976.

[18] M. Velev, “Microprocessor Verification SAT Benchmarks”,
http://www.ece.cmu.edu/
˜mvelev/sat benchmarks.html

[19] The VFLib Graph Matching Library,
http://amalfi.dis.unina.it/graph/
db/vflib-2.0/doc/vflib.html

