
Overcoming Resolution-Based Lower Bounds for SAT Solvers

DoRon B. Motter and Igor L. Markov
University of Michigan, EECS

1301 Beal Ave
Ann Arbor, MI 48109-2122

fdmotter,imarkov g@eecs.umich.edu

ABSTRACT
Many leading-edge SAT solvers are based on the Davis-Putnam proce-
dure or the Davis-Logemann-Loveland procedure, and thus on unsat-
isfiable instances they can be viewed as attempting to find refutations
by resolution. Therefore, exponential lower bounds on the length of
resolution proofs also apply to such solvers. Empirical performance of
DLL-based solvers on SAT instances from the pigeonhole and Urquhart
family are consistent with this expectation.

Our work explores an entirely different approach to SAT solving that
does not have this drawback. A bare-bones implementation of our algo-
rithm, reported earlier, was able to refute pigeonhole instances in poly-
nomial time without explicitly using symmetries, and this empirical re-
sult is backed up by an analytical proof. In this work, we show how
to extend Compressed-BFS to perform Boolean Constraint Propagation,
part of all practical, complete SAT solvers. Unlike DLL-based solvers,
our empirical results show that full BCP offers marginal improvements
in runtime.

1. INTRODUCTION
State-of-the-art, complete SAT solvers are usually based on the Davis-

Logemann-Loveland (DLL) search procedure [8]. DLL is a backtrack-
ing algorithm with several extensions, but its runtime on unsatisfiable in-
stances is bounded from below by the length of resolution proofs. This
fact can be combined with known exponential lower bounds for reso-
lution proofs of certain SAT instance families, such as the pigeonhole
instances (hole-n). [9, 5, 17]. The result is that any implementation
of the DLL algorithm must require exponential time to refutehole-n
instances [5]. Indeed, the leading-edge SAT solvers Chaff [12] and
GRASP [15] empirically take exponential time on these instances. In
addition theOBDD-applyapproach to SAT must also take exponential
time on pigeonhole instances [5].

Recent practical work in SAT has primarily focused on implementa-
tion details used for the DLL procedure; a different avenue of research is
to look for new SAT algorithms whose complexity is not lower-bounded
by resolution. Put differently, we are searching for SAT solvers which
lead to different classes of tractable SAT instances. To this end, we point
out that the recently reported Compressed-BFS algorithm [13] empiri-
cally solves pigeonhole instances (hole-n) in polynomial time. This
observation is supported by an analytical proof [14]. While we do not
claim resolution is subsumed by Compressed-BFS, there is an infinite
family of instances where Compressed-BFS exponentially outperforms
resolution, and thus lower-bounds based on resolution do not apply.

While the original implementation, Cassatt [13], efficiently solves
only some classes of benchmarks, we believe that this is not a funda-
mental limitation. Highly refined DLL implementations contain many
performance enhancing features which do not directly translate to the
type of search used in Compressed-BFS. In this work, we observe that
Boolean Constraint Propagation (BCP) is an integral feature of many
complete SAT solvers, and develop it in the context of Compressed-BFS.

The remaining part of this paper is organized as follows. Section
2 reviews the necessary background, while the Compressed-BFS algo-

rithm is described in Section 3. In Section 4 we introduce BCP into
Compressed-BFS. Empirical results are presented in Section 5, while
conclusions and our ongoing research are described in Section 6.

2. BACKGROUND
LetV = fv1;v2; : : : ;vng be a set of Boolean variables. Atruth assign-

mentfor V is a mappingt : V!f0;1g. For any variablev2V, let v and
v̄ be calledliterals. A clauseis a set of literals. A clause issatisfiedby
a truth assignmentt if at least one of its literals is true undert. A clause
is said to beviolatedby a truth assignmentt if all of its literals are false
undert. A Boolean formula in conjunctive normal form (CNF) can be
represented by a setC of clauses.

The implicit representation used in the Compressed-BFS algorithm
is dependent on the correspondence between valid partial truth assign-
ments and sets of clauses. Given a set of Boolean variablesV, apartial
truth assignmentfor V assigns values only to some subset of variables
V 0 �V. A partial truth assignment isinvalid if it violates some clause.

Given a valid partial truth assignmentt, we can classify clauses in a
CNF with respect tot as follows.

� Openclauses have at least one literal assigned, and no literals true.

� Satisfiedclauses have at least one literal assigned true.

� Activatedclauses have at least one literal assigned.

� Unit clauses have all but one literal assigned, and are open.

To illustrate the correspondence between sets ofopenclauses and valid
partial truth assignments, it is helpful to consider an example.

(a+c+d)
| {z }

1

(b̄+e+ f)
| {z }

2

(d+ ē)
| {z }

3

(ḡ+ h̄)
| {z }

4

We will view this example from the context of a Breadth-First Search:
all valid partial truth assignments we will consider will be to the same
set of variables. Assume that in this valid partial truth assignment, vari-
ablesfa;b;c;dg have been assigned values. Immediately we know that
clause 4 isnot activated, and also that clause 1 issatisfied. This is true
since we are considering a valid assignment, and all literals of clause
1 have been assigned values. Then this clause must be satisfied by our
assignment. The only clauses in which the actual values assigned matter
are thosein the cut. clauses, 2 and 3. Thesecut clauses straddle a con-
ceptual vertical line separating assigned variables from unassigned ones
as shown in Figure 1.

Now consider the specific valid partial assignmentt given byfa =
1;b= 0;c= 1;d = 0g. Given a specific assignment, we can determine
which clauses in thecutareopenand which clauses aresatisfied. Clause
2 is satisfied byt, while clause 3 remainsopen. Since clause 3 has only
one free literal, it is in factunit. Note that only clauses in thecut have
the potential to be open or unit clauses.

Our algorithm relies on the fact that there is a correspondence be-
tween avalid partial truth assignmentand a set ofopenclauses. Storing

373

(g+h)
e+f)
e)

e f g h

(a + c+d)
(b +

(d+

a b c d

Figure 1: Classification of Clauses

subsets ofopenclauses instead of explicit partial truth assignments is
enough information to perform a BFS and determine satisfiability of a
formula. Within the context of the Compressed-BFS algorithm, this col-
lection of subsets ofopenclauses is called thefront.

2.1 Zero-Suppressed Binary Decision Diagrams
A Binary Decision Diagram is defined to be a directed acyclic graph

(DAG) with two sink nodes. Each non-sink node has in this graph has
a unique label, an integer index, and two outgoing edges. One outgoing
edge gets the label 1, while the other outgoing edge gets the label 0. Each
outgoing edge can connect only to child nodes at lower levels. Because
of this we can represent each nodeX as a 3-tupleXhn;XT ;XEi wheren
is the index of the nodeX, XT is the node reached after traversing the 1-
edge, andXE is the node reached after traversing the 0-edge. Throughout
this work, diagrams will use a solid line to indicate a node’s 1-edge, and
a dashed line to indicate a node’s 0-edge. Each path in the DAG ends in
one of two sink nodes, the0 node and the1 node. In addition, there is a
single root node. The semantics of BDD can be defined recursively by
defining the semantics of a given node.

A BDD can be used to encode a collection of sets by encoding this
collection’s characteristic function. We can evaluate a function repre-
sented by a BDD by traversing the DAG beginning at the root node.
At each nodeX, if the variable corresponding to the index ofX is true,
we traverse along the 1-edge. Otherwise we traverse along the 0-edge.
Eventually we will reach either0 or 1, indicating the value of the func-
tion on this input. For Zero-Suppressed Binary Decision Diagrams, we
augment this with theZero-Suppression Rule: we may eliminate nodes
whose 1-edge leads to0. With these standard ZDD rules, it is not hard
to see that0 represents the empty collection of sets, while1 represents
the collection consisting of only the empty set.

ZDDs interpreted this way have a standard set of operations based on
recursive definitions [10], including the union and intersection of two
collections of sets, for example. These ZDD procedures form the build-
ing blocks of the Compressed-BFS algorithm, and are implemented in
several publicly available BDD/ZDD libraries [16, 11]. We review in-
formal definitions of some of the lesser-known ZDD procedures used.

� Existential Abstraction. Given a ZDDF , and a set of variables
S, remove all occurrences ofs2 S from any subset inF . This can
be implemented by cofactoringF with respect tos= 1 ands= 0,
then forming the union of these results[11].

� Subsumed Difference.Given two ZDDs,F andG, form a ZDD
F nSG containing all subsets fromF which are not subsumed by
some subset inG [6].

� PowerSet. Given a setS, create a ZDD2S which contains all
subsets ofS. Such a ZDD will require exactlyjSj nodes.

The Subsumed Difference[6] operation can be extended into other
operations, allowing one to maintain a subsumption-free ZDD. Removal
of subsumptions in some way is crucial to achieving performance within
the Compressed-BFS algorithm.

2.2 Boolean Constraint Propagation
Given a valid partial truth assignment to some variables in a CNF

instance, we may often easily infer additional information about any so-
lution based on this assignment. One way of doing this is to look forunit
clauses under this truth assignment; if a clause has all literals except one
set false, then in order to satisfy this clause we must set the remaining
literal true. Recursive application of thisunit clause ruleforms the ba-
sis of Boolean Constraint Propagation (BCP) within the context of DLL
algorithms for satisfiability.

DLL performs a backtracking, depth-first search over the solution
space of variable assignments. Thus it is natural after branching on a
given variable to use BCP to force the assignment of as many variables
as possible, and to immediately deduce conflicts a given assignment may
create. However with regard to the Compressed-BFS algorithm, it is not
as straightforward to apply this rule to prune branches of the search. We
will later show how it is possible to use the unit clause rule to deduce
conflicts within this framework.

3. THE COMPRESSED-BFS ALGORITHM
The use of a compressed container in algorithms for solving satisfi-

ability has been explored in many ways before our Compressed-BFS.
Combining the DP procedure with Zero-Suppressed Binary Decision
Diagrams (ZDDs) was explored in the ZRes solver [7]. Using ZDDs to
perform the DLL procedure was explored recently as well [3]. The idea
behind the Compressed-BFS algorithm [13] was to leverage the com-
pression power of ZDDs to mitigate the main shortcoming of Breadth-
First Search: memory utilization.

Compressed-BFS proceeds analogously to a BFS. It processes vari-
ables according to a static order, and implicitly represents all promis-
ing truth assignments of a given depthd. These valid partial truth as-
signments are assignments to variablesx1;x2; : : : ;xd which do not cause
all literals in some clause to be assigned false. The collection of these
partial truth assignments is called the front. To determine the proper
state after processing variablexd+1, the algorithm ‘copies’ the front, and
modifies one copy of each assignment within this collection to reflect the
additional assignment ofxd+1= 1. It modifies the other copy of the front
to reflect assigningxd+1 = 0. Finally, all valid partial truth assignments
arising from either of these branches might yield satisfiability, so both
branches are combined into the single new front.

Rather than store explicit truth assignments, Compressed-BFS stores
the subsets of open clauses corresponding to these assignments in the
front. By combining this front with a new truth assignment to a single
variable, the front can be advanced as described above. To update the
front to reflect a truth assignment to a single variable, the effects of this
truth assignment on the status of clauses must be considered. In gen-
eral, an assignment to a single variablexi = t (wheret 2 f0;1g) has the
following effects on clauses.

� It violatessome clauses. LetUxi ;t be the set ofunit clauses for
which this variable assignment causes a conflict. Then, any subset
in the front containing someu2Uxi ;t must be pruned as it cannot
yield satisfiability. This can be accomplished with an appropriate
ZDD intersection operation.

� It satisfiessome clauses. LetSxi ;t be the set of all clauses which
contain a literal infxi ; x̄ig andxi = t makes this literal true. If
these clauses were not yet satisfied, then they become satisfied by
this assignment. These clauses are removed from all subsets in
the front by ZDD existential abstraction.

� It openssome clauses. LetAxi ;t be the set of all clauses which
werenot activated, contain a literal infxi ; x̄ig, andxi = t makes
this literalfalse. If this literal were assigned true, the clause would
not becomeopenand not be needed to added to thefront. All such

374

clausesAxi ;t are added to every subset in thefront by the ZDD
Cartesian product operation.

Determining each of these sets depends only on the particular truth
assignment toxi = t, and not to the internal state of thefront. Thus, with
each of these sets of clauses, an action can be taken on the entirefront.
In order to prune branches from the search containing violated clauses
Uxi ;t , we build the PowerSet2ClausesnUxi ;t : the collection of all sets which
do not contain any clauses inUxi ;t . We then intersect this collection with
the front, leaving only those subsets contained withinClausesnUxi ;t .
Finally, we can remove subsetsB which are subsumed by some other set
A(B as these correspond to suboptimal partial assignments.

Initially, we have noopenclauses, and thefront is set to be the collec-
tion containing only the empty set,1. For each variablexi , we modify
one copy of thefront as described above to reflect assigningxi = 1. We
modify another copy to reflect assigningxi = 0. Finally, the newfront
is the union of these two, since we must consider promising branches
in either case. After all variables are processed, there are two possible
outcomes. If no branches lead to satisfiability, then thefront will be
empty (equal to0) as it contains sets ofopenclauses, each of which
corresponds to a promising branch in the search. If any branches lead to
satisfiability, then there will be no open clauses and thefront will contain
only the empty set (1). Pseudocode for the Compressed-BFS algorithm
is shown in Figure 2.

ZDD algorithms depend heavily on the ordering of ZDD nodes. Be-
cause of this, our initial ordering is designed so the Cartesian Product
operation takes linear time [13] by ensuring that added nodes have lower
indices. Here also, Compressed-BFS’s performance depends on the or-
der in which variables are processed. Since only those clauses in thecut
have the potential to be open clauses, we may reorder variables to reduce
cutwidth. As a preprocessing step to Compressed-BFS, the MINCE[2]
heuristic ordering is applied to attempt to reducecutwidth. Reducing
cutwidth is critical to Compressed-BFS’s runtime: if full subsumption
removal is applied, the maximum number of subsets at a given step in
the front is exactly the size of the maximal anti-chain of the partially
ordered set2Cut [13].

Compressed-BFS(Vars, Clauses)
Front 1
for i = 1 to jVarsj do

front0 front
//Modify front to reflect xi = 1
Form sets Uxi ;1;Sxi ;1;Axi ;1

front front
T

2ClausesnUxi ;1

front 9Abstract(front, Sxi ;1)
front front
Axi ;1

//Modify front’ to reflect xi = 0
Form sets Uxi ;0;Sxi ;0;Axi ;0

front0 front0
T

2ClausesnUxi ;0

front0 9Abstract(front0, Sxi ;0)
front0 front0
Axi ;0

//Combine the two branches via Union
//and remove Subsumptions
front front

S
(S) front0

if front = 0 then
return Unsatisfiable

if front = 1 then
return Satisfiable

Figure 2: Pseudocode for the Compressed-BFS Algorithm

3.1 Opportunistic Subsumption Removal
In Compressed-BFS, we may often reduce the overall runtime of the

search procedure by investing additional runtime to eliminate subsump-
tions. However, the full search for subsumptions may take significant
time. A simple search based on two reduction rules can be applied in
linear time by a single pass over the ZDD. This opportunistic search
in reality may find a significant number of subsumptions, and also pre-
serves the utilization of autark assignments.

1

1

iii

Figure 3: Two cases in which subsumptions can be easily eliminated.
In (i), both children are the same. In (ii), the E-Child is 1.

The first reduction rule is based on finding subsets which differ in a
single element. If there are two subsetsA(B such thatB has exactly
one additional element, then it is not hard to see there will be some node
in the ZDD which has the form shown in Figure 3:i. That is, whether
the upper node is true or false will not affect the evaluation of the col-
lection’s characteristic function for sets which depend on this node. Be-
cause of the subsuming ZDD semantics this implies that we should re-
move all sets depending on this node, in which the node evaluates to
true: this can be accomplished by setting the T-Child to0. However,
because of the zero-suppression rule, we should simply eliminate this
node as shown in Figure 3. The resulting reduction rule is the same rule
used in ROBDDs: it can be said that the front in Compressed-BFS has
the compression power of both ZDDs and BDDs.

The second reduction rule is based on the notion that the empty set
should subsume all other sets. If the empty set is part of a collection,
then it must appear as the E-Child of some node. The sub-portion of
the ZDD which meets this criterion should be eliminated, as shown in
Figure 3:ii. Note that this rule also encompasses more than just selection
of autark assignments due to the recursively-defined semantics of ZDDs.
In testing Compressed-BFS on real-world instances, memory utilization
is the limiting factor rather than runtime. As a result, for this work we
utilize the full search for subsumptions at each step.

4. BOOLEAN CONSTRAINT PROPAGATION
In Compressed-BFS, we store sets of open clauses in a ZDD. The

main idea in augmenting this approach with Boolean Constraint Propa-
gation (BCP) is thatconflictingsets of clauses cannot lie within the same
subset ofopenclauses in thefront. For our purposes, a set of clauses is
conflicting if it is possible to derive a contradiction by the unit clause
rule. If all such conflicting sets of clauses are discovered, then any par-
tial truth assignment which leaves such a set of clauses clauses open is
invalid. We may prune such branches from the search by forming a ZDD
containing conflicting sets of clauses. We then remove such sets from
the front by use of theSubsumed Differenceoperator.

4.1 A Motivating Example

(ā+ d̄)
| {z }

1

(ā+ c̄)
| {z }

2

(ā+c)
| {z }

3

(a+ b̄)
| {z }

4

(a+b)
| {z }

5

Here, we will consider the state of the Compressed-BFS algorithm
after processing the variablea. Since thefront consists of all sets of open

375

clauses, it is not hard to see that thefront has the form shown in Figure
4. Under the assignmenta= 1, clauses 1, 2, and 3 are open. However
the assignmenta= 0 leaves clauses 4, 5 open. Thus after variablea the
front ZDD contains two subsets,f1;2;3g andf4;5g.

2

1

3

4

5

0 1

Figure 4: The Front after Variable a

After variablea, all clauses in this example areunit, having only one
unassigned literal. If any of these clauses appear in some subset in the
front then they must beopenclauses, and imply the remaining unas-
signed literal. If two clauses imply literals of opposite polarity, they
cannot appear in the same subset. This basic rule forms the basis of a
“depth 1” BCP procedure: we can form theCartesian Productof the
set of clauses implying some literall and the set of clauses implyinḡl .
Each pair in this product will contain a clause implyingl and one im-
plying l̄ , and thus theCartesian Productonly contains conflicting sets
of clauses. Any subset in thefront which contains such a pair of clauses
can be pruned. Notice that sets of conflicting clauses at a given step in
the algorithm are independent of the front.

For the given example, clause 2 implies the literal ¯c, while clause
3 implies the literalc. Thus, any subset in thefront containingf2;3g
can be pruned. Similarly because of the literalb, any subset containing
f4;5g can be pruned. The ZDD containing these subsets is shown in
figure 5. These implied conflicts would be removed via theSubsumed
Differenceoperator. In this case the resultingfront will be empty, since
each subset of the front is subsumed by some subset in the Conflict ZDD,
and we can conclude the formula is unsatisfiable. To contrast this, the
original Compressed-BFS algorithm would be forced to process vari-
ablesb andc before determining that the formula was unsatisfiable.

2

3

4

5

0 1

Figure 5: Conflicting Sets of Clauses after Variablea

4.2 The BCP Procedure
When finding implications at a given stage, Compressed-BFS is not

limited to finding the “depth 1” implications as shown above. Rather,
such implications can be propagated, possibly deriving additional sets of
violated clauses. The premise of a general procedure to find all conflict-
ing sets of clauses is to consider the effects of assigning some variable
v eithertrue or falseand keeping track of which clauses are violated by
doing this. By choosingv only out of literals which are implied by some

unit clause, we effectively capture only the effect of implications on our
formula. In the “depth 1” BCP mentioned above, these violated clauses
were stored in sets. The Cartesian product of such sets gives conflicting
pairs of clauses. Rather than simply find a set of clauses which is vio-
lated by this single assignment, we can recursively build a ZDD taking
into account multiple assignments. Simple pseudocode for such a recur-
sive search is shown in Figure 6. The expressiveness of the ZDD data
structure helps make such a recursion possible.

GetConflictZDD(FormulaF 0, IntegerVar)
foreach clauseC2 F 0

if C has no literals (after thecut)
//Then C is a violated clause
ViolCls ViolCls

S
C.

//Find the set of variables implied by some unit clause
IVars ImpliedVars(Units(F 0))

//Find the lowest index variable v implied by some
//unit clause, such that v>Var
vlow UpperBound(IVars,Var)
if no suchvlow exists

return ViolCls
ConflZdd ViolCls
//Iterate over all implied variables� v
forall v2IVars such thatv� vlow

//Modify F’ to reflect assignment, and recurse
Z1 GetConflictZDD(Assign(F 0, v= 1), v)
Z0 GetConflictZDD(Assign(F 0, v= 0), v)
Z Z0
Z1
ConflZDD ConflZDD

S
Z

return ConflZDD

Figure 6: Constraint Propagation Pseudocode

At any stage in the recursion, the procedureGetConflictZDDonly re-
turns violated clauses or conflicting sets of clauses. This procedure for
finding all conflicts after a given step in the search is based on condi-
tioning on a given variable. Since the variable must be either true or
false, we must encounter conflicts found in one of these two branches.
Initially, one would invokeGetConflictZDDby passing it a simplified
formula F 0 from the original CNF instance. Here we may remove all
clauses before thecut as well as all literals before thecut from remain-
ing clauses. The procedureAssignworks by essentially removing all
clauses inF 0 which are satisfied by the assignment to some variablev,
and removing all literals ofv from clauses which are not satisfied.

The procedureGetConflictZDDworks as follows. It first finds all vi-
olated clauses. It then branches over the implications of allunit clauses.
For each such variablev implied by some unit clause, it forms the ZDD
Z1 of all conflicts whenv = 1. It similarly forms the ZDDZ0 of all
conflicts whenv= 0. Note that since this variable was implied by some
unit clausec, thenc necessarily appears as a single element in eitherZ1
or Z0. Sincev must be either true or false, we must encounter conflicts
in eitherZ1 or Z0. Then, any subset in thefront which is subsumed by
some subset in theCartesian Product Z0
Z1 cannot yield satisfiability
as it has elements from bothZ1 andZ0.

Finally, GetConflictZDDtakes the union of all such branches. The
subsuming semantics of ZDDs used in Compressed-BFS also apply here:
we may remove subsumed sets from the conflict ZDD. The only remain-
ing point of the procedure is the use of the IntegerVar in the search. This
is used to break the symmetry which arises during the search by impos-
ing an ordering on branches. Thus we will never attempt to assign, e.g.

376

c= 0 thend = 1 as well as recursing ond = 1 thenc= 0. Since the
combined effect of these assignments is the same, we can impose an
ordering on variables being assigned and eliminate such redundancy. It
should be noted that the ordering used on the set of implied variables in
generalcannotsimply by the variable ordering used to process variables
within Compressed-BFS. This is because after branching on variablev,
unit clauses may in fact imply some variable which occurs beforev with
this ordering. Instead, we must order the search based on the order in
which clauses inF 0 become unit, and new variables are implied. These
new implications should be inserted later in this ordering, to ensure that
we maintain completeness.

4.3 Extending BCP
Although the procedure presented above will find all possible con-

flicting sets of clauses at a given stage in the algorithm, it may take
significant time to perform such an exhaustive search if there are many
implications. Another difficulty is that deeper searches can only find
larger sets of conflicting clauses. Larger sets are less likely to subsume
subsets in thefront, and are thus of limited benefit.

Both problems are addressed by bounding the depth used in the re-
cursion to a given level. This places a bound on the number of clauses
within any set of conflicting clauses the procedure finds, increasing the
chance that these sets subsume some set in thefront. Such a restriction
will also help limit the runtime of such a search.

In addition, the BCP-based search for conflicts at variablek will share
much similarity with the search at variablek+1, limiting the effective-
ness of such a search. Here we apply BCP only every 2d steps, whered
is the depth to which we perform the search. In addition we limit prop-
agation of assignments to those ‘near the cut’ by a factor of 3d. Finally,
during the first and last few steps of Cassatt’s search, the front tends to
already be quite small, and additional search will be superfluous. To help
compensate for this, here we do not apply BCP during the first and last
10% of variables. However when BCP should be applied is considered
a tunable parameter of our search.

5. EMPIRICAL RESULTS
Cassatt, our implementation of the Compressed-BFS algorithm, is

written entirely in C++ using the CUDD package [16]. In addition, we
use the existential abstraction procedure from theExtra library [11]. To
obtain these results, we disabled reordering in CUDD. Cassatt runtimes
do not include time required to obtain the MINCE variable ordering or
I/O time. Other solvers were run with default configurations.

Our results fall into two categories. First, on instances which lack
a great deal of structure such as randomized instances and many real-
world instances the original Cassatt algorithm performs relatively poorly.
It is on these instances which the addition of BCP gives an increase in
performance. However this increase is modest, and on these instances
Cassatt is not competitive with DLL based solvers. We compare Cassatt
without BCP to Cassatt with bounded depth BCP. In Figure 7 results are
shown on instances from the DIMACS benchmark suite. The results in
Figure 7 were obtained on an AMD Athlon 1.2GHz machine with 1GB
DDR RAM running Linux. Runtimes of DLL-solvers are not included
as they solve all instances quickly.

On aim instances, the addition of BCP seems to help, especially as
problem size increases. Foraim-200 andaim-100 instances, depth
3 BCP appears to give the best performance. Instances which were not
solved within a 250-second timeout limit were treated as if they took 250
seconds; this slightly skews the shown results in favor of Cassatt without
BCP as the addition of BCP allows Cassatt to solve more instances.

Our second class of results is over instances with large amounts of
structure such as pigeonhole instances. These instances are often de-
signed to defeat DLL-based solvers or resolution in general. Here Cas-
satt performs extremely well and the addition of BCP only hinders the

algorithm. However these instances are solved so quickly that any addi-
tion to the algorithm will likely have this result.

The XOR-Chain family of benchmarks are known to be difficult for
solvers based on DLL algorithms while easy for some other methods
of solving SAT [1]. Here we show these are easy for Cassatt as well.
We report results of zChaff Z2001.2.17 to show typical performance of
tuned DLL-based solvers.1 In Figure 8 runtimes for Cassatt and zChaff

XOR-C S/U Cassatt BCP 2 BCP 3 BCP 4 zChaff
1 16 UNS 0.01 0 0.01 0.01 0.99
1 24 UNS 0 0.01 0.02 0.03 8.35
1 32 UNS 0.01 0.02 0.03 0.07 59.72
1 36 UNS 0.02 0.03 0.03 0.06 1088.95
1 40 UNS 0.01 0.03 0.06 0.18 MEM-OUT
1 64 UNS 0.02 0.06 0.09 0.15 MEM-OUT
1 128 UNS 0.12 0.2 0.35 0.59 MEM-OUT
1.1 16 UNS 0.01 0.01 0.02 0.02 0.99
1.1 24 UNS 0 0.02 0.03 0.02 8.33
1.1 32 UNS 0.01 0.03 0.03 0.06 92.54
1.1 36 UNS 0.02 0.02 0.03 0.02 MEM-OUT
1.1 40 UNS 0.01 0.03 0.03 0.05 MEM-OUT
1.1 64 UNS 0.03 0.06 0.1 0.15 MEM-OUT
1.1 128 UNS 0.08 0.22 0.42 0.47 MEM-OUT
2 16 UNS 0.01 0.02 0.01 0.03 0.11
2 24 UNS 0 0.01 0.02 0.04 11.89
2 32 UNS 0.01 0.02 0.04 0.04 113.94
2 36 UNS 0.02 0.04 0.04 0.07 305.16
2 40 UNS 0.01 0.02 0.04 0.06 1540.36
2 64 UNS 0.03 0.08 0.13 0.21 MEM-OUT
2 128 UNS 0.1 0.22 0.42 0.64 MEM-OUT

Figure 8: Runtimes for the XOR-Chain family

were obtained on a 2.0GHz Pentium 4 Xeon with 1.0GB RAM. As men-
tioned, on these structured instances BCP does not provide an improve-
ment, but the original runtimes are so low that should any improvement
exist, it would be difficult to detect empirically.

A similar situation occurs for instances based on FPGA switchbox
routing [4]. Figure 9 shows results for Cassatt on instances based on

FPGA S/U Cassatt BCP 2 BCP 3 BCP 4 zChaff
10 11 UNS 0.04 0.12 0.45 1.18 >250
10 12 UNS 0.05 0.14 0.35 0.96 >250
10 13 UNS 0.03 0.15 0.59 2.01 >250
10 15 UNS 0.09 0.34 1.31 6.39 >250
10 20 UNS 0.24 0.7 2.82 15.1 >250
11 12 UNS 0.06 0.16 0.59 1.1 >250
11 13 UNS 0.04 0.15 0.74 2.97 >250
11 14 UNS 0.04 0.21 0.98 4.09 >250
11 15 UNS 0.06 0.24 1.06 5.43 >250
11 20 UNS 0.1 0.51 3.3 20.68 >250
10 8 SAT 0.03 0.07 0.28 2.6 2.13
10 9 SAT 0.06 0.13 0.36 1.24 2.01
12 8 SAT 0.06 0.12 0.37 2.03 >250
12 9 SAT 0.12 0.19 0.53 2.36 104.7
12 10 SAT 0.15 0.26 0.87 3.97 >250
12 11 SAT 0.07 0.2 0.83 4.97 >250
12 12 SAT 0.52 0.67 1.55 5.68 132.91
13 9 SAT 0.35 0.44 0.8 2.79 191.63
13 10 SAT 0.71 0.84 1.43 5.47 66.3
13 11 SAT 1.61 1.8 2.4 4.47 >250
13 12 SAT 2.66 2.88 3.62 7.99 >250

Figure 9: Runtimes for instances from FPGA Switchbox Routing

FPGA switchbox routing [4]. Again, runtimes for Cassatt on these in-

1At the SAT2002 solver competition, zChaff outperformed all other
solvers on thex2* family of instances and performed competitively on
x1* andx1.1*.

377

Benchmark # S/U Cassatt + BCP Depth 2 + BCP Depth 3 + BCP Depth 4
Family %Sol Avg %Sol Avg %Sol Avg %Sol Avg
aim-200-1 6-yes1 4 SAT 75 122.95 75 117.7 75 113.95 75 119.94
aim-100-1 6-no 4 UNS 100 .56 100 1.165 100 .6525 100 .885
aim-100-1 6-yes1 4 SAT 100 .06 100 .09 100 .13 100 1.08
aim-100-2 0-no 4 UNS 25 187.51 25 187.52 25 187.53 25 187.52
aim-100-2 0-yes1 4 SAT 100 33.6 100 31.8 100 29.1 100 31.5
aim-100-3 4-yes1 4 SAT 0 >250 25 237.4 25 231.25 25 218.16
aim-100-6 0-yes1 4 SAT 100 32.5 100 19.0 100 17.8 100 37.2
aim-100* 24 - 70.83 84.04 75 79.5 75 77.74 75 79.39
aim-50-1 6-no 4 UNS 100 0.02 100 0.02 100 0.04 100 0.07
aim-50-1 6-yes1 4 SAT 100 0.02 100 0.025 100 0.03 100 0.06
aim-50-2 0-no 4 UNS 100 0.14 100 0.14 100 0.18 100 0.33
aim-50-2 0-yes1 4 SAT 100 0.04 100 0.05 100 0.08 100 0.16
aim-50-3 4-yes1 4 SAT 100 0.54 100 0.45 100 0.58 100 1.3
aim-50-6 0-yes1 4 SAT 100 0.29 100 0.30 100 1.23 100 8.2
aim-50* 24 - 100 0.18 100 0.17 100 0.355 100 1.69
dubois* 13 UNS 100 0.01 100 0.02 100 0.02 100 0.01
pret* 8 UNS 100 0.016 100 0.018 100 0.02 100 0.02
par16* 5 SAT 80 85.52 60 129.19 60 131.338 60 136.75
par16-c* 5 SAT 60 152.42 60 154.67 60 155.26 60 159.00
par8* 5 SAT 100 0.71 100 0.488 100 0.89 100 2.04
par8-c* 5 SAT 100 0.026 100 0.058 100 0.128 100 0.45

Figure 7: Instances from the DIMACS benchmark suite

stances are low, and BCP does not further improve them. Results in
Figure 9 were obtained on an AMD Athlon 1.2GHz machine with 1GB
RAM.

6. CONCLUSIONS AND ONGOING WORK
Our work extends the Compressed-BFS algorithm by recursive ap-

plication of theunit clause rule. The original Compressed-BFS’s run-
time (with opportunistic subsumption removal) is polynomially depen-
dent on the size of the compressed representation it uses. However, (un-
lessP =N P) this representation will have worst-case superpolynomial
size. By the addition of BCP to this algorithm, we attempt to reduce the
size of the representation at each step by investing additional runtime to
derive conflicts in the search.

The compressed-BFS algorithm was developed to counter the short-
comings of a traditional BFS. By using an implicit representation, then
in certain cases Compressed-BFS avoids such an explosion in memory
utilization. However, the main bottleneck for this algorithm on real-
world instances is still memory utilization. Thus the addition of BCP
can be viewed as a measure to counter the shortcomings of the original
Compressed-BFS algorithm. Since the runtime of Compressed-BFS de-
pends on the representation size, an investment of run-time in reducing
the ZDD size is likely to pay off by causing later reductions.

The search for conflicts by use of theunit clause ruleneed not be
complete. As a result, there is room for improvement over the straight-
forward complete search. Heuristic and randomized approaches can be
applied, with the aim of quickly covering a significant fraction of the
search for conflicting sets of clauses. In addition, making optimal use
of BCP within Compressed-BFS is still an area we consider. Empiri-
cally, DLL-based solvers have difficulty on some families which Cassatt
can quickly solve. However the converse is also true, as several in-
stances from the DIMACS suite are unsolvable with Cassatt. On several
instances, use of BCP does reduce the runtime of Cassatt. On highly
structured instances the compression power of the ZDD allows Cassatt
to efficiently determine satisfiability. However on these instances the
addition of BCP does not help the algorithm.

Our ongoing work proceeds in several directions. We hope to improve
performance of our Compressed-BFS+BCP implementation further via
tuning. We are also studying modifications of well-known SAT solvers
that are required to produce resolution proofs of unsatisfiability rather
than just a negative answer. Finally, we hope to modify traces saved
by Compressed-BFS so that they form the basis of verifiable proofs for
unsatisfiable instances.

7. REFERENCES
[1] “SAT2002 Solver and Benchmark Competition”.

http://www.satlive.org/SATCompetition/index.jsp.
[2] F. Aloul, I. Markov, and K. Sakallah. “Faster SAT and Smaller

BDDs via Common Function Structure”.Proc. ICCAD, 2001.
[3] F. Aloul, M. Mneimneh, and K. Sakallah. “Backtrack Search

Using ZBDDs”.IWLS, 2001.
[4] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. ‘Solving

Difficult SAT Instances in the Presence of Symmetry”.39th
ACM/IEEE DAC, 2002.
http://www.eecs.umich.edu/˜faloul/benchmarks.html.

[5] P. Beame and R. Karp. “The Efficiency of Resolution and
Davis-Putnam Procedures”. to appear SIAM Journal on Comp.

[6] P. Chatalic and L. Simon. “Multi-Resolution on Compressed Sets
of Clauses”.Proc. of 12th International Conference on Tools with
Artificial Intelligence (ICTAI-2000), November 2000.

[7] P. Chatalic and L. Simon. “ZRes: the old DP meets ZBDDs”.
Proc. of the 17th Conf. of Autom. Deduction (CADE), 2000.

[8] M. Davis, G. Logemann, and D. Loveland. “A Machine Program
for Theorem Proving”.Comm. ACM, 5:394–397, 1962.

[9] A. Haken. “The Intractability of Resolution”.Theoretical
Computer Science, 39:297–308, 1985.

[10] S. Minato. “Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems”.30th ACM/IEEE DAC, 1993.

[11] A. Mishchenko. “EXTRA v. 1.3: Software Library Extending
CUDD Package: Release 2.3.x”.
http://www.ee.pdx.edu/˜alanmi/research/extra.htm.

[12] M. Moskewicz et al. “Chaff: Engineering an Efficient SAT
Solver”.Proc. of IEEE/ACM DAC, pages 530–535, 2001.

[13] D. Motter and I. L. Markov. “A Compressed Breadth-First Search
for Satisfiability”.Proc. 4th Workshop on Algorithm Engineering
and Experiments, 2002.

[14] D. Motter and I. L. Markov. “On Proof Systems Behind Efficient
SAT Solvers”.Fifth International Symposium on Theory and
Applications of Satisfiability Testing, 2002.

[15] J. Marques Silva and K. Sakallah. “GRASP: A New Search
Algorithm for Satisfiability”. ICCAD , 1996.

[16] F. Somenzi. “CUDD: CU Decision Diagram Package Release
2.3.1”. http://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html.

[17] A. Urquhart. “Hard Examples for Resolution”.Journal of the
ACM, 34(1):209–219, 1987.

378

