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Abstract— On-chip clock networks are remarkable in their
impact on the performance and power of synchronous circuits, in
their susceptibility to adverse effects of semiconductor technology
scaling, as well as in their strong potential for improvement
through better CAD algorithms and tools. Existing literature
is rich in ideas and techniques, but performs large-scale opti-
mization using analytical models that lost accuracy at recent
technology nodes, and has rarely been validated by realistic
SPICE simulations on large industry designs.

Our work offers a methodology for SPICE-accurate optimiza-
tion of clock networks, coordinated to satisfy slew constraints
and achieve best trade-offs between skew, insertion delay,power,
as well as tolerance to variations. Our implementation, called
Contango, is evaluated on 45nm benchmarks from IBM Research
and Texas Instruments with up to 50K sinks. It outperforms all
published results in terms of skew and shows superior scalability.

I. I NTRODUCTION

Accurate distribution of clock signals is a major limiting
factor for high-performance integrated circuits when unin-
tended clock skew narrows down the useful portion of the
clock cycle. Historically, clock skew became one of the first
victims of semiconductor scaling, when wire delay started
growing in significance relative to transistor delay. H-trees,
popular in the industry, offered symmetric distribution net-
works that guaranteed nearly-equal geometric lengths fromthe
chip’s center to individual clocked elements. However, H-trees
did not immediately account for different sink capacitanceand
uneven distribution of sinks throughout the chip, and did not
minimize wire capacitance. The first geometric algorithms for
clock routing evaluated skew in terms of wirelength from the
source to sinks and produced minimum-wirelength trees for a
given sink clustering (which is not difficult to optimize) using
the deferred merging and embedding(DME) principle [3]. The
tree structure facilitated powerful dynamic programming,and
DME algorithms were extended (1) to handle skew in terms
of Elmore delay, (2) balance uneven sink capacitance, and
(3) minimize wire capacitance under non-zero skew bounds
[14]. The DME family of algorithms were a major research
achievement, both as mathematical insights and in terms of
their computational performance. BST-DME algorithms [6]
developed in the late 1990s reduced skew to single ps in fairly
large circuits, while requiring only minutes of CPU time.

Semiconductor scaling in the 1990s made clock optimiza-
tion more challenging. While transistors continued scaling,
interconnect lagged in performance [10]. This phenomenon
boosted demands for repeaters in clock networks, raised their
power profile, and complicated their synthesis. Research in
delay-driven buffering of single signal nets — arguably an

easier problem and on a smaller scale — has blossomed well
into the late 2000s, leaving clock-tree synthesis a difficult,
high-value target. As the accuracy of compact delay models
for transistors and wires deteriorated, clock-network design in
the industry moved to SPICE-driven optimizations [9], [25].

Clock networks were among the first circuits to suffer
the impact of process, voltage and temperature variations.
Systematic variations can affect paths to different sinks in
different ways, making effective skew higher than nominal
skew. Intra-die variations may be stronger on some paths
than on others, which would further increase effective skew.
These challenges have motivated research at the device, circuit
and algorithm levels [17]. In general, smaller sink latencies
and shorter tree paths decrease exposure to variations. Some
researchers tried to increase the tolerance of buffers to CD
changes and to temperature [15], some proposed to tune wires
or buffers based on post-silicon measurements [18], and some
developed methodologies for inserting cross-links into the
trees [11], [13], [19], arguing that such links can decrease
the impact of variation on skew. Existing literature tends
to (1) rely on closed-form delay models during large-scale
optimization, (2) frequently focus on a single optimization
technique in analysis and evaluation, (3) neglect the difficulties
in modifying highly optimized clock trees. Our work seeks to
address these omissions and develops a practical methodology
for effective SPICE-accurate optimization, rather than elegant
algorithms with provable abstract properties. With process
variation in mind, microprocessor designers combine regular
meshes with local or global trees [25]. However, meshes have
much higher capacitance and use more power.

Our work focuses on clock-network synthesis for ASICs
and SoCs, where clock frequencies are not as aggressive as in
high-performance CPUs, but power is limited, especially for
portable applications. In this context, tree topologies remain
the most popular choice, potentially with further tuning and
enhancements. The SoC context introduces another twist —
layout obstacles. SoCs include numerous pre-designed blocks
(CPUs, RAMs, DSPs, etc) and datapaths. While it may be
possible to route wires over such obstacles, buffer insertion is
typically not allowed. One can fathom the difficulty of such
optimization through comparison to signal-net routing, where
obstacle-avoiding Steiner trees currently remain an active area
of research [22]. Our contributions include:

• A careful analysis of design steps and optimizations
for high-performance clock trees, including the range,
accuracy, and substitutability of specific techniques.

• Notions ofslow-down & speed-up slackfor clock trees.
• Tree optimizations driven by accurate delay models.
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• A simple and robust technique for obstacle avoidance in
clock trees subject to slew constraints.

• A provably-good sink-polarity correction algorithm.
• A methodology for clock-tree optimizations that outper-

forms the best results at the ISPD‘09 conteston every
benchmarkby 2.15−3.99 times, while reducing skew to
2.2−4.6ps(Table V). It outperforms all published results
in terms of skew (Table VI). On newer Texas Instruments
benchmarks with up to 50K sinks, skew remains< 11ps.

Selecting best parameters for each benchmark can further
improve results, at the cost of increased runtime. But global
skew< 20ps is considered very small for ASICs and SoCs.

In the remainder of this paper, Section II reviews relevant
previous work and the ISPD‘09 CNS contest. Section III
describes our analysis of the clock-network synthesis problem
and introduces slow-down & speed-up slacks. Major optimiza-
tion steps are described in Section IV, and Section V presents
empirical results.

II. BACKGROUND AND PRIOR WORK

DME algorithms . Traditionally, clock trees have been
constructed with respect to simple delay models — geometric
pathlength or Elmore delay. In this context, the results in [3]–
[5], [7], [30] show how to build zero-skew trees (ZSTs) with
minimal wirelength, improving upon H-trees and fishbones.

The Deferred Merge Embedding (DME) algorithm, using
the concept ofmerging segment[3], [4], [7] for constructing
zero-skew tree, was extended to the bounded-skew tree (BST)
problem. BST/DME algorithms [6], [14] generalize merging
segments to merging regions. When BST/DME algorithms
were introduced in the early 1990s, many chip designs in-
cluded one large central buffer to drive clock signals through
the entire chip. Today traditional clock trees cannot satisfy
slew constraints in large ICs because the maximal length of
unbuffered interconnect decreased significantly due to tech-
nology scaling [10]. Furthermore, the Elmore delay model
used by published clock-tree optimizations lost accuracy due
to resistive shielding and the impact of slew on delay.

BSTs allow one to trade off a small increase in skew for
reduced total wirelength. Figure 1 shows that BSTs are shorter
than ZSTs. However, BSTs are less balanced than ZSTs and
Elmore delay used in BST generation is inaccurate, thus the
capacitance saved on wires can be lost when compensating
for skew with accurate timing analysis. After initial buffer
insertion, slow sinks and fast sinks are more clustered in
ZSTs. Since our skew optimization techniques exploit these
clusters, BSTs need greater resources to reach near zero-skew
than ZSTs. Table I shows the impact of BST skew bounds on
final results (CLR is defined at the end of Section II). The
skew bounds during BST construction are based on Elmore
delay, and the final results are based on SPICE simulations.
Based on overwhelming empirical evidence against BSTs,
Contango does not use them.

Obstacle-avoiding clock trees. The concept of merging
regions in BST/DME was extended to obstacle-avoiding trees
in [16], where(i) obstacles were assumed rectangular,(ii) no
routing over obstacles was allowed, and(iii ) buffering was not
considered. The authors noted that obstacle processing slowed

(a) ZST (b) 3ps BST (c) 9ps BST
Fig. 1. Min-wirelength trees with zero and bounded skew (Elmore delay).
Only fragments of actual clock trees are shown.

Skew Initial After skew and CLR optimizations
Bound, ps CLR, ps CLR, ps Skew, ps Cap., fF

0 52.01 13.75 1.633 77653
3 57.87 16.33 3.106 74606
6 68.06 18.91 6.004 79955
9 69.64 31.51 18.403 78779

TABLE I

THE IMPACT OF SKEW BOUNDS ONispd09f22.

down their BST/DME algorithm and hinted at more advanced
geometric data structures. Unlike in [16], the ISPD‘09 contest
allowedrouting but notbufferingover obstacles, with SoCs in
mind. ISPD‘09 benchmarks included abutting obstacles that
formed monolithic rectilinear obstacles.

Fast buffer insertion. L. van Ginneken introduced an
algorithm for buffering RC-trees [8], which minimizes Elmore
delay and runs inO(n2) time, givenn possible buffer locations
and buffer specification. While not intended for clock trees, it
minimizes worst delay rather than skew. TheO(nlogn)-time
variant of van Ginneken’s algorithm proposed in [26] is more
appropriate for large trees. A key insight into van Ginneken’s
algorithm and its faster variant makes them applicable to our
work — while trying to minimize source to sink latencies,
these algorithms insert almost same number of buffers on
every path and therefore result in low skew if the initial tree
was already balanced.

Other buffering techniques have been proposed as well, e.g.,
a linear-time algorithm from [2] that minimizes the number
of buffers while bounding capacitive load and slew rate,
but does not minimize delay or skew. A dynamic program
from [1] inserts a limited number of buffers subject to a
maximal skew in buffer counts on source-to-sink paths. At the
ISPD‘09 contest, slew constraints were checked by SPICE,
but capacitance limits were relatively generous. Our com-
petitors predominantly used greedy bottom-up buffer-insertion
algorithms that added each buffer as high in the tree as
possible, while satisfying slew constraints. Such technique
seek to minimize capacitance as the top priority. However, we
chose the (faster variant of) van Ginneken’s algorithm, which
seeks to minimize worst sink latency. Our rationale was that
process variations can be moderated by lowering sink latency
and that it is relatively easy to slow down paths that are too
fast, but it is harder to speed up slow paths. It is difficult to
make a rigorous comparison with slew-based buffering [12].In
particular, some of our competitors at the ISPD 2009 contest
relied on it and produced relatively poor results, but others
did better. In any case, our overall results compare favorably
to the best published results, especially in terms of nominal
skew, and we were unable to improve them further by using
slew-based buffering.
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The ISPD‘09 clock-network synthesis contestwas orga-
nized by IBM Austin Research Laboratory and based on a
45nm technology [29]. Sink latencies and clock skew were
evaluated by SPICE. The main objective was the difference
between the least sink latency @1.2V (supply) and the greatest
sink latency @1V (supply). ThisClock Latency Range(CLR)
metric was intended to capture the impact of multiple power
modes with different supply voltages [24], but nominal skew
was also recorded. The 10%-90% slew rate of 100ps and total
power were strictly limited.

Several papers were published inspired by the ISPD’09
contest. Researchers from NTU proposed in [27] a Dynamic
Nearest-Neighbor Algorithm (DNNA) to generate tree topol-
ogy and a Walk-Segment Breadth First Search (WSBFS)
for routing and buffering. To further refine the tree, they
use dangling branches to adjust capacitance of wires (see
our discussion in Section IV-G). Researchers from NCTU
proposed in [21] a three-stage CLR-driven CTS flow based
on an obstacle-avoiding balanced clock tree routing algorithm,
monotonic parallel Buffer Insertion, as well as Wire-Sizing
(BIWS) and wire-snaking. A Dual-MST (DMST) geometric
matching approach is proposed by researchers from HKPU
in [23] for topology construction, along with recursive buffer
insertion and a way to handle blockages. A timing-model inde-
pendent buffered clock-tree synthesis is proposed in [28].The
authors proposed a branch-number plan, a cake-cutting parti-
tioning and an embedding-region construction for non-binary
symmetrical buffered clock tree synthesis. They achieved low
skew but do not explain how to generate obstacle-avoiding
clock trees.

III. PROBLEM ANALYSIS

The design of a clock network offers a large amount of
freedom in topology selection, spacing and sizing of inverters,
as well as the sizing of individual wires. Traditionally, network
topology is decided first. Trees offer unparalleled flexibility in
optimization because latency from the root to each sink can be
tuned individually, while large groups of sinks can be tuned
by altering nodes and edges high up in the tree.

Composite buffers can be built by stacking up inverters in
parallel and/or in series. Parallel composition decreasesdriver
resistance, but increases input pin capacitance, while leaving
the intrinsic delay intact. The spacing of buffers is largely
responsible for preventing slew violations and also affects
clock skew. It is sensitive to driver resistances, the maximal
capacitance (wire and input pins) that can be driven by a given
composite buffer, as well as branches in the buffer’s fanout,
which determine the number of input pins driven. A single
wire segment can be split into smaller segments, and each can
be sized independently.

A. Optimization objectives & timing analysis techniques

Accurate clock network design is complicated by the fact
that the optimization objectives are not available in closed
form and take significant CPU resources to evaluate. Skew
optimization requires much higher accuracy than popular
Elmore-like delay models. For example, a 5ps error represents

only 1% of 500ps sink latency, but 50% of 10ps skew.
Closed-form models do not capture resistive shielding in long
wires, do not propagate slew with sufficient accuracy, and do
not account for slew’s impact on delay well. Newer, more
sophisticated models are laborious to implement and only
available in modern commercial tools. Our strategy is to use
simple analytical models at the first steps of the proposed flow
— (1) to construct zero-skew clock trees and (2) to perform
initial fast buffer insertion, — but drive further optimizations
by SPICE runs, Arnoldi approximation, or any other available
timing analysis tool/model.

To minimize the number of time-consuming SPICE invoca-
tions, we pursued several techniques. Runtime can be signifi-
cantly reduced usinglocalizationandbatch-mode evaluation.
During localization, one prunes large portions of the clock
tree that do not affect latencies to the sinks impacted by the
changes in question [11]. This does not reduce the number of
SPICE calls, but rather decreases the complexity of each run.
On the other hand, a batch of changes can be evaluated by a
single SPICE run, as long as multiple changes do not affect
the same path from root to a sink.

Another avenue to streamlined SPICE-driven optimizations
is to use mathematical properties of circuit delay, such as
monotonicity, convexity, and linearity with respect to some
parameters. Monotonicity and convexity support binary search,
where an optimal value is sought on a certain interval. At each
step of the search, the middle point of the interval is evaluated
by SPICE (e.g., a wire can be sized half-way) and the result
determines whether to recur to the left or right half-interval.
Linearity enables extrapolation of multiple values based on
several SPICE runs.

B. Nominal skew optimization

An initial buffered clock tree is constructed early in the
design flow. Assuming no slew violations, the latency of each
sink s (Ts) is known from SPICE simulations (or faster tech-
niques, such as Arnoldi-based delay calculations), at which
point minimal and maximal latencies (Tmax and Tmin) can be
found.1 Since sink latencies are significantly larger than skew
(Tmax−Tmin), skew can be improved by either decreasingTmax

(speeding up the slowest sinks) or increasingTmin (slowing
down the fastest sinks) without critical adverse effect on sink
latencies.

Definition 1: Consider a clock tree and its sinks. Theslow-
down slack Slackslow

s (speed-up slack SlackFast
s ) of s is the

amount inps by which the sink latency can be unilaterally
increased (decreased) without increasing clock skew. In other
words,Slackslow

s = Tmax−Ts andSlackFast
s = Ts−Tmin.

Slow sinks often cluster together, and so do fast sinks.
Hence, clock skew can be improved by modifying a few nodes
or edges high in the tree. To find desired delay change, we
propagate slack information up the tree as follows.

Let Sinkse be the set of downstream sinks for edgee.
Definition 2: Consider a clock tree and its edgee. Theslow-

down slack Slackslow
e (speed-up slack SlackFast

e ) of e is the

1Separately for rising and falling transitions, for each PVTcorner.
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amount in ps by which the edge delay can be unilaterally
increased (decreased) without increasing clock skew.

Lemma 1:For any edgee in the tree

• Slackslow
e = mins∈Sinkse Slackslow

s
• SlackFast

e = mins∈Sinkse SlackFast
s

Given slacks onn sinks, all edge slacks can be computed in
O(n) time.

Lemma 2:For any edgee and its parent in the tree,
Slackslow

e ≥ Slackslow
parent(e) andSlackFast

e ≥ SlackFast
parent(e).

The flexibility of a tree edge is limited by each downstream
sink. Therefore, for edges close to the root we often have
Slackslow

e = SlackFast
e = 0. It is important to note that the

validity of slacks-related calculations does not depend onthe
use of specific delay models or SPICE simulations. When
visualizing clock trees, we color their edges with a red-green
gradient, indicating low slack with red and high slack with
green, as shown in Figure 4.

Lemma 2 suggests that, instead of changing the delay of
an edge, one can change the delay of its downstream edges
by an equal amount, as long as only one delay change is
applied on each root-to-sink path. When choosing between
tree edges on the same path, we prefer (at early stages of
optimization) to tune edges as high in the tree as possible,
so as to minimize(i) the amount of change,(ii) the risk of
introducing slew violations and(iii ) power overhead. However,
in a highly optimized tree, we tune bottom-level edges where
we can better predict the impact on skew. The preference for
high-level tree edges can be formalized as follows.

Proposition 1: For each edgee in the tree, define∆slow
e =

Slackslow
e −Slackslow

parent(e). If every edge is slowed down exactly

by ∆slow
e , the tree’s skew will become zero, and both slow-

down and speed-up slacks will become zero.

Naturally ∆ f ast
e = Slackf ast

e −Slackf ast
parent(e), and a mirror state-

ment holds. For a tree edgee, it is possible that∆ f ast
e > 0 and

∆slow
e > 0, facilitating conflicting optimizations. If optimiza-

tions are not coordinated well, some edges may be sped up
and some slowed down, while the overall skew is unchanged.
To avoid such conflicts, one can perform rounds of speed-up
and rounds of slow-down, separated by SPICE-based analysis
and slack update. In practice, it is easier to slow down an
edge than to speed it up. Thus, any possible speed-up, e.g., by
using stronger buffers, is performed first. Rounds of speed-up
and slow-down are more conveniently performed top-down, so
that when an edge cannot be tuned by the desired amount, the
remainder is passed to its downstream edges.

We found that after nominal skew is sufficiently optimized,
both rising and falling transitions can individually limitspeed-
up and slow-down slacks. We handle the two transitions
separately and define edge slacks as the smaller of rise-slack
and fall-slack. Furthermore, speed-up and slow-down slacks
can be computed for each process corner given (two in the
ISPD‘09 contest). In order to improve the multicorner CLR
objective, a tree edge can be sped up conservatively by the
minimum of its speed-up slacks, and can be slowed down by
the minimum of its slow-down slacks.

C. CLR optimization

Our methodology pursues two objective functions —- nom-
inal skew and the ISPD09 CNS contest metric, CLR, in-
troduced above. Due to significant correlation between CLR
and nominal skew, some of the optimizations in our flow
target skew optimization, some target CLR, and some address
both (see Table III). In practice this approach achieves a
good trade-off between the two optimization objectives, and
is representative of multi-objective optimization required in
many practical settings. Recall that the CLR calculation is
based on the sink latencies at two different supply voltage
settings. There are mainly two strategies to reduce CLR. First,
reducing skew directly contributes to reducing CLR until skew
becomes very small (e.g. less than 5ps). Let sink L be the
sink with the least sink latency @1.2V (T1.2V

L ) and sink G be
the sink with the greatest sink latency @1.0V (T1.0V

G ). Then
CLR = T1.0V

G - T1.2V
L . When we consider the latency of sink

G @1.2V (T1.2V
G ), thenCLR = (T1.0V

G -T1.2V
G ) +(T1.2V

G -T1.2V
L ).

We call (T1.0V
G -T1.2V

G ) the variational part of CLR and (T1.2V
G -

T1.2V
L ) the skew part of CLR. The skew part of CLR can be

reduced by skew optimization techniques. Since the corner
sinks of skew are not always same to the corner sinks of CLR
(sink L and G), CLR needs to be measured after any skew
optimization to check CLR improvement. The second strategy
for CLR optimization targets the variational component of
CLR. The detailed descriptions of optimizations for the skew
and variational part of CLR are discussed in Section IV.

D. Coordinating multiple optimizations

We found that different clock-tree optimizations exhibit
differentstrength/rangeand differentaccuracy(see Tables III
and IV). Our strategy in coordinating clock-tree optimizations
is to start with optimizations that offer the greatest range,
and then transition to optimizations with greater accuracy.
Each step should decrease the main optimization objective
sufficiently to be within the range of the next optimization.

IV. PROPOSEDSOC CLOCK-SYNTHESIS METHODOLOGY

Our proposed clock-network synthesis methodology and its
major algorithmic steps are shown in Figure 2. Contango first
builds an initial tree using a ZST/DME algorithm [6] and alters
it to avoid obstacles. It then uses anO(nlogn)-time variant
of van Ginneken’s buffer insertion algorithm [26] to ensure
small insertion delay and to satisfy slew constraints. A series
of novel clock-tree optimizations are applied next.

A. Obstacle-avoiding clock trees

As we pointed out in Section II, obstacle-avoiding clock
trees can be built by repairing obstacle violations in ZSTs.
This approach is attractive when large obstacles abut the
chip’s periphery because ZSTs naturally avoid areas without
clock sinks. This approach is also attractive when obstacles
are small or thin enough that a buffer inserted immediately
before the obstacle can drive the wire over the obstacle,
so that no rerouting is necessary. A third convenient case
occurs when a wire can be rerouted around the obstacle
without an increase in length. Most obstacles are rectangular
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Fig. 2. Key steps of the Contango methodology. Blue boxes represent
skew reductiontechniques, red octilinear shapes showCLR reduc-
tions, and the green box with thick border reduces both objectives.
An Improvement- & Violation-Checking (IVC) step follows each
Clock-Network Evaluation (CNE) using circuit simulation tools, e.g.,
SPICE. “Fail” indicates no improvement or having slew violations,
leading to a transition to the next optimization.

in shape, but such rectangles may abut, creating rectilinear-
shaped obstacles. When two obstacles abut, we cannot place a
buffer between them, and therefore handle them as one com-
pound obstacle. Contango detours wires using the following
algorithm, illustrated in Figure 3 for a composite obstacles.
Step 1. Identify all wires that intersect obstacles. For each
point-to-point connection, performshortest-path maze routing
around the obstacles. For subtrees that cross an obstacle, find
L-shaped segments that link points inside and outside the
obstacle. For each L-shape, choose one of the two possible
configurations that minimizes overlap with the obstacle.
Step 2.When a wire crosses an obstacle, Contango captures
an entire subtree enclosed by the obstacle (see Figure 3). The
total capacitance of the subtree is then measured and compared
to the capacitance that can be driven by the driving buffer
without risking slew violations. Sub-trees that can be driven
by the driving buffer do not require detours.
Step 3. For obstacles crossed by a subtree that cannot be
safely driven by the driving buffer, Contango establishes a
detour along the contour of the obstacle as follows. First, the
entire contour is considered a detour. Then, to ensure that
the clock network remains a tree, one segment is removed
between tree sinks adjacent along the contour. If we were
to minimize total capacitance, we would remove the longest
segment of the contour between two adjacent tree sinks.
However, we minimize the longest detoured source-to-sink
path, and thereforeremove the segment furthest from the tree
source(counting distances along the contour). In other words,
we first find the sink most distant from the source along the
contour, and include in the detour the entire shortest path to the
source. The other segment incident to the sink is removed, but
the shortest path from its other end to the source is included
(see Figure 3).

Modern SoC layouts are littered with obstacles, which
upset regular structures such as meshes and H-trees. In the
ISPD 2009 contest, such layouts required numerous detours.
Detouring may significantly increase skew, but the subsequent
skew optimization techniques can compensate for that.

B. Composite inverter/buffer analysis

Composite inverter/buffer analysis. Most technology li-
braries support dedicated clock buffers or inverters that are
larger and more reliable than those for signal nets. Industry
designs usually offer at least six different sizes. Parallel com-
position of buffers increases driver strength, helping with slew
constraints and improving robustness to variations. Yet, buffer
sizes must be moderated to satisfy total power limits. For
a given buffer library, we consider many possible composite
buffers. Using dynamic programming, we select several non-
dominated configurations that can be further evaluated during
buffer insertion. Algorithmic details are omitted here because
the ISPD‘09 contest used only two inverter types —large
and small. Table II shows that eight parallelsmall inverters
exhibit smaller output resistance than onelarge inverter, and
smaller input/output capacitance. Hence Contango used 8×
small inverters instead oflarge inverters, in batches of 16×,
24×, etc. This benchmark-independent optimization, along
with buffer sizing, plays an important role in our methodology.

INVERTER INPUT OUTPUT
TYPE Cap., fF Cap., fF Res.,Ω

1X Large 35 80 61.2
1X Small 4.2 6.1 440
2X Small 8.4 12.2 220
4X Small 16.8 24.4 110
8X Small 33.6 48.8 55

TABLE II

INVERTER ANALYSIS FORISPD’09 CNSBENCHMARKS.

C. Initial buffer insertion with sizing

Given a clock tree with buffers, it is easy to increase the
latency of a given sink, but it is difficult to speed up a sink.
Therefore, our strategy is to first make sinks as fast as possible,
and then reduce skew with wiresnaking and wiresizing. When

Fig. 3. An illustration of our detouring algorithm. Small solid circle indicates
the source of detour, larger circles indicate sinks. The detour is shown with
red dotted lines.
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buffers are inserted into an Elmore-balanced tree, source-to-
sink paths contain practically the same numbers of buffers (can
be off by one in some cases).

We adapted theO(nlogn)-time variant of van Ginneken’s
algorithm from [26]. Due to its speed, it can be launched
with different inverter configurations, effectively performing
simultaneous optimization across multiple parameters. Our
experiments indicate that driver strength is a major factorin
moderating the impact of supply-voltage variations. Therefore,
to reduce the variational part of CLR,T1.0V

G -T1.2V
G (Section

III-C), Contango performs fast buffer insertion with different
composite buffers until it finds the best-performing solution
with strongest composite buffers within 90% of the power
limit. Slew-constraint violations are not a concern at thispoint
since minimizing delay involves avoiding high slew-rate (recall
that there is positive correlation between delay and slew-rate).
The experiments on various clock trees with initial buffer
insertion suggest that even the worst slew-rate is well under
60% of the slew limit. We reserveγ = 10% of power budget
to facilitate more accurate optimizations.

The O(nlogn) variant of van Ginneken’s algorithm [26]
used in our work assumes that all available clock buffers
preserve polarity, therefore the use of inverters typically leads
to incorrect polarity at some sinks. The buffering algorithm can
be extended to directly account for sink polarity, or it can be
post-processed by inserting additional inverters near sinks with
incorrect polarity. To this end, we use the polarity-correction
approach described in our conference paper [20]. In practice,
it requires very few additional buffers, and its skew overhead
is small enough to be compensated for by our downstream
optimizations

D. Buffer sliding and interleaving

We now discuss targeted improvement of robustness to
variations in device performance. The iterative buffer sizing
introduced in Section IV-E is primarily used to reduce the
variational component of CLR (T1.0V

G -T1.2V
G ), while buffer

sliding and interleaving are applied as preliminary steps.
Extensive experiments suggest that the impact of variations on
skew is best reduced by(i) decreasing sink latency (insertion
delay), and(ii) using the strongest possible buffers. Since our
initial buffer insertion algorithm focuses on the former metric
with the latter metric as a secondary objective, it is possible
to further improve the variational component of CLR (T1.0V

G -
T1.2V

G ) by emphasizing the latter metric. Therefore, based on
the results of initial buffer insertion, Contango attemptsto size
buffers up.

Sizing up a single inverter increases its input pin capacitance
and can lead to slew violations. To prevent such violations,it
is often possible to slide the inverter up the tree to reduce
upstream wire capacitance and interleave an inverter when
two inverters move too far apart after sliding. The increase
in downstream wire capacitance is balanced with the increase
in the inverter’s driving strength. Sizing a single inverter may
increase the skew and require further correction. Therefore,
we focused on the top-most levels of the tree, whose impact
on skew is relatively small. Given a clock source at the chip

boundary, DME algorithms generate a long wire leading to
the center of the chip, and the tree branches out from the
center. This long wire — thetree trunk— is later populated
with a chain of inverters, which can be up- or down-sized
without significant impact on skew because this equally affects
all sinks. However, since roughly 1/3 to 1/2 of sink latency
is due to the tree trunk, it accounts for a large fraction of
variational impact on latency.

The trunk’s variational impact is different for voltage and
process variations, and this must be accounted for during opti-
mizations. Stronger buffers in the trunk reduce the sensitivity
of latency to supply voltage(e.g., in the case of different
power modes), and help optimizing the CLR objective from the
ISPD 2009 contest. However, process variations in the trunkdo
not affect skew. In the ISPD 2010 contest,processvariations
were included in the skew constraint, while the primary
objective was tominimize total capacitance. Therefore, one
of successful strategies toweakenthe buffers in the tree trunk
and avail the capacitance saved to other optimizations.

E. Iterative buffer sizing

After sliding and interleaving top-level buffers, we invoke
iterative buffer sizing. First, this algorithm sizes up buffers
in the tree trunk. At thei-th iteration of buffer sizing,
Contango sizes up the composite inverters by at mostpi =
100/(i +3)%. The iterations continue until results improve
without slew violation. Buffer sizing in tree branches incurs a
greater capacitance penalty. To compensate, Contango borrows
capacitance by downsizing bottom-level buffers.

However, sizing up buffers after the trunk often makes the
tree unbalanced in terms of skew and results in greater load
for the following skew optimization algorithms. For better
performance of skew optimizations, typically 4 or 5 levels
after the first branch are sized up by capacitance borrowing
buffer sizing algorithm.

F. Iterative top-down wiresizing

Before skew optimization, Contango computes slow-down
slacks at every edge as described in Section III, and the∆slow

e
parameters. This suggests the amount by which a given tree
edge can be slowed down before skew would be negatively
affected. Since fast sinks often cluster together, skew canbe
lowered by slowing down either many bottom-level wires or
few wires higher in the tree. Our top-down algorithm pursues
the latter, seeking to minimize tree modifications.

We build an ad hoc linear model based on the im-
pact of downsizing a unit-length (lws) wire segment. Con-
tango chooses several independent wire segments with same
length (lws) in the middle of the tree and downsizes them to
observe the impact on latencies of downstream sinks, ensuring
that every sink is affected by only one downsized wire. This
requires a single SPICE run and produces a single parameter
Tws — maximal latency increase by downsizing a unit-length
(lws) wire segment. When downsizing a wire, the scaling factor
k is calculated based onSlacke divided byTws andk× lws of
the wire is down-sized. Whenk is small, the latency increases
almost linearly since the down-sized length is much smaller
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Algorithm 1 IterativeWireSizing
Tws = TwsEstimation();
repeat

SaveSolution(); ComputeWireSlacks();
Q = {root}; RSlack= {0}; i = 0;
while i < size(Q) do

if (Slack[Qi]−RSlacki > Tws) then
k = (Slack[Qi ]−RSlacki)/Tws;
DownSize(Wire[Qi],k); RSlacki+ = kTws;

end if
for j = 1 to Size(Child[Qi ]) do

Q.push(Child[Qi][ j]); RSlack.push(RSlacki);
end for
++ i;

end while
SpiceSimulation();

until (no improvement|| slew violation)

than the length of the wire. Therefore we can estimate that the
maximum latency increase is equal to or less thank×Tws. To
utilize this linearity, we limitk by kmax. kmax is experimentally
determined by observing the threshold at which the linearity
breaks significantly. Also, the scaling factork can be limited
by slew constraints. Wiresizing typically increases slew rate
because of increase in resistance. Even thoughk < kmax holds,
Contango does not allow any downsizing on a wire whose
downstream node has slew rate above 80% of the slew limit.

Since we selectedTws as the maximal latency increase
from the SPICE simulation, the actual increase (calculated
by SPICE) is smaller — our modifications are intentionally
conservative to avoid excessive increase of latency, which
increases the maximal latency of the tree and consequently
causes increase of slack for the entire tree. After running
SPICE, collecting sink latencies and recomputing slow-down
slacks, Contango repeats top-down wiresizing to reduce skew
based on current data. This process is performed iteratively
until the objective function (CLR or nominal skew) stops
improving. Iterative wiresizing is detailed in Algorithm 1.

G. Iterative top-down wiresnaking

Wiresizing can reduce large skew by applying small
changes, which is appropriate after the initial tree construction.
An experienced clock-network designer suggested to us thata
small amount of wire-snaking is often used to improve clock
skew, as long as added capacitance does not significantly affect
power. Wiresnaking alters a given route so as to increase its
length and can be applied on fast paths.

We develop an accurate top-down wiresnaking process,
which we invokeafter top-down wiresizing. This step uses
the same slow-down slack computation we described earlier.
A SPICE simulation is performed (other accurate delay model
can be used) to measureTwn, the worst-case delay of wires-
naking with unit lengthlwn. lwn affects the accuracy of the
wiresnaking algorithm; smallerlwn offers greater accuracy but
typically leads to more SPICE runs since skew reduction in
each round of top-down wiresnaking is smaller.lwn was set

based on empirical analysis of the 45nm technology used at
the ISPD contest before contest benchmarks became available.
The applicability of wiresnaking depends on the VLSI context.
If the clock tree is competing for routing resources with signal
nets, then every effort should be taken to reduce the utilization
of routing resources. In particular, wiresnaking cannot beused
in areas of routing congestion (also, clock trees should avoid
such areas to minimize crosstalk noise). On the other hand,
some ICs include abundant routing resources. This is the case
for pad-limited designs and designs whose area is determined
by large IP blocks. The number of available metal layers
also plays a major role in the design of clock trees, and can
vary dramatically between different designs, ranging from6
to 12 layers as of 2010. In some high-performance designs,
clock networks are given a dedicated metal layer, which makes
wiresnaking much more attractive.

One of the top-three teams at the ISPD 2009 clock-tree
routing contest (NTU [27]) useddangling wires instead of
wiresnaking. Rather than elongate a route, this strategy adds
a dead-end branch. The goal is to increase wire capacitance,
and therefore increase the delay. In comparing dangling wires
to wire-snaking, we note that the former does not alter the
resistance that affects propagation delay. Therefore, to achieve
a particular slow-down, a much longer wire-branch is needed.
On the positive side, the dependence of delay increase on
branch length is linear, and this may allow for more accurate
tuning. In other words, this technique offers a potentially
greater accuracy, butsmaller rangebecause the range of such
optimizations is limited by the capacitance budget. Therefore,
if dangling wires are found useful, they should be used at a
later stage in the optimization flow.

H. Bottom-level fine-tuning & limits to further optimization

After two top-down skew reduction phases, skew becomes
small enough to perform bottom level optimizations. Bottom-
level wiresnaking optimize the wires directly connected to
sinks. This technique is more accurate than the top-down
optimizations since each sink is tuned individually. Con-
tango performs SPICE-driven bottom-level wiresnaking until
the results stop improving. Typically the gain of bottom-
level tuning is under 2ps, but can be a significant fraction
of remaining skew.

We found that with skew< 5ps, the corner sinks of rising
transition and falling transition are often different. This rise-
fall divergencemakes further improvements to the clock tree
very difficult. Indeed, reducingrising skewby slowing down
a fast sink for rising transitionmay increasefalling skewdue
to excessive slowdown of aslow sink for falling transition. In
the Contango flow, the average skew after bottom-level tuning
is 3.21ps on ISPD’09 CNS contest benchmarks.

Table III shows the improvement of CLR and skew by each
optimization algorithm. Note that after iterative buffer sizing
(TBSz), skew is increased but CLR does not change much.
This implies that TBSz reduced the variational part of CLR
(T1.0V

G -T1.2V
G ) significantly. TBSz is performed before skew

optimization because it increases the skew part of CLR (T1.2V
G -

T1.2V
L ). The increased skew is reduced below 5ps after our

skew optimizations.
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ISPD09F11 ISPD09F12 ISPD09F21 ISPD09F22 ISPD09F31 ISPD09F32 ISPD09FNB1
CLR Skew CLR Skew CLR Skew CLR Skew CLR Skew CLR Skew CLR Skew

INITIAL 56.18 30.58 75.81 48.96 89.29 59.17 52.01 31.55 151.8 116.5 121.6 88.19 31.86 21.15
TBSZ 55.61 46.78 80.03 66.24 89.49 76.31 43.16 33.65 140.3 129.2 110.7 98.27 31.54 21.13
TWSZ 23.38 15.07 19.70 8.127 26.00 12.25 16.35 6.933 43.08 32.21 27.23 14.84 30.75 20.44
TWSN 13.75 2.929 16.21 3.384 17.60 2.826 12.58 1.99 12.81 3.91 17.92 4.594 13.94 3.149
BWSN 13.36 2.867 15.27 2.611 17.40 2.738 12.36 2.227 12.81 3.91 17.92 4.594 13.40 3.5

TABLE III

PROGRESS ACHIEVED BY INDIVIDUAL STEPS OFCONTANGO ON ISPD‘09BENCHMARKS: THE FIRST LETTER IN EACH ACRONYM INDICATES TOP-DOWN

(T) OR BOTTOM-LEVEL (B) OPTIMIZATION, SECOND LETTER DIFFERENTIATES WIRES(W) FROM BUFFERS(B), WHILE “SZ” STANDS FOR“ SIZING” AND

“SN” STANDS FOR“ SNAKING”. GRAY HIGHLIGHTS INDICATE WHETHER SKEW ORCLR WAS THE PRIMARY OPTIMIZATION OBJECTIVE.

V. EMPIRICAL VALIDATION

To validate our proposed techniques, we first present results
on ISPD‘09 benchmarks with detail comparison to state-of-
the-art academic clock network synthesis tools according to
the contest protocol, then discuss the significance of specific
optimizations used by Contango, and then evaluate the scala-
bility of our C++ implementation on larger benchmarks from
our industry colleagues. We measured runtimes on a 2.4GHz
Intel QuadCore CPU running Linux, similar to CPUs used at
the ISPD contest.
ISPD‘09 benchmarks include seven 45nm chips up to
17mm× 17mm in size, with up to 330 selected clock sinks
[29]. Table V compares results of our software Contango to
the top three teams of the ISPD‘09 clock-network synthesis
contest. On average, Contango reduces CLR by2.15×, 3.99×
and 2.35× versus contest results by NTU, NCTU and U.
of Michigan respectively, excluding failures of NTU and
NCTU on benchmarks with many obstacles. All results are
within the capacitance limits, but Contango nearly exhausts
the limits as a part of its strategy. On ISPD‘09 benchmarks,
maximum sink latency averages 1120ps, while the average
number of composite-buffer locations is 223. A clock tree built
by Contango is shown in Figure 4.

More recent results for ISPD‘09 benchmarks from ASP-
DAC‘10 [21], [23], [27] are summarized in Table VI. The
results in Table VI show that Contango outperforms NTU
and NCTU by skew and CLR. HKPU [23] claims a 20%
advantage in CLR, but more than doubles nominal skew.
Another interesting aspect of the HKPU work is that they rely
on SPICE very little in their optimizations and instead use
the Elmore delay model, which explains their low runtimes.
The algorithms in [23] focus entirely on the optimization of
nominal skew, which does not explain the results — high
nominal skew and low CLR. As the authors of [23] have
kindly provided their clock trees on our request, we observed
that those trees use very large buffers at the top levels of
the tree (including but not limited to the trunk) and small
buffers toward the sinks. This strategy minimizes the impact
of supply voltagevariations, but makes it more difficult to
optimize nominal skew given a limited capacitance budget.
Significance of individual optimizations. Several optimiza-
tions we have implemented were superseded by more powerful
techniques. For example,skew reduction by buffer insertion
was unnecessary and undermined the robustness to variations.
However, it can be used as a last resort when detours around

obstacles introduce extremely high skew. Our wiresizing can
be refined, but probably not beyond the accuracy of subsequent
wiresnaking. In practice, wiresnaking is very limited, so as to
preserve the routability of signal wires (unless clock wiring is
given a dedicated metal layer). Dangling wires, used by NTU
instead of wire snaking, would be even less acceptable.

To further study the relative significance of optimizationsin
Contango, we show in Table IV the impact of removing each
skew optimization step from the flow. It can be seen that each
step is necessary to achieve competitive results. Removing
top-down wiresizing effects the greatest impact because this
optimization offers the greatest range, and subsequent opti-
mizations cannot fully compensate for its omission.

ispd09f12 Full flow w/o TWSz w/o TWSn w/o BWSn
TWSz -58.11ps - -58.11 -58.11
TWSn -4.740 -33.51 - -4.740
BWSn -0.773 0 -2.494 -
Skew 2.611 14.92 5.633 3.384

TABLE IV

THE ‘FULL FLOW ’ COLUMN SHOWSskew changeAT EACH STEP IN THE

CONTANGO FLOW, AND THE FINAL SKEW. ACRONYMS ARE DECODED IN

THE CAPTION OFTABLE III. SUBSEQUENT COLUMNS SHOW THE IMPACT

OF REMOVING ONE OPTIMIZATION. THESE RESULTS ILLUSTRATE THE

rangeOF EACH OPTIMIZATION AND ITS impact on final results.

Scalability studies. The ISPD‘09 contest was limited to
unrealistically small numbers of sinks due to limitations of the
open-source ngSPICE software [32] it relied upon. To evaluate
the scalability of our optimizations, we replaced ngSPICE
with industry-standard HSPICE software [33].2 Working with
a recent Texas Instruments chip sized 4.2mm× 3.0mm, we
identified locations of 135K sinks and randomly sampled them
to create a family of benchmarks. For this experiment, our
algorithm used groups of large inverters instead of groups of
8 parallel small inverters, improving runtime eightfold atthe
cost of increasing CLR and skew by 1-2ps and increasing
capacitance by 15%. It produced highly-optimized clock trees
with up to 50K sinks. Table VII shows that total capacitance
scales linearly with the number of sinks, and skew remains
in singleps. The number of HSPICE runs grows very slowly,
but HSPICE remains the bottleneck.

2The numbers produced by ngSPICE and HSPICE were fairly close, with
the main difference being runtime and scalability.
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CONTANGO(THIS WORK) NTU NCTU U. OF M ICHIGAN
Benchmark 9/10/2009 3/30/2009 3/30/2009 3/30/2009

CLR Cap. � CLR Cap. � CLR Cap. � CLR Cap. �

ispd09f11 13.36 99.61 6488 26.71 85.53 14764 22.31 89.90 23358 32.29 73.86 3892
ispd09f12 15.27 99.99 6564 25.73 84.72 13934 22.18 87.86 14992 32.17 73.45 3944
ispd09f21 17.40 96.74 6673 30.54 80.79 14978 19.61 86.65 26420 34.31 74.30 4587
ispd09f22 12.36 97.43 3618 24.51 81.82 7189 16.38 85.01 9432 30.45 70.01 2005
ispd09f31 12.81 98.29 21379 45.07 73.49 40088 212.0 92.38 1.29 51.34 81.53 17333
ispd09f32 17.92 99.24 12895 36.90 80.14 3566 fail - - 40.32 77.39 10599
ispd09fnb1 13.40 78.38 778 fail - - fail - - 19.84 63.10 477
Average 14.65 95.66 8342 31.57 81.08 15753 58.49 88.36 14841 34.39 73.38 6120
Relative 1.0 1.0 1.0 2.15 0.85 1.89 3.99 0.92 1.78 2.35 0.77 0.73

TABLE V

RESULTS ON THEISPD‘09 CONTEST BENCHMARK SUITE. CLR IS REPORTED INps, CAPACITANCE IN % OF THE LIMIT SPECIFIED IN BENCHMARKS, AND

CPUTIME IN s. BEST RESULTS FROM THEISPD‘09CONTEST AND BEST RESULTS OVERALL ARE SHOWN IN BOLD. RUNTIME IS DOMINATED BY SPICE

RUNS. IT WAS NOT USED FOR SCORING AT THEISPD‘09CONTEST AND CAN BE IMPROVED BY USINGFASTSPICE, ARNOLDI APPROXIMATION, ETC.

CONTANGO NTU NCTU HKPU
Benchmark (this work) [27] [21] [23]

CLR Skew � CLR Skew � CLR Skew � CLR Skew �

ispd09f11 13.36 2.867 6488 19.71 4.478 4639 18.77 7.12 30787 12.2 — 180
ispd09f12 15.27 2.611 6564 17.46 4.088 4231 15.5 3.06 27622 10.9 — 213
ispd09f21 17.40 2.738 6673 19.92 3.868 4629 17.04 3.02 33056 12.1 — 210
ispd09f22 12.36 2.227 3618 16.47 3.671 3937 16.25 4.11 19136 9.9 — 113
ispd09f31 12.81 3.91 21379 31.13 4.762 11112 22.63 7.58 66588 13.4 — 777
ispd09f32 17.92 4.594 12895 23.04 4.234 7293 20.59 5.52 49907 11.5 — 420
ispd09fnb1 13.40 3.5 778 15.73 6.798 3719 14.32 3.77 7643 13.8 — 82
Average 14.65 3.207 8342 20.49 4.56 5651 17.87 4.88 33534 11.97 7.72 285

TABLE VI

RESULTS FROMASPDAC’10CLOCK ROUTING PAPERS ON THEISPD‘09 CONTEST BENCHMARK SUITE[21], [23], [27]. RUNTIMES MAY BE FROM

DIFFERENT WORKSTATIONS. CLR AND SKEW ARE REPORTED INpsAND CPUTIME IN s. ONLY AVERAGE SKEW WAS PUBLISHED FORHKPU [23].

VI. CONCLUSIONS

Existing literature on clock networks offers several elegant
algorithms, but does not describe end-to-end solutions to
clock-network synthesis that can handle modern interconnect.
Our work makes several contributions to this end.First,
we develop specialized optimization algorithms necessaryto
bridge the gaps between well-known point-optimizations. Our
emphasis is on robust techniques, that do not require tuning

Fig. 4. The clock tree produced by Contango onispd09f nb1. Sinks
are indicated by crosses, buffers are indicated by blue rectangles.
L-shapes are drawn as “diagonal wires” to reduce clutter. Wires
are colored by a red-green gradient to reflect slow-down slacks, as
described in Section III-B. The impact of wiresnaking is toosmall
to be visible.

and are amenable to embedding into design flows.Second, we
develop an EDA methodology for integrating clock-network
optimization steps.Third, we describe a robust software
implementation, called Contango, that outperforms best results
from the ISPD‘09 contest [29] by a factor of two.3 Fourth, we
scale our implementation to large industrial clock networks.

Based on their strong empirical results, our techniques may
improve timing and power of future ASICs and SoCs [9]. In
CPU designs, our trees can be integrated with meshes [25].
Here, better trees may facilitate smaller meshes and reduce
power consumption, which can be traded off for higher per-
formance or longer battery life in portable applications.

# sinks CLR, ps Skew, ps Latency, ps Cap., pF �, min
200 13.47 2.124 506.8 52.21 2.2 (21)
500 14.84 2.174 528.0 99.53 6.28 (20)
1K 17.53 3.138 543.1 162.3 12.5 (20)
2K 16.56 3.136 543.9 276.1 19.3 (15)
5K 23.20 3.853 538.5 591.1 99.6 (22)
10K 25.54 5.562 538.0 1130 352.8 (23)
20K 32.47 10.46 546.8 2243 1867 (35)
50K 31.52 8.774 545.1 5243 16027 (45)

TABLE VII

SCALABILITY ON TEXAS INSTRUMENTS BENCHMARKS. THE

“L ATENCY” COLUMN REPRESENTS MAXIMUM1.2V LATENCIES.
SPICERUNS ARE COUNTED IN PARENTHESIS.

3The use of two wire sizes, two inverter types, and two processcorners in
the ISPD‘09 contest is not a limitation of our algorithms andmethodology.
Likewise, any accurate delay evaluator can be used, including FastSpice,
Arnoldi approximations, etc.
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