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Abstract

This work addresses a class of optimization problems arising in engineering, where the objective function contains
non-differentiabilities, and yet needs to be minimized analytically. While large classes of non-differentiabilities
can be successfully smoothened by approximations, existing techniques fail to provide a symmetric, smooth
and computationally convenient approximation for the multivariate max function with provable properties.
Our work proposes such an approximation and immediately applies it to a hypergraph placement problem,
previously addressed by heuristic transformation of hypergraphs into graphs. Empirical validation is performed
by comparing our implementations to several optimal but unacceptably laborious methods, including network

flows and linear programming with CPLEX.
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1 Introduction

Objective functions optimized in engineering problems often contain non-linear terms of many variables that
imply analytical minimization procedures. Yet, those terms may be connected through absolutevalue func-
tions, max functions or more general case functions whose non-differentiabilities break numerical stability of
fast analytical methods. For example, dealing with transistor sizing, [20] proposed to minimize (1/A) ln(e*® +
e’®2 4. .. +e ) using Lagrangian relaxation instead of the original function max(z1, 22, .. .,z). [23] addressed
min-wirelength graph placement by empirically linearizing the computationally easy quadratic objective (i.e.,
minimizing the quadratic objective instead of linear, in an iteration). The linear convergence of that method
was shown in [1] which also demonstrated a faster, quadratically convergent Primal-Dual method enabled by
substituting |z; — z;| with \/m for small 8 > 0. [3] formalized this S-regularization, proved a series
of convenient properties and demonstrated applications to convex signal delay models for VLSI interconnects.
Recently, [32] proposed using stochastic penalty functions to achieve a smoothening effect in constrained opti-
mization and proved that under certain assumptions their Primal-Dual algorithm almost surely converges. [4]
studied optimization of a lower semi-continuous extended-valued convex function by smoothening.

In this work, we deal with an application where a multi-variate maz function is the source of problems.
The regularization proposed in [20] implies a large number of [expensive] exponent computations, and the -
regularization implies a rather difficult gradient computation. Moreover, we show in this work that a straight-
forward application of f-regularization leads to a function that is not symmetric in the original variables.
Therefore, we propose a new deterministic p, S-regularization and prove its convenient properties. Empirical
results are produced by applying our new analytical placement algorithm on circuits from the industry.

Analytical placers are increasingly important in physical design as process technology advances and design
complexity increases. The fact that interconnect delays dominate device and cell delays in large netlists entails
a global optimization setting that focuses on the area and performance costs of interconnect rather than
devices. A simple mathematical quantity (wirelength estimate) representing interconnect delay is minimized by
placing numerous shapeless “modules” that represent individual cells, transistors or other design units. They

locate modules (cells or macros) so as to minimize a wirelength estimate representing a cumulative measure



of interconnect delay and utilization; some algorithms also minimize specific timing-critical paths. Placement
solutions must satisfy various combinatorial constraints, e.g., use only prescribed module locations, avoid module
overlaps etc. These constraints are temporarily relaxed for analytical placement and are later taken care of by
specialized code which may itself make repeated calls to analytical placement. For example, a placement with
excessive module overlaps or overutilization of routing resources can be spread out using min-cut partitioning
[26, 25, 12], transportation [29] or force-directed techniques [6)].

In top-down placement, the layout area is recursively split into blocks; cells inside each block are dealt
with under the assumption that all other cells are fixed. Analytical placers do not handle well large macros
with non-trivial geometries [30] and are difficult to apply when insufficiently many terminals lead to numerical
degeneracy. However, analytical placers may be helpful before or instead of min-cut partitioning steps at
middle and lower levels of top-down placement when terminal counts increase due to terminal propagations
from other placement blocks and if timing constraints are considered. Analytical placers are also useful for
quick delay budgeting before non-overlapping and routable placements are available [22]. Therefore, min-cut
partitioning and analytical placement are not direct competitors, but rather complement each other when timing
considerations are important.

Analytical placers typically transform a circuit hypergraph into a graph prior to solving any optimization
problems. Each hyperedge is modeled by a star [23, 21] or a clique [10, 27, 26] of edges. Early algorithms
[27, 26] used squared wirelength objectives since global module placements required the solution to a single
system of equations. However, the squared wirelength objective tends to overemphasize the minimization of
long wires at the expense of short wires; this increases the demand on routing resources, thereby leading to a
poorer layout [16]. Recent analytical placers [23, 1] rely on a linear wirelength objective that is optimized, e.g.,
by iterated approximations with quadratic wirelength objectives [23].

Placement qualities are typically evaluated using the half-perimeter wirelength (HPWL) of the circuit hy-
peredges, however this objective cannot be directly pursued after nets are converted into stars or cliques. In
this paper, we seek to eliminate the divergence from the minimization of HPWL in analytical placers.

HPWL minimization is possible via linear programming (LP) [9, 31], but is too computationally intensive due

to the sizes of the resulting linear programs. Moreover, inclusion of non-linear terms is not straightforward. [22]



addresses convex delay terms and describes a general linearization procedure that constructs piece-wise linear
approximations, but finds it is too costly to solve directly as the complexity of linearizations increases with
required precision.! An optimal algorithm for HPWL minimization based on classic max-flow computation was
proposed by Hur and Lillis [8]. This technique, however, makes the inclusion of non-linear timing constraints [3]
even harder. We thus seek a convex nonlinear approximation to enable easy inclusion of delay terms into
analytical placement formulations.

In this work we

e present a new [smooth] regularization of the multi-variate max function

e prove its mathematical properties, such as convergence to the original function and error bounds

e apply the new regularization to the half-perimeter wirelength function

e propose the first analytical algorithm for half-perimeter wirelength minimization that bypasses traditional
graph models of multi-pin nets and is naturally amenable to non-linear timing terms [3]. Thus the

expensive linearization of delay in [22] can be avoided.

e empirically confirm our approach by developing a “proof-of-concept” implementation that found solutions

within 12% of optimum and outperformed graph-based wirelength minimizations.

Our proposed nonlinear and convex approximation to HPWL is based on the observation that HPWL of multi-
pin nets is a convex, but not everywhere differentiable function with singularities arising from “max” functions.
Based on this observation, we extend the recently proposed function smoothing techniques in [3] for various
VLSI layout problems to make them applicable to HPWL.

Section 2 demonstrates the difficulty of the direct minimization of HPWL due to its non-differentiability
and reviews previous work. Section 3 proposed regularizations that approximate HPWL with arbitrarily small
relative error and enable graph-free HPWL minimization via unconstrained smooth and convex optimization.

Section 4 describes our analytical placer and presents numerical results for industrial testcases in the context

ITheir faster algorithm for a particular delay budgeting problem is rather difficult to implement as it relies on min-cost flows
and graph-based simplex methods.



of top-down placement. Conclusions are given in Section 5. Appendix A proves lemmas about wirelength

computations used in the text.

2 Review of analytical placement

Circuits are represented by weighted hypergraphs Gu(Vi, Eg) with vertices Vg = {v1,v2,- -, v,} correspond-
ing to modules, and hyperedges Ef = {e1, ez, -, en} corresponding to signal nets. Vertex weights correspond
to module areas, while hyperedge weights correspond to criticalities and/or multiplicities. Vertices are either
fixed or free. Hyperedge e, € E connects py > 2 vertices and each vertex v; € V is incident to d; > 0 hyperedges.
pr and d; are respectively called the vertex and hyperedge degrees, and are typically very small. We say that
v; has d; pins, and ej has p; pins, for a total of P = >}, dy = Y., p; pins in the hypergraph. Module

placements in z and y directions are captured by the placement vectors x = (z1,...,y,) andy = (y1,-..,Yn)-

2.1 Hypergraph placement

Let Cy be the index set of hypergraph vertices incident to net e € Eg. The z-direction HPWL estimate is
given by

HPWL,(x) = igleaéck |z; — ;] (1)
en€EH

HPWL is a convez function of x since |z; — z;| is convex for all 4, j. However, HPWL is not strictly convex
and most often has uncountably many minimizers. HPWL minimization requires fixed vertices, with at least
two different locations (otherwise placing all vertices to the same location will achieve an optimal solution with
wirelength 0). Fixed vertices in circuit hypergraph are provided by I/O pads and external pins. The non-
differentiability of the max function disables classic smooth minimization techniques such as Newton method.
It can be shown that any single iteration of the steepest descent will end up in a solution where gradient is not

well-defined and the new steepest descent direction is not easily available.?

In [31], the HPWL estimate is converted into an equivalent linear program (LP) by adding, for each net ey,

2An even bigger problem is demonstrated by a 3-clique of free vertices that is connected to a fixed vertex by one edge. As soon
as all free vertices are located at the same point, no movement of a single vertex can improve wirelength, while moving all three
toward the fixed vertex will lead to the optimal placement.



upper and lower bound variables Uy and Ly. The cost of the net is measured as the difference between the
two, and in an optimal solution each Uy and Ly will be equal to the rightmost and leftmost module locations
of net e,. Each variable comes with p; inequality constraints that restrict U;(L;) to be larger (smaller) than
the locations of every module incident to the net. Thus, n nets and m modules are represented by m + 2n
variables and 2P constraints. While LP returns optimal placements, the large instance sizes effectively preclude

any application to fast placement of large hypergraphs.

2.2 Reduction to graphs

Circuit hypergraphs are typically transformed into graphs in which each hyperedge is represented by a group of
equally weighted edges. The unoriented star model adds a new center vertex and represents the original net by
edges connecting the center to previously existing vertices (modules) [23, 21]. The cliqgue model (e.g., [10, 13])
connects all pairs of vertices (modules) incident to the original hyperedge by edges of non-unit weight.? Clique
models of large hyperedges become prohibitively expensive due to the quadratic edge count. Therefore, large
hyperedges are typically modeled by stars or dropped completely.

Wirelength estimates for individual edges of a graph are weighted and added up to produce a total wirelength
estimate. For an edge that connects modules with abscissae 1 and x2, the most popular z-wirelength estimates
are (a) linear (Manhattan) |z; — z2| and (b) square (Euclidean) (z; — x5)?; the y-wirelength is computed in the
same way and added to the z-wirelength. While both functions are convez, only the square wirelength is strictly
convex when all graph vertices are are reachable from fixed vertices, which guarantees a unique minimizer.

Minimization of squared (quadratic) wirelength

min{3;. ; aij(zi — 2;)” : Hx = b} (2)

(H represents various linear constraints) is the easiest because (see [27, 26]) the unique minimizer is obtained

by solving a single system of linear equations, either positive-definite or symmetric-indefinite depending on

3A shortcut [23] computes the squared wirelength of a p-clique with uniform edge weights % as the squared wirelength of a star
whose center vertex is placed at the center of gravity of its p vertices. In contrast to the general star model, the center of the star
is not an independently placed vertex.



the approach. While good public-domain implementations of linear system solvers are available, the squared
wirelength objective tends to provide lower-quality placements; a comparison by Mahmoud et al. [16] concludes
that the linear wirelength objective is superior.

Linear wirelength minimization also relies on the above reduction of circuit hypergraph to a graph
min{} ;. ; aij|z; — ;] : Hx = b} 3)

Being neither differentiable nor strictly convex, it is not amenable to Newton-type methods. GORDIAN-L [23]
minimization heuristic uses iterated quadratic minimizations

min{Ys j o=t (@f — )" : Hx = b} )
z J

—z

where x”~1 and x” denote the vectors of vertex positions at iterations v —1 and v. A quadratic objective is used
to avoid the non-differentiability of the objective of (3), but the coefficients a;; are updated at each iteration to

approximate the linear wirelength. As an alternative, the regularization of (3)

m}in{zbj aijr/ (z; — xj)2 + 4 :Hx =b} (5)

was proposed in [1] with two solution methodologies: a linearly-convergent fixed point method and a novel
primal-dual Newton method with quadratic convergence. Testing in [1] illustrated tradeoffs in values of 8 > 0
versus time and difficulty. The interpretation of the GORDIAN-L heuristic as a special case of 8 = 0 of a fixed

point method was also provided. The techniques of f-regularization have been further extended in [3].

3 Multivariate regularization for HPWL

Motivated by the convexity of HPWL, we seek a technique for its minimization via smooth convex Newton-type
methods without graph approximations.

For two-pin hyperedges, the S-regularization [1, 3] can be used to approximate edgelength by a smooth



convex function; such an approximation overestimates the original function by at most /3 and used in (5)
to approximate graph edgelengths. In order to apply it to hyperedges of degree > 3 and the HPWL, one
can nest maximum functions, e.g., for a 3-pin net, max{|z; — z3|, |z1 — z3|, |22 — 23|} can be rewritten as
max{|z; — z2|, max{|z; — z3|,max{|zs — z3|}}}, and recursively apply the following regularization:

Example [3]: The function max{a,b} = %“kbl can be regularized with “HrVIezt+e ‘W

a+b—|a—b| _ . h at+b—+/la—b|?+B

, and min{a, b} =

Unfortunately, the derivatives of the resulting regularization are difficult to compute. Moreover, the regu-
larization is not symmetric and will send line search in wrong search directions.

A simple and computationally efficient alternative is available. First, note that we only consider max{}
of non-negative numbers, second, || (a1,a2,...,ar) |loc =max{|ai|,|az|,...,|ar|}, third, the L,-norms ||
(a1,az,...,ak) ||p:(2;?:1 la;|P)L/P converge to the Loo-norm || - [loo @s p — oo. This is illustrated in Fig-
ure 1, where unit-norm curves (“unit circles”) for L,-norms on the plane are seen converging to the the “unit

circle” || (a1, a2) ||oo= max(a, az) = 1.
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Figure 1: Unit-norm curves for Ly-norms.
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Fact 1 For p > 1 and a = (aj,as,...,ax)
(@) llallo<llallpr<llall,< k7 [lalleo
(b) o(a) =|| a ||, is strictly convex and

infinitely differentiable except at a=0

Proof We first establish the inequalities in (a).

max{la], -+, Jag[} = (max{la[P, -, |ax[P})P < (jar[P + - + [ag[?)!/7 implies || a [|lo<[| a ||, for any

p>1
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Figure 2: HPWL(left) for a 3-pin net — max{|z1 — 2|, |21 —1]|, |22 — 1|} over (z1,z2) € [0,3] %[0, 2]. The p-regularization
(right) is (|z1 — @2|? + &1 — 1|” + |22 — 1|” + B)*/P. Here p = 8 and 8 = 1.0¢6.

[lall,>|lal|p+1 can be shown by induction from the case k = 2. Assume positive a;, z and y. The induction
step can now be accomplished by introducing di = (a§ + ...+ a?)'/? and dy = (a5 + ... + a1/ (+D)
for which d; > do holds by induction hypothesis. Then (af + a} + ... + a})*/? > (a} + d&)'/? > (a? +
d)P> (@l 4 dETHY D) > (@b 4 @b L 2TV @HD) | the middle inequality being case k = 2:
(zP + yP)V/P > (gPt! 4 ypt1)1/(e+)  Equivalently (2P + y?)Pt! = (2P + yP)(xP + yP)? > (xPt! + yP )P,
where both sides can be interpreted as binomial with equal number of terms. It now suffices to prove that the
inequality holds term by term (z? + yP)(zP)!(y?)P~¢ > (xP+1)}(yP*t1)P~% (equal constants canceled out), which
follows from (z? + y?) > max{z?,yP} > x'yP~%. This concludes the proof of (a).

The differentiability in (b) can be proven by taking partials, e.g., ngi = paffl(zle |a]-|p)%_1. All n-th
partials will be polynomials of a;,7 = 1..k and (Zle |(lj|p)11_’7l,l = 1..n. The latter have a pole at a = 0 and

are differentiable elsewhere since % — 1 < 0. Strict convexity in (b) can be proven by comparing the Jacobian

to zero. O

To approximate the HPWL of an m-pin net, we enumerate all W pairwise distances of the form z; — z;

and rewrite the HPWL as their Lo,-norm (see Equation 1), then approximate with L,-norms.*
The multiplicative upper bound of (W)l/ P on the overestimation for HPWL of one m-pin net, as given
by Fact 1(a), appears very loose since all W distances cannot be equal unless being 0. Tighter bounds

can be derived given that the Ly,-norm is applied only to vectors, whose coordinates are all pairwise distances

between m points on the real line. Such tighter bounds for our regularization of the HPWL of small nets are

4Nets that entail prohibitively many (W) terms can be handled via the L,-norm taken over edges of a star model with
the center located at the center of gravity of the net’s pins. See Appendix A for a more detailed explanation.



derived in Appendix A, several numerical values are given in Table 1.5

Net size || Upper bounds Maximal overestimation
m loose | tight || p=8 p=16 p=32 p=64
3 3i/p | 2l/p 9% 4% 2% 1%
4 6/ | 47 | 19% 9% 4% 2%
5 wove | etr || 25%  12% 6% 3%
6 1577 | 9t/r |1 32%  15% % 3%

Table 1: Single net HPWL overestimation by p-regularization.
As follows from Fact 1, overestimating max{|a1|, |az|,---,|ax|} by its p-regularization (|ai|[? + |az|? + --- +
|ax|P)'/? removes all nondifferentiabilities except for a = 0. Additional overestimation by A-regularization
(|a1|P + |aa|? + - - - + |ax|? + B)'/P smoothens the function at a = 0.

The resulting approximation of HPWL

|Cn|
HPWL(x) < HPWLTeg(X) = Z (Z |z; — lep + IB)UP (6)
en€En 1,

is a smooth and strictly convex® upper bound on exact HPWL with arbitrary small relative error of approxi-
mation as p — oo and 8 — 0. Figure 2 illustrates the combined p- and S-regularization for HPWL. We note
that restricting p to powers of 2 allows for particularly effective computations.

Our regularization subsumes the one in [3] with an important addition of p — oo (p was defined differently
in [3] and set to 2 for all applications). We set 8 = (BoM)? (cf. [3]) where M is the maximal distance between

fixed terminals and Sy is instance-independent.

4 Experimental validation

To compare to optimal solutions found via linear programming, our tests do not include wvertex spreading,
such as equality constraints in GORDIAN/GORDIAN-L or top-down framework in PROUD. We expect that

improvements in the fundamental analytical engines translate to complete algorithms.

5E.g., for a 3-pin net, the Ly-norm is (|z1 — z2|P + |z1 — z3|? + |z2 — z3|P)1/P. Clearly, the three terms cannot be equal (unless
0). Assume an arbitrary ordering 1 < z2 < 3 and maximize the Ly-norm for fixed z1 and z3: the maximal overestimation 21/p
is reached when z2 is placed on top of either 1 or z3. A similar argument for 4-pin nets yields a tight bound of 41/? even though

there are 6 terms involved in the Ly-norm for a 4-pin net.
6Strict convexity requires that all free vertices be reachable from fixed vertices. Otherwise there will be multiple optimal

solutions, contradicting strict convexity.
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For our proposed HPWL minimization, both the objective and the gradient can be computed analytically, but
the Hessian computations are hard and time-consuming. Given the crucial nature of second order information,
we have implemented the limited memory quasi-Newton method in [14, 18] which uses limited memory BFGS
updates to approximate the Hessian.” Our implementation maintains storage for seven past iterations. Iterations
continue until (i) a prescribed iteration limit (100) OR (ii) the improvement in the objective function is below a
prescribed threshold OR (iii) the gradient norm falls below a prescribed threshold. We use line search developed
by Jorge J. Moré and David J. Thuente for the MINPACK project in 1983. Although not as accurate as a
binary convex line search, the Moré-Thuente is several times faster and has a better cost-performance ratio.

We use five testcases from industry (see Table 2) that are either original (“top-level”) placement instances
or have arisen on further levels of top-down placement.? Test3 through Test5 correspond to placement blocks
at various levels in top-down placement of industrial designs of sizes up to 69K cells. Applying analytical
placement on higher levels is not practical as insufficient number of fixed vertices leads to degeneracy of the

analytical placement model in Section 2. We use the proposed approximation of HPWL in an algorithm called

Instance Modules Nets | Design
Fixed | Free size
testl 76 200 242 276
test2 545 | 2686 | 2840 | 3.2K
test3 2155 | 6739 | 7330 12K
test4 2191 | 3205 | 3835 12K
testb 6545 | 17380 | 20902 69K

Table 2: Testcase parameters. Test3,4,5 are top-down placement blocks sized at 1/2, 1/4 and 1/4 of their complete
designs.

BoxPlace, which we implemented in C++ using the SunPro CC4.2 compiler (-05) and Solaris 2.6 operating
system. During experiments, parameters were set p = 16 and [y = 0.01.

Table 3 shows that BoxPlace produces better placements than graph-based algorithms and is faster. Its global
convergence was tested by running from multiple random initial starting points. Alternatively, we started with

a “one-point” solution placing all vertices into one location. This yielded much better initial wirelength and

"Notably, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) updates are closely related to the DFS (Davidon-Fletcher-Powell)
updates [7], except for a slightly different inverse Hessian approximation. BFGS updates typically perform better and are preferred
for practical applications.

8Several test circuits had disconnected cells not reachable from fixed terminals. To avoid degeneracy and subsequent breakdown
of numerical solvers, we assured that only free vertices reachable from fixed vertices have been passed to the solver. Others have
been placed in the center of the layout to minimize WL.

11



faster convergence to a solution comparable to those achieved in the randomized experiment.

HEURISTIC PLACEMENT ALGORITHMS FOR HALF-PERIMETER WIRELENGTH OBJECTIVE

BoxPlace from random BoxPlace from “one-point” Quadratic Weiszfeld[1]
initial | final WL | CPU® | initial | final WL | +greed x2 | CPU® | WL | CPU® | WL | CPU®
testl [[ 5.73e7 |  6.38¢6 0.4 | 6.72¢6 6.39e6 6.23e6 0.2 [| 7.66e6 0.11 || 6.72¢6 0.15

test2 || 3.08e8 3.25e7 24.4 | 3.51e7 3.11e7 3.01e7 15.0 || 4.20e7 3.75 || 3.51e7 7.12
test3 || 6.27e6 2.36e6 28.5 | 2.69e6 2.32e6 2.21e6 13.8 || 2.75e6 19.9 || 2.67e6 22.4
test4 || 5.37e6 1.49e6 13.1 | 1.91e6 1.44e6 1.38e6 5.8 || 1.61e6 5.4 || 1.78e6 12.9
testd || 3.75e7 2.56e7 45.1 | 1.50e7 1.40e7 1.33e7 33.8 || 1.50e7 72.1 || 1.47e7 87.6

Table 3: BoxPlace algorithm compared to graph-based algorithms by total HPWL (the sum of z- and y-values). Run
times are in seconds on a Sun Ultra-10/300 MHz and averaged over z— and y— to represent expected runtime in
top-down placement.

OPTIMAL PLACEMENT ALGORITHMS WITH HALF-PERIMETER WIRELENGTH
Linear Program Optimal LPSolve2.3w CPLEX 6.5.1 CPUO® Hur-Lillis [8]
rows | cols | non0s || WL(z +y) CPUO primopt | netopt | tranopt CPUOG

testl 1050 512 2250 5.93e6 1.2 0.54 0.34 0.32 X
test2 15602 6602 32500 2.75e7 6 min 31 9.11 10.74 X
test3 21276 9046 45563 1.98e6 8 hr 30 min 2 min 2.2 min 6.58
test4 43486 | 17598 | 93860 1.24e6 1 hr 72 18.44 21.97 48.82
testh || 123648 | 47438 | 265750 1.19e7 >3days 12 hr 12 min 15 min 3.3min

Table 4: Optimal hypergraph placement implementations for the HPWL objective. Run times are averaged over the
x— and y— directions and given in seconds unless indicated otherwise. LPSolve3.2w runs were performed on a Sun
Ultra-10/300MHz, CPLEX 6.5.1 — on an IBM RS/6000 3CT workstation, which measured 1.6 — 1.15 times slower than
the Sun Ultra-10. The Hur-Lillis algorithm [8] ran on a Sun Ultra-1/200MHz that measured 1.4 slower than the
Ultra-10. Optimal costs are sums of z— and y— components. testl and test2 are only available in LEF/DEF format,
thus we could not run Hur-Lillis on them. z— and y— linear programs have the same numbers of rows and columns, the
numbers of nonzeros are averaged.

Table 4 gives optimal placement costs and run times required to achieve those using CPLEX 6.5.1 and aca-
demic implementations: LPSolve 2.3 with enhancements by David Warme and a network-flow-based optimal
algorithm by Hur and Lillis [8].° Optimal costs provide a baseline for comparing heuristics. We observe that on
our instances BoxPlace achieves placement quality within 12% of optimal. This is, of course, not a guarantee
that the same results will be achieved by any other implementation on any other instance, but rather a “proof
of concept”. In general, the results depend on instance structure (entailed by applications), the values of p
and 3 (greater p and smaller 8 tend to give better solutions, but require more iterations and longer runtime)

and convergence criteria (more strict convergence criteria imply more iterations, thus longer runtime and better

9Compared to [31], our linear programs have 50% less additional variables for 2- and 3-pin nets as well as correspondingly fewer
constraints for 2-pin nets.
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solutions). Clearly, those parameters influence the trade-off between solution quality and runtime, and need
to be tuned for particular applications. In our experiments, BoxPlace runs substantially faster than LP-based
implementations and the Hur-Lillis algorithm on larger instances. We also ran a multi-level FM (MLFM) parti-
tioner on the same circuits, and one start was at least five times faster than BoxPlace. Unlike MLFM, our solver
can naturally accommodate additional non-linear terms in the objective function as long as they are convex and

differentiable (or can be regularized).

5 Conclusions

We presented a new, symmetric and efficiently computable regularization (”smoothening”) of the multi-variate
maz-function and proved its important mathematical properties. As an application, we proposed a fast analyt-
ical placement algorithm based on a new approximation of half-perimeter wirelength. Such an approximation
can be arranged to have arbitrarily small error, thus trading solution quality for numerical stability during
optimization.

Our analytical placement algorithm is the first such to minimize half-perimeter wirelength bypassing tradi-
tional net models. Unlike previously known heuristics, it can accommodate convex non-linear delay terms and
produces solutions within 12% of optimum. The advantage of our approach compared to [22] where delay terms
are linearized to apply linear programming, is that the complexity of non-linear approximations does not grow
when better precision is needed.

We implemented a Newton-type optimization algorithm.'® To avoid the difficulties of computing Hessian
information in the context of HPWL minimization, we have adapted a known limited memory quasi-Newton
method [15, 14] which implicitly keeps track of second order information derived from gradient computations.
Comparisons to the authors’ implementation of Weiszfeld algorithm [1] confirms the superiority of quadratically
convergent methods and goes well with comments in [30] that GORDIAN-L is rather slow. Our techniques are
applicable to other objectives, e.g., (trivially) to the piece-wise linear objective in [28].

Among the limitations of our work is the lack of integrated techniques to remove cell overlaps and attention

10Recall that [11] pointed out that “second-order” information is important for handling the clique/clustered nature of circuit
hypergraphs, and encouraged the use of Newton-type methods in conjunction with twice-differentiable approximations.
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to routability. However, these two topic were addressed in recent works on multilevel optimization for large-
scale circuit placement [5] and force-directed macro cell placement [17]. The techniques proposed in [5, 17] are

compatible with methods advocated in this paper.
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Appendix A.

In this appendix we first show the equivalence between the clique and the star model for quadratic wirelength,
which explains our use of the star-model approximation of p-degree wirelength for large nets. Then, we deduce
bounds for approximation error of p-regularization (error bounds for S-regularization were proven in [3] and
can be trivially added to produce error bounds for p, S-regularization).

Consider real numbers {z;}¥_; and an integer p > 1. Define S? = "._ . |z; —z;|P. The following equivalence

i>j
of clique and star models has been pointed out in [23] without proof

Fact 2 Let z. = § Y, 7;, then S%:Ei>j( z;) =k, (z; — z)?

Proof

kz i — Tc) —ka + Zx, —QZ;U,ZJJJ
=(k+1) Zm +2Z$,$1—2Zm —423:,1']— -1 Za: —2Zxx] Z .’Ej)2

i>j i>j i>] >j

()7

P _
Now define g, = maxs  {zi=e, T

Obviously, €5 = 1. Fact 1(a) implies that ¢} > 1 for p > 3.
k-2
Lemma 3 For even p, €2 > (1 + 2522))1/p

Proof Assume sorted order z; < z;y1, fix 21 and 2. Minimize £}, as a function of z;,i = 2..k—1 by minimizing

14



SP. The latter is a smooth strictly convex function, whose unique minimizer zeroes its gradient

oSy _
oy = 2P

It can be seen that setting all z;,¢ = 2.k — 1 to “Jz””’“ zeroes all partials. Indeed, for any i = 2..k — 1, the
summation above has only two nonzero terms p(z; —z1)? = +p(z; — ;)P ~*. However, since ; —z; = —(z; — )
and p — 1 is odd, they cancel out.
For this minimizer S} evaluates to |z — z1|P + 2(k — 2)('”2;“')1’J and max; ;{|z; — z;|} = |zr — 21| O

Lemma 4 £} < (ng [%])1/1’

Proof Not unlike in the previous proof, only need to maximize the strictly convex function S} by varying all k
arguments in a segment between the fixed maximum and minimum. In other words, the function is defined over
a k-dimensional cube. The convexity and compactness of the domain and the strict convexity of the function
imply that its local maxima are necessarily reached at the boundary. Successively applying this fact to the faces
of the k-dimensional cube that make up the boundary, we conclude that all local maxima must be reached in
the “corners” of the cube. In other words, each of k {z;} is either at the minimum or at the maximum. Since
clique vertices are now indistinguishable, St only depends on the number of vertices assigned to the minimal
value ¢. Namely, S; = t(k — t)(max; ; |z; — z;|)? and is maximized when 2¢ = k. For odd k the best integer ¢

are |¥| and [%]. O
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