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Abstract—Classical floorplanning minimizes a linear combina-
tion of area and wirelength. When simulated annealing is used, e.g.,
with the sequence pair representation, the typical choice of moves
is fairly straightforward. In this paper, we study the fixed-outline
floorplan formulation that is more relevant to hierarchical design
style and is justified for very large ASICs and SoCs. We empir-
ically show that instances of the fixed-outline floorplan problem
are significantly harder than related instances of classical floor-
plan problems. We suggest new objective functions to drive sim-
ulated annealing and new types of moves that better guide local
search in the new context. Wirelength improvements and optimiza-
tion of aspect ratios of soft blocks are explicitly addressed by these
techniques. Our proposed moves are based on the notion of floor-
plan slack. The proposed slack computation can be implemented
with all existing algorithms to evaluate sequence pairs, of which we
use the simplest, yet semantically indistinguishable from the fastest
reported [28]. A similar slack computation is possible with many
other floorplan representations. In all cases the computation time
approximately doubles. Our empirical evaluation is based on a new
floorplanner implementation Parquet-1 that can operate in both
outline-free and fixed-outline modes. We use Parquet-1 to floor-
plan a design, with approximately 32000 cells, in 37 min using a
top-down, hierarchical paradigm.

Index Terms—Floorplanning, hierachical design, physical
design, placement, VLSI CAD.

I. INTRODUCTION

WE DESCRIBE the classical floorplanning framework
and compare it to a modern fixed-outline formulation.

A. Classical Outline-Free Floorplanning

A typical floorplanning formulation entails a collection of
blocks, which can represent circuit partitions in applications.
Each block is characterized by area (typically fixed) and shape-
type, e.g., fixed rectangle, rectangle with varying aspect ratio,
an L-shape, a T-shape, or a more general rectilinear polygon, etc
(such shapes may optimize layouts of special types of circuits,
e.g., datapaths). A solution to such a problem, i.e., a floorplan,
specifies a selection of block shapes and overlap-free place-
ments of blocks. Depending on shape constraints, a floorplan-
ning formulation can be discrete or continuous. For example, if
at least one block is allowed to assume any rectangular shape
with fixed area and aspect ratio in the interval (where

) the solution space is no longer finite or discrete. Multiple
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Fig. 1. Example to show that area-minimal placements do not hold for
minimum wirelength objectives. Blocks A and B, connected by 2-pin nets to
fixed pins P1 and P2, respectively. The blocks touch in no optimal solution if
the pins are sufficiently far from each other.

aspect ratios can be implied by an IP block available in several
shapes as well as by a hierarchical partitioning-driven design
flow for ASICs [26], [13] where only the number of standard
cells in a block (and thus the total area) is known in advance. In
many cases, e.g., for row-based ASIC designs, there are only
finitely many allowed aspect ratios, but solution spaces con-
taining a continuum are used none the less, primarily because
existing computational methods cannot handle such a large dis-
crete solution space directly [13]. We point out that in the clas-
sical floorplanning formulations, movable blocks tend to have
fixed aspect ratios, but the overall floorplan is not constrained by
an outline. While several recent works allow for variable block
aspect ratios, the more modern fixed-outline formulation (see
Section I-B) has not been addressed.

Objective functions not directly related to area typically in-
volve a hypergraph that connects given blocks. While more
involved hypergraph-based objective functions have been pro-
posed, the popularity of the half-perimeter wirelength (HPWL)
function is due to its simplicity and relative accuracy, given
that routes are not available. The HPWL objective became even
more relevant [13] with the wide use of multilayer over-the-cell
routing in which more nets are routed with shortest paths.

A fundamental theorem for many floorplan representations,
says that at least one area-minimal placement can be repre-
sented [20]. This does not hold for objectives that include wire-
length because none of the optimal solutions may be “packed”
which implies that more nets can be routed with shortest paths.
Fig. 1 shows a small example that area-minimal placements do
not hold for minimum wirelength objectives. We also note that
lack of incremental move structures in a floorplan representa-
tion is an important weakness of typical topological floorplan-
ners. Thus wirelength has to be calculated from scratch after
each floorplan evaluation. For designs with many of wires, cal-
culating the wirelength from scratch after each move can slow
down the floorplanner considerably [1].

For the remaining part of this paper, we will be dealing with
the area and HPWL objectives only, but even this simplified set-
ting implies multi-objective optimization. Mathematically, best
tradeoffs are captured by the nondominated frontier (NDF), also
known as the Pareto front.
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Definition: A solution of a multi-objective optimization
problem belongs to the nondominated frontier if no other
solution improves upon one of the objective functions while
preserving (or improving) other objective functions.1 Of those
works on abstract floorplanning that address both objectives,
most minimize a linear combination [27], [23], [28] with
arbitrarily chosen coefficients. By a simple corollary of the
definition of NDF, this produces nondominated solutions, most
likely different for different coefficients. Note, however, that
area and wirelength have different dimensions. Given that
net lengths have the same order of magnitude as the and

dimensions of the floorplan itself, areas tend to be several
orders of magnitude larger than wirelengths and path delays.
One can take the square root of the area so that the the terms
become of the same magnitude. However, even if one tries to
relate the area of a region to its perimeter, that relation depends
on the aspect ratio (the rectangle 1 100 has perimeter length
202, and the rectangle 10 10 has perimeter length 40, even
though both have area 100). Since aspect ratio changes in
the course of floorplanning, one cannot come up with a fixed
coefficient. Moreover, net length may be much larger than the
perimeter because of the large number of nets. Here again,
there is no fixed coefficient because the net length changes
during the course of floorplanning and it is difficult to predict
optimal net lengths (some nets may be very short and some
may be very long). The problem is exacerbated, because for
different designs, different coefficients may be required to find
the NDF. In our experiments, area terms dominated wirelength
terms unless highly problem-specific coefficients are used. In
other words, it is difficult to fully automate a floorplanner that
explores nondominated solutions with respect to wirelength and
area objectives. The relationship between linear combination
objectives and the Pareto curve (NDF) is studied in [12]. It
is shown that with a suitable choice of coefficients, any point
on the “lower convex hull” of the NDF can be found. This
suggests a systematic method of modifying the coefficients
to probe the hull and also characterizes the limitations of the
linear combination approach.

To summarize, classical floorplan approaches entail difficult
multi-objective optimization and often rely on representations
that may not capture any minimum wirelength solutions.

B. Modern Fixed-Outline Floorplanning

As pointed out in previous works [13], [4], some of fun-
damental difficulties in classical floorplanning are gracefully
resolved in the context of modern ASIC design. Modern hier-
archical ASIC design flows based on multilayer over-the-cell
routing naturally imply fixed-die placement and floorplanning
rather than the variable-die style, associated with channel
routing, two layers of metal and feedthroughs. Each top-down
step of such a flow may start with a floorplan of prescribed
aspect ratio, and with blocks of bounded (but not fixed) aspect
ratios. The objective is to minimize wirelength subject to: 1)
the fixed floorplan outlines, and perhaps 2) zero whitespace.
Floorplans with no whitespace are called “mosaic” by Hong

1The design of optimization heuristics can be viewed as a problem with at
least two objective functions—runtime and solution quality.

(a)

(b)

Fig. 2. Layout of a modern chip. (a) Actual layout. (b) Abstract floorplan
captured from the layout in (a). Example illustrates the hierarchical nature of
designs and the need to support a hierarchical flow.

et al. [11]. 1) Implies that the whitespace is no longer an
objective, but rather a constraint, because it can be computed
in advance. Modern design flows use hierarchy as a means to
reduce the complexity. Fig. 2(a) shows the layout of a modern
chip. Fig. 2(b) abstracts the actual layout in (a) to generate a
hierarchical floorplan. This example serves to illustrate the
need to support a hierarchical flow.

The modern floorplanning formulation was proposed by
Kahng [13] and is an “inside-out” version of the classical
outline-free floorplanning formulation—the aspect ratio of
the floorplan is fixed, but the aspect ratios of the blocks can
vary. It has not yet been explicitly addressed in the literature,
partly due to the lack of benchmarks. Since our work addresses
this formulation, we reevaluate the relevance of classical
floorplanning results in the new context.

1) Zero whitespace requirement is practical because at
top level (during floorplanning) there are no unused
resources—the space between blocks can be used for
routing, buffers, etc. For example, “buffer islands” are
discussed in [7]. Therefore, whitespace must be allocated
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more carefully. The new formulation makes research on
classical “block packing” more relevant. That is because
all wirelength-minimal solutions in this formulation
can be captured by compacted representations such as
sequence pairs [20], -trees [23], -trees [5], and
corner block lists [11]. In fact, any floorplan with zero
whitespace can be captured by known representations,
because it is “compacted.”

2) Multi-objective minimization of area and wirelength, via
linear combinations or otherwise, is no longer an issue
since whitespace is fixed.

3) Handling blocks with variable aspect ratios appears in-
creasingly important because there may be very few or
no floorplans with a given outline for any given fixed con-
figuration of aspect ratios. A number of works [6], [19],
[21], and [29] handle the floorplan sizing problem, i.e.,
changes of aspect ratios without reordering blocks, by
methods of mathematical optimization (convex linear and
nonlinear programming). However, such methods are dif-
ficult to combine with combinatorial optimization and en-
tail excessive runtimes. For example, [29] cites runtime of
19.5 h for the ami49 benchmark (other works cite smaller
runtimes). Additionally, such approaches entail a mix of
two very different computational engines. The implemen-
tation reported in [11] appears to handle discrete vari-
able aspect ratios by randomized reinstantiation of blocks
based on a set of 16 alternatives.

4) Perhaps, the greatest shortcoming of known approaches
to floorplanning with respect to the new formulation is
the lack of appropriate neighborhood structures, i.e., in-
cremental changes (“moves”) that preserve the fixed out-
line of the floorplan. Notably, every floorplan encoded by
the corner block list (CBL) representation [11] has zero
whitespace with respect to the “rooms” the floorplan cre-
ates (i.e., is “mosaic”), but CBL based moves can change
the floorplan’s aspect ratio considerably.

5) Given that the new floorplanning formulation is more
constrained, we see increased relevance of research on
accommodating application-specific constraints, such as
alignment, abutment, order, regions [28], symmetry [24],
etc.

We conclude that classical floorplanning is largely relevant
to the new floorplan formulation proposed by Kahng [13], how-
ever, the new formulation must be addressed through ways other
than novel representations. This is primarily due to the fact that
known floorplan representations and manipulation algorithms
do not allow effective traversals of the solution space without
violating important constraints, such as the fixed-outline con-
straint discussed in our work. While such representations and al-
gorithms may be proposed in the future, an alternative approach
is to allow temporary violations and either tolerate or fix them.
For example, not every corner block list [11] yields a valid floor-
plan, but the feasibility constraint is clearly stated in [11] and
tolerated by the reported implementation. Constrained modern
floorplanning has also been addressed recently by Feng et al.
[9]. Their work assumes initial locations of blocks to be floor-
planned are available and the techniques are more applicable for
incremental floorplanning. There are a number of works that

do floorplanning with various realistic objectives (congestion,
timing, power, etc). However fixed-outline constraints and the
optimization of the HPWL present a simpler, but necessary part
of practical floorplanning. Thus, we view simplified floorplan-
ning formulations as a useful filter for promising computational
techniques.

Industrial design instances, can be broadly classified into
ASICs, SoCs, and Microprocessor. ASIC chips frequently
contain a handful (1–20) of large macros, a moderate number
(100s) of large multirow cells, and many small standard
cells—up to several million and increasing. ASIC chips typi-
cally have whitespace ranging from 40% to 80%

SoC designs are similar to ASIC designs, but with many more
large macros in the placement area. In extreme cases, the bulk
of the design is concentrated in standard predesigned library
cores, RAMs, etc., with only a small fraction of movable logic
providing minor control functions.

Microprocessor designs are generally laid out hierarchically,
and this approach often leads to many small partitions. Some
of these partitions are small standard-cell placement instances
with very few fixed cells, and a small number of movable cells
( 10 000).

Particularly, note that many current designs are hierarchical
and are designed top-down [14], [16], [8]. As pointed out in
[8], floorplanning is becoming increasingly important for pro-
totyping hierarchical designs. The top level in any hierarchical
design flow may use a variable die. Variable-die floorplanning
is employed in [25] because only one level of hierarchy goes
through their floorplanner. However, fixed-die floorplanning
offers new possibilities. Fixed-outline floorplanning could be
incorporated in a top-down hierarchical flow employing multi-
level floorplanning as described in Section III-F. It can also be
used in an ASIC floor-placement flow [1] to place mixed-size
ASIC designs in a fixed-die context. A methodology to place
standard-cell designs with numerous macros by combining
floorplanning and standard-cell techniques is proposed in [1].
The proposed design flow is as follows:

• arbitrary black-box (no access to source code required)
standard-cell placer generates an initial placement;

• to remove overlaps between macros, a physical clus-
tering algorithm constructs a fixed-outline floorplanning
instance;

• fixed-outline floorplanner, generates valid locations of
macros;

• with macros considered fixed, the black-box standard-cell
placer is called again to place small cells.

This design flow provides a somewhat new “killer application”
for the many floorplanning techniques developed in the last five
years, and fixed-outline floorplanning formulations are relevant
in the fixed-die context which is very popular in ASIC design.
Floorplanning is heavily used in design flows for complex hier-
archical SoC design today. Given the dominance of fixed-out-
line design, our techniques are applicable to many chips that are
being designed today.

In this paper, we study neighborhood structures for the well-
known sequence pair representation. Our proposed slack-based
moves are more likely to reduce the floorplan span in a given
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direction (H or V) than random pair-wise swaps and block rota-
tions used in most works based on sequence pairs. Wirelength
minimization and handling aspect ratios of soft blocks are also
more transparent with slack-based moves.

The remaining part of the paper is organized as follows.
Section II discusses the background on floorplanning and
the sequence pair representation. We introduce the concept
of floorplan slack in Section III, and also discusss better
local-search in the annealing context and special moves aimed
at HPWL minimization and handling soft-blocks using slacks.
Fixed-outline floorplanning and applications to hierarchical
floorplan design is also explained. Section IV presents empir-
ical validation of our work and future directions are discussed
in Section V.

II. BACKGROUND: THE SEQUENCE PAIR

FLOORPLAN REPRESENTATION

An overwhelming majority of floorplanners rely on the sim-
ulated annealing framework [26] but differ by internal floorplan
representations.

The sequence pair representation for classical floorplans of
blocks has been proposed in [20]. Unlike most new graph-based
representations, it consists of two permutations (orderings) of
the blocks. The two permutations capture geometric relations
between each pair of blocks. Recall that since blocks cannot
overlap, one of them must be to the left or below from the other,
or both. In sequence pair

(1)

In other words, every two blocks constrain each other in either
vertical or horizontal direction. The sequence pair represen-
tation is shift invariant since it only encodes pairwise relative
placements. Therefore, placements produced from sequence
pairs must be aligned to given horizontal and vertical axes,
e.g., and . Multiple sequence pairs may encode the
same block placement, e.g., for three identical square blocks,
both , and encode the
placement with straight on top of , and aligned with on
the right.

The original work on the sequence pair representation
[20] proposed an algorithm to compute placements from a
sequence pair by constructing the horizontal (H) and vertical
(V) constraint graphs. The H and V graphs have vertices
each—one for each of block, plus “the source” and “the
sink.” For every pair of blocks and there is a directed edge

in the graph if is to the left of according to the
sequence pair [(1)]. Similarly there is a directed edge
in the graph if is above according to the sequence pair
[(1)]—exactly one of the two cases must take place. Vertices
that do not have outgoing edges are connected to the sink, and
vertices that do not have incoming edges are connected to the
source. Both graphs are considered vertex-weighted, where the
weights in the H graph represent horizontal sizes of blocks, and
the weights in the V graph represent vertical sizes of blocks.
Sources and sinks have zero weights.

Fig. 3. Two sequence pairs with edges of the horizontal (dashed) and vertical
(solid) constraint graphs.

Block locations are the locations of block’s lower left corners.
The locations are computed from the graph, and locations
are computed from the graph independently. Therefore, we
will only look at the computation of the locations. One starts
by assigning location to the source. Then, the graph is
traversed in a topological order. To find the location of a vertex,
one iterates over all incoming edges and maximizes the sum
of the source location and source width. Fig. 3 illustrates the
algorithm on two examples. The worst case and average case
complexity of this algorithm is , since the two graphs,
together, have a fixed number of edges, and topological
traversals take linear time in the number of edges.

We say that a block placement is “representable” (or “can be
captured”) by a sequence pair if there exists a sequence pair
which encodes that placement. A fundamental theorem from
[20] implies that at least one minimal-area placement is repre-
sentable with sequence pair (in fact, there are many). Therefore,
sequence pair representation is justified for area minimization.

Sequence pairs can be used to floorplan hard rectangular
blocks by simulated annealing [20], [21], [27], [28]. The moves
are: 1) random swaps of blocks in one of the two sequence pairs
and 2) rotations of single blocks. Sequence pairs are modified
in constant time, but need to be reevaluated after each move.
No incremental evaluation algorithms have been reported,
therefore, the annealer spends most of the time evaluating
sequence pairs.

The sequence pair representation and necessary algorithms
have been extended to handle fixed blocks [21] as well as arbi-
trary convex and concave rectilinear blocks [10]. Recently, the
original -time evaluation algorithm [20], has been sim-
plified and sped up to by Tang et al. [27], and then
to [28]. Importantly, those algorithms do not
change the semantics of evaluation—they only improved run-
time and lead to better solution quality by enabling a larger
number of iterations during the same period of time. While

-trees [23] and corner block lists [11] can be evaluated in linear
time, the difference in complexity is dwarfed by implementation
variations and tuning, e.g., the annealing schedule. The imple-
mentation reported by Tang et al. [28] seems to outperform most
known implementations, suggesting that the sequence pair is a
competitive floorplan representation.

In our experiments, the simple evaluation algorithm
from [27] performs faster than the -time algorithm
from the same paper. We implement the -time
algorithm using C++ STL maps.2 On ami49 benchmark with

2STL maps are implemented using red-black trees.
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Fig. 4. Slack computation. (a) Floorplan is evaluated left-to-right and bottom-to-top. (b) Floorplan is evaluated right-to-left and top-to-bottom. The slacks for
each block is the difference between its positions in the two evaluations.

49 blocks the -time algorithm is slower than
-time algorithm by a factor of 7 . On a benchmark with

32 498 blocks the -time is slower than -time
algorithm by a factor of 4 . This is primarily due to the sim-
plicity and lower implementation overhead of data structures
used by the -time algorithm. A more recent paper [28]
claims that their advanced -time algorithm
outperforms the quadratic algorithm in practice. Given that it is
considerably more involved, but based on the same principles,
we choose to base our work on the quadratic algorithm, leaving
out a potential speed up.

All three algorithms are based on the following theorem [27]:
the span of the floorplan to which sequence pair
evaluates, equals to the length of the longest common weighted
subsequence of and , where weights are copied from
block widths. Analogous statement about the span deals
with the longest common subsequence of and , where
stands for “reversed” and weights are copied from block
heights. Moreover, the computations of and locations of all
blocks can be integrated into the longest common subsequence
computations.

III. BETTER LOCAL SEARCH

We propose several ideas for improved move selection in sim-
ulated annealing and greedy floorplan optimization. We will
also introduce our contribution in wirelength minimization and
handling soft blocks.

A. Slack Computation

The notion of slack can be used with any of the above men-
tioned sequence pair evaluation algorithms and potentially other
floorplan representations. It is based on the following series of
observations.

• and locations are computed independently.
• In each dimension, the floorplan is constrained by one or

more “critical paths” in respective constraint graphs. A
critical path is a path of blocks that constrain each other
in the same direction and are tightly packed so that any

change in block location must produce overlaps or in-
crease the span of the floorplan.

• In each dimension, the computation of block locations
based on the constraint graphs is mathematically iden-
tical to the propagation of arrival times in static timing
analysis (STA). Formally, STA is performed on an edge-
weighted graph, while the constraint graphs are vertex
weighted, However, this difference is superficial since a
vertex-weighted graph can be trivially transformed into an
edge-weighted graph, e.g., by distributing vertex weights
to incident edges, or otherwise.

• After the span of the floorplan and locations of
blocks are known, one can perform a symmetric compu-
tation of locations in right-to-left direction, assigning lo-
cation to the sink vertex. This will be analogous to the
back-propagation of required arrival times in STA.

• By analogy with STA, the difference between the two lo-
cations computed for each block—slack—is related to the
“most critical path” on which this block lies. In particular,
zero slacks are always associated with paths that constrain
the floorplan. Negative slacks are impossible as long as
blocks do not overlap.

Slacks can be computed with any sequence pair evaluation
algorithm that can work in left-to-right and right-to-left modes,
which includes all algorithms we are aware of. Fig. 4 shows
floorplan evaluations for the same sequence pair in bottom-left
mode and top-right mode.

A fast algorithm for floorplan evaluation using
sequence pairs was presented by Tang et al. [27]. It is based
on longest common subsequence (LCS) computation. The
positions of blocks are recorded in left-to-right (bottom-to-top)
order. The algorithm works as follows. Assume the blocks
are , and the input sequence pair is . Both
and are a permutation of . Block position array

, is used to record or coordinate of
block , depending on weight equals to the width or height
of block respectively. To record the indices in both and
for each block , the array is constructed
to be and if .
The array is used to record the length of candi-
dates of the LCS. The actual algorithm for LCS computation is
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Fig. 5. Pseudocode for LCS_ORIG. (X;Y ) is the input sequence pair. The computation is in left-to-right mode.

Fig. 6. Pseudocode for SP_EVAL_ORIG. It computes the location of blocks in bottom-left mode. xSize and ySize are the floorplan span. widths[1 � � �N ] and
heights[1 � � �N ] hold the dimensions of blocks.

Fig. 7. Pseudocode for SP_EVAL_REV. It computes the location of blocks in top-right mode. SP_EVAL_REV reverses the two sequences of the sequence pair
before calculating the LCS.

shown in Fig. 5. To calculate the actual positions of the blocks
two calls to LCS_ORIG are made. X-positions are calculated by
initializing the weights array with the widths
of blocks and invoking LCS_ORIG( ). Y-positions
are calculated by initializing the weights array with
the heights of blocks and invoking LCS_ORIG( ),
where is the sequence in reversed order. Fig. 6 shows
the pseudo code to evaluate the floorplan in bottom-left mode,
given a sequence pair using LCS computations.

To evaluate the floorplan in the top-right mode we need to
evaluate the LCS of the two sequences in right-to-left order.
This can be achieved easily by reversing the two sequences and
invoking LCS_ORIG. The pseudo code for SP_EVAL_REV is
presented in Fig. 7. It reverses the two sequences, and
before calling the original algorithm. To compute the slacks we
need the locations of the bottom-left corner of each block when
evaluating the sequence pair in top-right mode. Lines 12 through
16 of SP_EVAL_REV achieve this.
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Fig. 8. Pseudocode for EVAL_SLACKS. xlocs, ylocs, xlocsRev, ylocsRev hold the positions of blocks.

Fig. 8 presents pseudo code for the procedure
EVAL_SLACKS, which evaluates slacks for each block in
the design, given a sequence pair . As illustrated in
Fig. 9(a), the slack of a block in a floorplanning instance
represents the distance (in a particular dimension) at which
this block can be moved without changing the outline of the
floorplan. Blocks with zero slack in the Y dimension are shown
in Fig. 9(b). Such blocks must lie on critical paths in the
relevant constraint graph. Fig. 10 annotates blocks in a given
floorplan with horizontal ( ) and vertical ( ) slacks.

The above mentioned code which evaluates slacks for
blocks depends on the fact that LCS_ORIG( ) and
LCS_ORIG( ) procedures give the same value for the
length of the lcs of two sequences and . We formalize this
as a lemma below. The following notation is used;
is the longest common subsequence of sequences and and

is the length of .
Lemma 1: For two weighted sequences and the length

of lcs of and is the same as the length of the lcs of reversed
sequences and .

Proof: The weights of individual blocks in the two
sequence pairs and are the same. Thus
by definition of lcs, and also

. Alternatively, as explained in
[20], for a sequence pair representing a
floorplan, is the length of the longest path in the horizontal
constraint graph (HCG) implied by the sequence pair. i.e., the
width of the floorplan. Reversing the two sequences to form the
sequence pair ( ) amounts to reversing the direction of
all the edges of the directed acyclic graph (DAG) represented
by the HCG. Since the longest path in this new reversed HCG
is the same as the old HCG, the length of lcs of ( )
should be the same as the length of the lcs of ( ). Similar
argument holds for the vertical direction.

We now prove that the slacks for a block cannot be negative
and blocks with zero slacks lie on the critical path.

Theorem 1: a) Slacks for a block cannot be negative.
b) A block has zero slack in a particular dimension if it lies

on the “critical” path in that dimension.
Proof: a) We will base our discussion on the x slack of

a block. As computed by procedure EVAL_SLACKS (Fig. 8),
x slack for each block is the difference in the x locations of
the block calculated in top-right mode and bottom-left mode.
Let be a block in the design. The sequence pair
can be represented as . Similarly,

(a)

(b)

Fig. 9. (a) X-slack of blocks B and C is shown by the solid arrow. Slack is
the distance a block can be moved in a particular dimension without increasing
the area of the floorplan. (b) Blocks with zero Y-slack are shown. They lie on a
“critical path” marked with arrows.

the reversed sequence pair can be represented as
. The x location of block in the

bottom-left mode is given by, [28].
Similarly the x location of block in top-right mode is given

by

where is the x span of the floorplan, i.e.,
. According to Lemma 1,

. Thus, can be
written as
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(a)

(b)

Fig. 10. A slack-based move in a highly suboptimal floorplan of benchmark hp. x and y slacks are shown as percentages of the respective spans of the floorplan.
Module cmp3—the smallest with zero y slack—is moved upon the module cntu, which has the high y slack. This move improves vertical span and slightly
worsens the horizontal span, but the floorplan area is reduced.

For two sequences and , if
, then

the lcs of sequences and is ,
and the length of this {\rm lcs} is

, which cannot be greater than . Thus,
by contradiction, the following inequality holds:

We have proved that for any block , its x slack is nonnegative.
This holds true for the y slack too.

b) As above, we base our discussion on the x critical path.
A critical path of a floorplan in x dimension is defined as the
longest x path of the floorplan. There can be more than one crit-
ical path. However the length of all the critical paths is the same
and equal to the , where is the sequence pair
representing the floorplan. If a block lies on the x critical path
then is a part of the lcs of and . As shown in Theorem
1-a), the following equality holds:
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Fig. 11. Pseudocode for PackSoftBlocks. PackSoftBlocks is called once with direction = horizontal and once with direction = vertical.

Similarly, if a block has zero x slack, then

is on the longest path or the critical path.

The same argument holds for blocks on the y critical
path.

Based on the above theorem we have the following corollary.
Corollary: If a move improves the floorplan span in x or y

direction then it must involve some 0 slack blocks.
Proof: Let a move improve the x span of the floor-

plan represented by sequence pair . Let be
the sequence pair after the move. could be of any type. e.g.,
swap, rotate etc. If the move does not involve any block
on the x critical path, then be-
cause is also a subsequence of . Thus, a
move must involve a block with zero x slack in order to
improve the floorplan’s x span. Similar result holds for the y
direction.

B. Slack-Based Moves

Once slacks are known, they can be used in move selection.
Both the timing analysis interpretation above and the common
subsequence interpretation from [27] imply that if a move
(such as pair-wise swap) does not involve at least one block
with zero slack in a given dimension, then the floorplan span in
that dimension cannot decrease after the move. This is because
such a move cannot improve critical paths or, equivalently,
LCS. Therefore, we bias move selection toward blocks having
zero slack in at least one dimension. Of those blocks, the ones
with large slack in the other direction are potentially good
candidates for single-block moves, such as rotations, and more
gradual aspect ratio changes,—discrete or continuous—can
be chosen efficiently. Blocks with two-zero slacks, especially
small blocks, are good candidates for a new type of move, in
which a block is moved simultaneously in both sequence pairs
to become a neighbor of another block (in both sequence pairs,
and thus, in placement). Namely, we attempt to move a critical
block next to a block with as large slacks as possible,
since large slacks imply that whitespace can be created around

(more precise conditions can be written, but will still be

heuristic). Fig. 10 illustrates such a move. The following
example illustrates the four possible ways of moving a block
close to another by manipulating the sequence pair.

Example: Consider the five-block sequence pair
. We wish to move block

close to block in the floorplan. This can be done in four ways:
• (e is to right of a);
• (e is to left of a);
• (e is below a);
• (e is above a).

In addition to changing the sequence pair, our implementa-
tion changes block orientation and aspect ratio based on current
slacks. We observe that [22] already suggested the analogy with
STA in the context of field programmable gate array (FPGA)
placement. However, their algorithms are rather different and
explicitly rely on H and V constraint graphs, while our proposed
algorithms do not.

C. Handling Soft Blocks Using Slack Information

In a floorplanning instance, soft blocks have a fixed area
but an aspect ratio which is variable between certain prede-
termined limits. We added slack-based move types to change
aspect ratios of soft blocks. During annealing, at regular inter-
vals, a procedure called PackSoftBlocks is invoked to shape the
soft blocks to improve the area of the total floorplan. PackSoft-
Blocks adopts a greedy approach. A block with low (prefer-
ably zero) slack in one dimension and high slack in the other di-
mension is chosen. The height and the width of such a block is
changed within allowable limits so that its size in the dimension
of smaller slack is reduced (to increase the slack). Such moves
are greedily applied to all soft blocks in the design. Fig. 11 gives
the pseudo code for the greedy procedure PackSoftBlocks.

D. Wirelength Minimization

In classical floorplanning, the global objective is to minimize
wirelength and total area of the design. This implies multi-ob-
jective minimization. Typically, most simulated annealing based
floorplanners use a linear combination of area and wirelength
as an objective for the annealer. In our floorplanner, we too use
a linear combination of area and HPWL to evaluate annealer
moves. Since area and wirelength have different dimensions
they need to be normalized to give a reasonable linear combi-
nation. In our implementation, the area term is normalized by
the total area of all blocks, and the wirelength term is normal-
ized by the current wirelength of the floorplan at every move.
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The term in the simulated annealing algorithm is calculated
as follows

is the linear weight attributed to the HPWL term
and its value is between 0 and 1. During the annealing, all moves
for which is negative are accepted. All moves with a positive
are accepted if ,
where is a random number between 0 and 1. Thus the
probability of accepting a bad move decreases as is
reduced.

Additional moves are designed to improve the wirelength. For
a given block , we calculate, using analytical techniques, its
“ideal” location that would minimize quadratic wirelength of
its incident wires.3 We determine the ideal location of
block which minimizes the following function

The ideal location of block is simply the average
of the position of all modules connected to block . We then
identify the block closest to the ideal location. This is done by
expanding a circle centered at the ideal location and identifying
the closest block . We then attempt to move block in the
sequence pair so that in both sequences it is located next to . As
explained in Section III-A, we evaluate the four possible ways
to do that, and choose the best. Thus an attempt is made to move

close to its ideal location to minimize quadratic wirelength.
Another type of move attempts to minimize both the floorplan

size and wirelength objectives at the same time. Find a block
closest to the ideal location of the chosen block such that the
block has large slack in at least one dimension. Depending
on whether has a large slack in the X dimension or in the Y
dimension, we place with a horizontal relation or a vertical
constraint relative to , respectively. Empirical measurements
confirm that adding the proposed move types improves final
floorplans.

E. Fixed-Outline Constraints

Fixed-outline floorplans enable top-down design of very
large scale ASICs and SoCs. Fig. 12 shows the result of a
floorplan with pure area minimization without any fixed outline
constraints. The whitespace achieved is 7.75% with an aspect
ratio of 3.22 : 1. However this floorplan can be completely
useless for a situation where 1 : 1 aspect ratio is imposed by a
higher level floorplan.

The following notation will be used in our floorplanning for-
mulations. For a given collection of blocks with total area and
given maximum whitespace fraction , we construct a fixed out-
line with aspect ratio .4

3Analytical techniques are used because they are fast and easy to implement.
4The restriction of � � 1 is imposed without loss of generality since our

floorplanner can change orientations of individual blocks.

Fig. 12. A floorplan with 100 blocks, generated without a constraining outline,
has aspect ratio 3.22 : 1.

Aside from driving the annealer by area minimization, we
consider the following objective functions:

1) the sum of the excessive length and width of the floorplan;
2) the greater of the excessive length and width of the floor-

plan.
Denoting the current height and width of the floorplan by and

, we define these functions as

The choice of these functions is explained by the fact that the
fixed-outline constraint is satisfied when and only when each of
those functions takes value 0.0 or less. For this reason we cannot
consider the product of fixed outline violations.

Our experiments show that a classic annealer-based floor-
planner is practically unable to satisfy the fixed-outline
constraints (for all of the three above-mentioned objective
functions). Therefore we additionally bias the selection of
moves. Fig. 13 shows the evolution of the fixed-outline floor-
plan during simulated annealing with slack-based moves. The
scheme works as follows. At regular time intervals during the
simulated annealing the current aspect ratio is compared to the
aspect ratio of the fixed outline. If the two are different, then
the slack-based moves described earlier are applied to change
the current aspect ratio in the needed direction. For example,
if the width needs to be reduced then we chose the blocks in
the floorplan with smallest slack in the direction and insert
them above or below the blocks with largest slack in the
direction. These moves have better chances of reducing the area
and improving the aspect ratio of the current floorplan at the
same time. Through these repeated moves during the simulated
annealing the structure of the floorplan is biased toward the
aspect ratio of the fixed outline. Our techniques also work with
multi-objective minimizations (area HPWL) and handle soft
blocks in designs. As shown in Section IV, our implementation
is successful in satisfying a variety of fixed-outline constraints.
One concern about the intelligent move selection techniques
during simulated annealing is that it may limit the solution
space coverage. In general, these characteristics are necessary
if simulated annealing is to be successful. We interleave the
intelligent moves with totally randomized moves to ensure that
simulated annealing does not get trapped in a local minima.
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Fig. 13. Snap-shots from fixed-outline floorplanning. The number of
annealing moves is fixed, but if the evolving floorplan fits within the required
fixed-outline, annealing is stopped earlier. If at the end of annealing the
fixed-outline constraints are not satisfied, it is considered a failure and a fresh
attempt is made.

F. Hierarchical Layout

Hierarchical design is becoming increasingly attractive as a
way to manage design complexity [18], [15]. It is argued in
[18] that hierarchy is needed for humans, not for algorithms.
The need for hierarchical design makes it imperative that the
whole design flow support a hierarchical design methodology.
We argue that fixed-outline floorplanning is an integral compo-
nent of such a multilevel hierarchical flow. As discussed in [15],
the top level floorplan might need to be fixed early on in the
design cycle to avoid costly iterations later. Once the top-level
floorplan is finalized, the high-level blocks and their shapes im-
pose a fixed-outline constraint on the lower levels of design. A
design team might decide to implement each high-level block
flat, in which case there would be no need for a fixed-outline
floorplanning tool. However, if the design team decides to im-
plement high-level blocks in a hierarchical fashion as well then
fixed-outline floorplanning becomes necessary. With increasing
chip sizes, such a scenario is not unrealistic.

We use our techniques in fixed-outline floorplanning to de-
velop a hierarchical floorplanning flow which is justified for
very large ASICS and SoCs. We employ a simple connectivity
based clustering scheme to create a top-level of hierarchy with
clustered blocks. Each top-level clustered block is soft with as-
pect ratios allowed from 0.75 to 1.5 and has an area equal to
1.15 sum of area of all subblocks. Thus a whitespace of 15%
is allotted to each top-level block, so that Parquet can find a so-
lution satisfying the fixed-outline constraints. The connectivity
based clustering we use, is a multilevel greedy approach em-
ploying a series of passes until the design reduces to manage-
able size. In each pass we group highly connected cells together.
Thus the design size reduces by a factor of 2 in each pass. We re-
move any net that connects cells only within a cluster. More in-
volved clustering schemes, like multiway partitioning, could be
employed for better HPWL minimization. We use these experi-
ments to show that the fixed-outline floorplanner acts as an en-
gine to enable hierarchical floorplanning. The top-level design

is floorplanned without any fixed-outline constraints and the ob-
jective is to minimize area. The top-level clustered blocks im-
pose fixed-outline constraints on the subblocks. Each top-level
block is now floorplanned with these constraints.

IV. EMPIRICAL VALIDATION

We implement a floorplanner based on simulated annealing,
Parquet-1. Runtimes are measured (in seconds) on a 1000 MHz
PC/Intel system that runs Linux. Implementations are in C++
and compiled with .5

A. Annealing Schedule

Parquet-1 mostly follows a geometric cooling schedule.
The initial temperature is chosen to be high enough (i.e.,

) for most designs under consideration.
For a design with blocks, the temperature is decreased by a
factor of every moves, as follows:

At certain deterministically defined temperatures, varies. The
cooling is rapid in the initial phase (low value of ) and very
slow at the end (high value of ). Thus most of the time during
annealing is spent at low temperatures. is changed with tem-
perature as follows

There is also an option to run the annealer for a specified length
of time. In this mode the temperature schedule remains the same
but the number of moves between each iteration changes.

B. Classical Floorplanning Context

Table I compares Parquet-1 to leading-edge floorplanning
results on standard MCNC benchmarks in the area-only mini-
mization context with no fixed-outline constraints. According to
those results, our floorplanner is competitive with published im-
plementations both in terms of final area and runtimes. We note,
however, that all recently reported floorplanners easily achieve
whitespace well below 10%, therefore leaving very little pos-
sible improvement.

Table II shows results for simultaneous minimization of area
and wirelength in a design. Results for different wirelength
weights are presented.

Table III presents the area minimization results for designs
with soft blocks. All blocks have a variable aspect ratio. Table IV
presents the area and HPWL minimization results for designs
with soft blocks.

In Section IV-C, we show that fixed-outline floorplanning is
significantly harder than outline-free floorplanning.

5The C++ source code of Parquet is available on the Web at http://vl-
sicad.eecs.umich.edu/BK/parquet/.
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TABLE I
OUTLINE-FREE AREA MINIMIZATION RESULTS FOR ENHANCED O-TREE (ON SUN ULTRA60), TCG (ON SUN ULTRA60), CBL (ON SUN SPARC 20), FAST-SP

(ON SUN ULTRA 1) AND PARQUET-1 (ON 1000 MHz PC/INTEL SYSTEM). AVERAGES AND MINIMA FOR PARQUET-1 ARE OVER 100 INDEPENDENT STARTS

TABLE II
OUTLINE-FREE, AREA + HPWL MINIMIZATION RESULTS. A LINEAR COMBINATION OF AREA AND HALF PERIMETER WIRELENGTH IS MINIMIZED DURING

SIMULATED ANNEALING. RESULTS FOR DIFFERENT HPWL WEIGHTS ARE PRESENTED. AVERAGES AND MINIMA ARE OVER 100 INDEPENDENT STARTS

TABLE III
OUTLINE-FREE, AREA MINIMIZATION RESULTS WITH SOFT BLOCKS.

SLACK-BASED MOVES ARE APPLIED DURING ANNEALING TO MODIFY THE

ASPECT RATIO OF SOFT BLOCKS. ALL BLOCKS HAVE A VARIABLE ASPECT

RATIO. AVERAGES AND MINIMA ARE OVER 100 INDEPENDENT STARTS

C. Fixed-Outline Floorplanning

The standard version of the floorplanner, without any of the
slack based moves could not solve a single instance within the
fixed outline, although it gave competitive area results. We tried
different objective functions to drive the annealer as explained
in Section III-E. When using the objective of minimizing the
sum of excessive length and excessive width of the floorplan,
the final aspect ratio of the floorplan is biased slightly toward the
required aspect ratio. However, just changing the objective func-
tion was not powerful enough and the floorplanner could not sat-
isfy the fixed-outline constraints for a single instance. This con-
firms the inadequacy of the classical minimum-area (min-area)
floorplanning formulation and algorithms in the fixed-outline
context.

To achieve fixed-outline floorplan, we consider three objec-
tives in terms of excessive height and width as described in
Section III-E (the sum of and the greater of) and the area. We
stop the annealer as soon as it finds a solution satisfying a given

TABLE IV
OUTLINE-FREE, AREA+ HPWL MINIMIZATION RESULTS WITH SOFT BLOCKS.

AVERAGES AND MINIMA ARE OVER 100 INDEPENDENT STARTS

fixed outline. If the current outline is smaller, its aspect ratio
can be different from the aspect ratio of the fixed outline. If the
annealer’s temperature schedule runs out and no satisfying so-
lution is found, we deem this a failure.

We constrained our final solutions to have a maximum white-
space of 15% and tried to achieve floorplans satisfying different
fixed-outlines. Experiments are performed on n100 benchmark
and the results are averaged for 50 runs for each aspect ratio.

Fig. 14 shows plots of: 1) the probability of success of sat-
isfying the fixed outline constraint versus desired aspect ratio
of the fixed outline and 2) the average runtimes for all runs
versus the desired aspect ratio of fixed outline. The plots reflect
the difficulty in satisfying fixed-outline floorplans with given
aspect ratios, which highly depends on the dimensions of the
blocks. As seen from the plots, our simulated annealer fairly
often failed to satisfy the given outline, however, the probability
of success is typically over 50%, i.e., at least five in ten starts
are successful. This consistent rate of success suggests that our
slack-based moves indeed improve local search (simulated an-
nealing without slack-based moves is never able to satisfy the
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Fig. 14. Probability of success and average runtimes for floorplanning
design n100 with fixed-outline constraints performed by annealing with
three alternative objective functions and slack-based moves. The maximum
whitespace for the design is 15%. i.e.,  = 15%. In order to remove noise we
plotted average of 50 runs for each aspect ratio.

fixed outline). Also note that in most of the unsuccessful at-
tempts the final solutions are within 1–2% from the desired out-
line, yet we regard them as failures.

Out of the three objective functions we tried, minimizing the
sum of excessive width and height and minimizing the area is
more successful than minimizing the maximum of excessive
width or height. Finding an explanation of this empirical result
remains an open problem.

When we decreased in our experiments, some fixed outlines
are never satisfied, which may be due to the absence of solutions
with a given aspect ratio and very small whitespace. The plot of
probability of success of satisfying the fixed-outline constraint
for a design(n100) with 12% whitespace, is shown in Fig. 15. As
expected, decreasing worsens the probability of success. The
average runtimes required to satisfy the fixed-outline constraints
also increase with lower .

Fig. 16 shows the plots of probabilities of success, HPWL
and average time versus. aspect ratios for design n100 fixed-
outline constraints in the wirelength minimization mode. The
time taken to satisfy the fixed-outline constraints increases sig-

Fig. 15. Probability of success and average runtimes for floorplanning
design n100 with fixed-outline constraints. The objective function is area. The
maximum whitespace for the design is 12%. i.e.,  = 12%. Probabilities and
runtimes for a design with maximum whitespace of 15% are also provided for
comparison. The probabilities of success with 12% whitespace are significantly
lower compared to those with 15% whitespace. because of smaller  . We
plotted average of 50 runs for each aspect ratio.

nificantly compared to those in Fig. 14, because of the over-
head of calculating the wirelength from scratch for every move.
The probabilities of success decrease a little. However for very
skewed aspect ratios, wirelength minimization suffers. In the
outline-free mode, Parquet achieves an average wirelength of
323 and average whitespace of 10.18% over 50 independent
starts for the design n100. Our experiments with other publicly
available benchmarks (n50, n200, ami49, etc.) produced consis-
tent results.

D. Hierarchical Layout Context

We develop a hierarchical floorplanning flow employing the
fixed-outline floorplanner, Parquet, as an engine. For our ex-
periments we use the publicly available6 ibm06 is a mixed-size
placement benchmark with 32 498 cells, including 178 macros.
The standard cells are of varying widths but similar height and
a modified standard cell placement algorithm which can handle
macros should be employed to place such a design. However,
we perform this experiment to demonstrate the scalability of
hierarchical floorplanning. We consider all blocks to be hard,
thus further constraining the problem. We employ a simple
connectivity based clustering scheme to create a top-level

6The benchmarks are available on the Web at http://vlsicad.eecs.umich.edu/
BK/ISPD02bench/[1].
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Fig. 16. Probability of success, HPWL and average runtimes for floorplanning
design n100 with fixed-outline constraints in HPWL minimization mode. The
maximum whitespace for the design is 15%. i.e.,  = 15%. The probabilities
of success are slightly lower compared to Fig. 14, because of multiobjective
minimization. Also, the wirelength minimization suffers when required aspect
ratios are skewed. We plotted average of 50 runs for each aspect ratio.

of hierarchy with 238 clustered blocks (each top-level block
having approximately 128 blocks). Big macros are kept out
of this clustering. A whitespace of 15% is allotted to each
top-level clustered block. Each top-level clustered block is
soft with aspect ratios allowed from 0.75 to 1.5. The top-level
design is floorplanned without any fixed-outline constraints
and the objective is to minimize area. The top-level floorplan
is shown in Fig. 17(a). The top-level clustered blocks impose
fixed-outline constraints on the subblocks. Each top-level
block is now floorplanned with these constraints. The final

flat floorplan of ibm06 is shown in Fig. 17(b). We achieved
a dead-space of 17.44% in 37 minutes. In comparison floor-
planning ibm06 design flat achieved a deadspace of 55.62% in
1070 minutes. We tried speeding up the flat floorplanning by
using the fast sequence pair evaluation algorithm
[27]. However, as pointed out in Section II,
algorithm performed worse than algorithm. While,
in our experiments we only used a single level of hierarchy,
the flow could be easily changed to handle multiple levels of
floorplanning hierarchy. Also, we considered only area as an
objective, but a linear combination of area and wirelength can
also be considered as an objective. We perform the hierarchical
floorplanning experiment to demonstrate that multilevel floor-
planning is much more scalable than flat floorplanning. Indeed,
floorplanning almost 32K objects flat using the sequence pair
representation would require inordinate amounts of time. The
floorplan obtained by hierarchical floorplanning can further
be compacted using efficient layout compaction schemes or
employing low temperature annealing. However, with close to
32K objects as in our case, it might be too costly to even try low
temperature annealing with the sequence pair representation.
We conclude that in comparison to the flat floorplanner, the
hierarchical floorplanner scales much better in terms of runtime
and solution quality. Thus, hierarchical floorplanning can used
to floorplan a large number of top-level blocks efficiently and
also to support a multilevel hierarchical design flow.

V. CONCLUSION

Our work makes an important step in identifying and eval-
uating fundamental optimization techniques that are successful
for wirelength optimization in large-scale fixed-outline floor-
planning. In perspective, we expect our techniques to be useful
in: 1) floorplanning with more realistic objective functions; 2)
during related optimizations with additional degrees of freedom
such as added logic [re-]synthesis; and 3) in nonclassical design
flows such as virtual prototyping. These extensions will be ex-
plored in our future work.

This work points out that a nonstandard floorplanning
formulation fixed-outline floorplanning is significantly harder
than classic min-area outline-free floorplanning. We implement
an annealing-based floorplanner Parquet-1 that uses a recently
discovered [27] sequence pair evaluation algorithm and study
its performance both in the fixed-outline and outline-free
contexts. We use the concept of slacks in a floorplan for better
local search and also to use it to handle soft blocks. These new
techniques when incorporated into the simulated annealing
framework perform well and achieve an area utilization close
to 99% for MCNC benchmarks within reasonable time. We
also introduce special moves based on analytical methods to
better drive wirelength (HPWL) minimization during simulated
annealing. For the standard formulation, our floorplanner is
competitive, both in terms of runtime and solution quality, with
other leading-edge implementations and represents current
state-of-the-art. However, our implementation experiences se-
rious difficulties in the fixed-outline context until the algorithm
is modified. In particular, more relative whitespace is required
to satisfy an outline of a given area when its aspect ratio is
fixed.



1134 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 6, DECEMBER 2003

(a) (b)

(c)

Fig. 17. Hierarchical Floorplanning of ibm06 design with 32 498 blocks. ibm06 is a mixed-size design and has 178 macros. We use a connectivity based clustering
scheme to reduce the design size at top level to 238 clustered blocks (each top-level block having approximately 128 blocks). Big macros are kept out of this
clustering. All blocks are hard. The top level is floorplanned without any fixed-outline constraints. The top-level blocks impose fixed-outline constraints on the
lower level. The top-level floorplan is shown in Figure (a). The final flat floorplan is shown in Figure (b). 17% deadspace was achieved in 37 m. In comparison to
Fig 17(a) and (b), (c) shows the floorplan of ibm06 obtained by flat floorplanning. 55% deadspace was achieved in 1070 m.

We propose new objectives that more successfully drive
our annealing-based floorplanner to satisfy fixed-outline
constraints. New types of slack-based moves, that may be
applicable to most floorplanner implementations based on
simulated annealing, are introduced. These special moves
performed during annealing provide better control of the
and dimensions of the floorplan. We study the sensitivity
of relative whitespace in the design on the effectiveness of
our proposed methods. We also study the effect on wirelength
minimization when trying to achieve various fixed-outlines.

Our experiments show that classical methods fail for fixed-
outline instances constructed from standard MCNC benchmarks
and other publicly available benchmarks, but when new objec-
tives and slack-based moves are added to our Parquet-1 im-
plementation, it finds acceptable fixed-outline floorplans for a
variety of aspect ratios. We also conclude that minimizing the
sum of excessive width and height is a more successful approach
than minimizing the greater of the two.

We demonstrate a top-down, hierarchical floorplanning flow
with a single level of hierarchy. We are able to floorplan 32 498

blocks and achieve a dead-space of 17.44% in 37 minutes. In
comparison flat floorplanning achieved a deadspace of 55.62%
in 1070 minutes.

We do not necessarily advocate our particular way of doing
hierarchical floorplanning, and plan to study this in our future
work. We also note that large designs can be first partitioned
using recursive bisection, but not necessarily all the way down
to the level of detail where the differences in block sizes and
shapes complicate recursive bisection. Our on-going work [1]
aims to combine recursive bisection and floorplanning tech-
niques in the context of mixed-mode placement. In our on-going
research we are extending the proposed methods to top-down,
multilevel hierarchical floorplanning and related applications to
standard-cell placement with large macro cells.
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