Logic Synthesis and Circuit Customization
Using Extensive External Don’t-Cares

Kai-hui Chang*?, Valeria Bertacco*, Igor L. Markov*T, Alan Mishchenko*
*EECS Department, University of Michigan, Ann Arbor, Ml

fAvery Design Systems, Andover, MA

TSynopsys, Inc., Sunnyvale, CA

*EECS Department, University of California, Berkeley, CA

Traditional digital circuit synthesis flows start from an HDL behavioral definition and assume
that circuit functions are almost completely defined, making don’t-care conditions rare. However,
recent design methodologies do not always satisfy these assumptions. For instance, third-party IP
blocks used in a system-on-chip are often over-designed for the requirements at hand. By focusing
only on the input combinations occurring in a specific application, one could resynthesize the
system to greatly reduce its area and power consumption. Therefore we extend modern digital
synthesis with a novel technique, called SWEDE, that makes use of extensive external don’t-cares.
In addition, we utilize such don’t-cares present implicitly in existing simulation-based verification
environments for circuit customization. Experiments indicate that SWEDE scales to large ICs
with half-million input vectors and handles practical cases well.

Categories and Subject Descriptors: B.H2jfdware]: Integrated Circuits-Besign Aids
General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Circuit customization, don’t-care optimization, logic synthesis

1. INTRODUCTION

Due to the increasing demand for integrated circuits to igewmore functions while con-
suming less power, designing a new chip becomes more anddificalt. One way to re-
duce this design effort is to reuse previously designediitgcsuch as Intellectual Property
(IP) blocks and general-purpose processors. This apprbeatever, may result in designs
with unnecessarily large area and power consumption bedhey are over-provisioned
with respect to the target functionality. On the positivéesisystem performance and cost
may be improved by customizing reused components to thettapgplications and environ-
ment. This novel optimization, which we calésign specializatigrposes a new synthesis
challenge, which differs from traditional formulations the abundance of external don't-
cares. In fact, both academic and commercial synthesis talilable today appear to be

Author's address: Kai-hui Chahg Valeria Bertacco, Igor L. Markov', Alan Mishchenkd, *EECS
Department, University of Michigan, Ann Arbor, MIfAvery Design Systems, Andover, MA,
TSynopsys, Inc., Sunnyvale, CA'EECS Department, University of California, Berkeley, CAméil
{changkh, val eri a, i mar kov}@ecs. uni ch. edu, al anm @ecs. berkel ey. edu

Permission to make digital/hard copy of all or part of thisten@l without fee for personal or classroom use
provided that the copies are not made or distributed forfppotiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead @aatice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

(© 2010 ACM 1529-3785/2010/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010, Pages 120.

2 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

structured and optimized to extract optimization oppattes from small, localized sets
of external don’t-cares. While this approach succeeds dnstraam synthesis instances,
it does not perform well on the type of instances generatdddarcontext of design spe-
cialization and cannot handle some cases at all. Our expatahstudy revealed that the
performance of existing tools, such as Espresso [RudelBandiovanni-Vincentelli 1987]
and some commercial synthesis tools, greatly deteriovettes extensive don’t-cares are
added. In addition, several other tools, such as ABC [ABC72@dd commercial tools,
do not handle our problem instances at all, or do not provpkeification formats for
this situation. The latter problem is especially seriousaose without a simple and effi-
cient way to represent don’t-cares for synthesis toolsattogtion of circuit-customization
methodologies will be much more difficult.

In this work we address two types of synthesis problems imptiesence of extensive
external don’t-care sets. The first type assumes that tleeteamns are known and repre-
sented using a truth table while the circuit structure isnavin. To solve this problem, we
propose CleanSlate and InterSynth algorithms that syizéaéise truth table from scratch.
The second problem type assumes that an initial circuitidiresxists for customization.
To solve this problem, we developed a FastShrink algoritihich takes as input an op-
timized design andeducest based on the specified don't-care set. Note that FastShrin
might find optimization opportunities even when appliegaffleanSlate. Our approach
is based on an important insight: extensive don't-caresvaflimple greedy algorithms
to quickly produce a reasonably small netlist, and the rmlisggimization opportunities
can be recovered afterward using more sophisticated syisttezhniques. Since this latter
step does not consider don’t-cares, it can run much fastelearrages existing tools. This
two-step process eliminates the need for a time-consunmang-dare optimizer, yet it is
still capable of generating high-quality netlists. Ourassat contribution is a methodology
that automatically extracts don’t-care information froxmséing verification environments,
which can be either a direct test or a constrained-randaimeesh, for circuit customiza-
tion. In this way, designers do not need to encode don'tscaxglicitly, which is often
difficult and time-consuming. We integrated these techesgua our tool, calleSWEDE
(Synthesis Within an Extensive Don't-care Environment)@@g et al. 2009]. In our ex-
periments we performed synthesis from truth tables wittdalon’t-care sets and observed
SWEDE completing ten times faster than state-of-the-artt®sis tools while producing
comparable or smaller circuits. We have also used SWEDEdtwmize circuits with up
to 30K gates and half-a-million input vectors in under twairgon a single processor in
most cases.

SWEDE's high performance enables several new synthesigafpns and enhances
many others, including (1) input constraint synthesis fautation; (2) acceleration of
the most-frequent computation in a unit [Austin et al. 200&kshminarayana et al. 2001,
Verma et al. 2008]; (3) customization of third-party IP campnts in an System-on-Chip
(SoC); and (4) support for graceful wear-out of electroregides [Wagner et al. 2006].
Applications in category (1) can solve current engineepirablems, while the others pro-
vide new system design paradigms. Our techniques may helessla wide range of
emerging concerns in IC design, including increasing \aifon difficulty, unpredictabil-
ity of manufacturing [Wagner et al. 2006], and lower-powgcuits [Lakshminarayana
et al. 2001]. Since our simplified circuits provide corregtauts only within the specified
care set, stimuli outside this realm may not be viable. Wtstt” application domains

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 3

such as multimedia can tolerate these situations well,r@pplications may require an
output flag indicating that a given input cannot be processerkctly. To this end, tech-
nigues for masking timing errors, such as the work by Chougand Mohanram [2009],
can be used to generate the flag.

The rest of the paper is organized as follows. In Section 2eveew previous work
and provide necessary background. We then describe our yrahesis techniques in
Section 3. Our circuit customization flow and proposed aapibns are given in Section
4. Experimental results are provided in Section 5, and 8e@iconcludes this paper.

2. BACKGROUND

In this section we first review relevant previous work. Nexg describe five important
concepts: bit-signatures, Craig interpolation, Shannarogy, simulation and proof by
induction. These concepts are used in our synthesis tasbsignd circuit customization
flows.

2.1 Prior Work on Synthesis with Don’t-Cares

Much research has been developed in exploiting don’t-daregnthesis optimization. A
classic tool implementing some of the most commonly-useltttigiues is Espresso [Rudell
and Sangiovanni-Vincentelli 1987]. Although other morplsisticated synthesis tools ex-
ist, such as ABC [ABC 2007] and MVSIS [MVSIS 2005], these fe@pecially on syn-
thesis problems with a small number of don’t-cares. Moreaveir input specification
format makes it impractical to describe a large number oftdrares. For example, a de-
sign that could arise in our problem domain may have 50 ingutisas many as one million
care terms, leaving more than*®@ombinations to be don’t-care terms. In order to specify
such a complex set of don’t-cares, Brayton et al. [2002] pseg the use of an external
netlist to encode them. The construction of such a netlastidver, can be challenging.

In addition to synthesizing from a truth table, it is also gibke to optimize a design
starting from an existing circuit and simplifying it usinget don't-cares via resynthesis
technigues such as rewiring [Yamashita et al. 1996], nodgimg[Plaza et al. 2007] and
multi-level logic optimizations [Matsunaga and Fujita 8980ne major challenge in this
context is the representation and manipulation of suchtetares. For instance, Muroga
et al. [1989] proposed the concept@bdmpatible Sets of Permissible Functions (CSPFs)
which was used by Savoj and Brayton [1990] to optimize mleitel networks composed
of NOR gates. This representation was later improved by ‘thitea et al. [2000] and
becameSets of Pairs of Functions to be Distinguished (SPFE3)e major drawback in
these techniques is that representing the don’t-caresnibersome and the related data
structures are difficult to work with. Traditionally, theden’t-cares are represented by
BDDs, often exhausting all memory resources even for maeeize designs. To address
this problem, Sinha proposed an efficient representatidBRHDs based on graphs that
can be used in logic resynthesis [Yang et al. 2007]. Thisa@ggr improves the memory
profile of SPFDs, but deteriorates the computing time. RigePlaza et al. [2007] relied
on bit-signatures generated by functional simulation tprapimate observability don’t-
cares for node merging, followed by SAT-based verificatibhis approach is faster and
is more efficient in memory than other solutions. Howevetemal don’t-cares were not
used in the optimization. Gorjiara and Gajski [2008] pramba framework to generate
customized circuits and showed that those circuits are nmuate power efficient than
the original versions. Their work demonstrated that IP @métation can be extremely

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

4 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

useful. Nonetheless, their techniques cannot customizergeexisting circuits like we
do. In stead of utilizing don't-cares for circuit optimizat, techniques based on logic
decomposition and refactoring can also effectively rediheesize of a circuit. To this
end, the greedy algorithm proposed by Rajski and Vasudesthgn[i992] is used in our
CleanSlate synthesis flow.

2.2 Craig Interpolation

The concept of Craig interpolation originated in mathen®tiogic in 1957 and has re-
cently become popular in formal verification. In contrasg are going to use it in logic
synthesis.

DEFINITION 1. Consider a pair of Boolean functions,(Ay) and B(y,z), such that
A(x,y) AB(Y,z) = 0, where x and z are variables appearing only in A and B, respelyt
and y are common variables of A and B. An interpolant @, w.r.t. B(y,z) is a
Boolean function | over the common variables y that satigfiesfollowing conditions:
A(x,y) = |(y) and I(y) = B(y,z) [Craig 1957].

Consider an unsatisfiable SAT instance composed of two $atmwsesA andB. In
this case A(x,y) AB(y,z) = 0. An interpolant ofA can be computed from the proof of
unsatisfiability of the SAT instance by the algorithm foundMcMillan 2003] (Definition
2). The resulting interpolant is a single-output multidelogic network represented as an
And-Inverter-Graph (AIG) [ABC 2007]. I1A(x,y) is the on-set of a functiorB(y, z) is its
off-set, andA(x,y) AB(Y, 2) is its don’t-care set, thel{y) can be seen as an optimized ver-
sion of A(x,y) where the don't-cares are used in a particular way to opéimgpresentation
of .

Interpolation is used in formal verification to compute aremspproximation of the
complete set of reachable states [McMillan 2003]. Inteapoh has also been used in
area- and delay-driven technology mapping iKtinput LUTs [Mishchenko et al. 2007].
When applied to technology mapping, interpolation is usegenerate new functions for
the node being synthesized.

2.3 Bit-Signatures and Entropy

Our FastShrink synthesis technique is based on bit-siggggenerated using simulation,
which are defined below. Note that a signature is essentatignal’s partial truth table.
If the input vectors are applied exhaustively, then the afigre of a signal is its complete
truth table.

DEFINITION 2. Given a wire (signal) w in a circuit, computing function f,camput
vectors y, V2 ... \k, thesignatureof w is the bit-vector f (v1),..., f(w)), where fvi) €
{0,1} represents the output of f given the input vector v

The second step of the FastShrink technique (see Sectipedbits short-range op-
timization opportunities in a circuit. Intuitively, sigisawith less information are easier to
optimize. To quickly identify such signals, we uS&annon entropywhich is calculated
as follows [Shannon 1948]:

(1)

#ones #one #Hzeros #zero

Es= ” log, " log

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 5

In the equationks is the entropy of signaturg #onesis the number of 1s in the signa-
ture, and #erosis the number of Os in the signature. Variakls the number of bits in the
signature and is also the number of vectors applied to tloeiitirA largerE means that
the signature contains more information.

2.4 Simulation and Proof by Induction

Simulation is one of the most commonly-used verificationhods: input stimuli are ap-
plied to a circuit’s inputs, and the circuit’s outputs arecked against expected results. In
logic simulation scalar values are applied to the inputs. For example, rigezliand 3 to
the inputs of an adder will produce 5 on its output.simbolic simulationsymbols are
applied to the inputs, and the outputs are logic expres$iersacco 2005]. For example,
applyinga andb to the inputs of an adder will produeet b on its output. Since a sym-
bol can represent all possible values simultaneously, sfiméimulation has much larger
verification power than logic simulation.

One major limitation of simulation-based verification isttit can only check circuit
correctness within the simulated cycles. In other wordsaiit only verify bounded proper-
ties. One way to solve this problem is to use proof by indurcf®anai and Gupta 2007].
The basic idea behind this method is that if the initial Stdtefore simulation are a super-
set of the final states after simulating a certain number ofesy then the properties that
hold throughout simulation are guaranteed to hold unbodiydethe circuit is initialized
to one of those initial states.

3. CIRCUIT OPTIMIZATION WITH EXTERNAL DON'T-CARES

In this section we formalize the synthesis problem desdrigarlier and propose three
circuit-optimization techniques. One shrinks an existieglist, while the other two per-
form synthesis starting from a functional specificationttirtable). We then illustrate our
techniques by example and provide in-depth analysis ofemimtiques.

3.1 Problem Formulation

We formulate the circuit-specialization problem as folbovGiven a circuit, the complete
set of all possible input vectors and their output respof@es®quivalently, a functional
specification in the form of a truth table), we seek to produsenall netlist that generates
the correct outputs for the given inputs. Our solution cdes a combinational flattened
circuit and performs the optimization without any strueiwor other information from the
user. On the other hand, if structural information is a\déan the original netlist, it can
be used to improve quality of results.

3.2 Fast Synthesis based on Truth Tables

In this section we introduce two fast synthesis techniquese8 on truth tables. The
first one, called CleanSlate, greedily expands cubes amdoddorms more sophisticated
resynthesis to minimize the size of the netlist. The secorg] called InterSynth, is based
on interpolation.

3.2.1 The CleanSlate Techniqu@ur specification-based synthesis technique, called
CleanSlate, starts from a truth table and produces a teagpaohapped netlist. The al-
gorithm is outlined in Figure 1: CleanSlate first greedilypards a cube, one literal at a
time, similar to the heuristic used in Espresso (lines 1A3¢ube is subsumed by the ex-

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

6 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

panding cube and is eliminated if its outputs are the samleaa®tof the expanding cube.
The expansion stops when the cube overlaps another cubealiffghent outputs. After
producing an optimized truth table, CleanSlate generatiws-devel netlist (line 4), which
is fed to ABC for further optimization. Using ABC, CleanS#dirst performs fast logic
sharing detection of the netlist [Rajski and Vasudevanyut®02], and then converts the
netlist to an And-Inverter-Graph (AIG) [ABC 2007]. Afterdl it expands 2-input ANDs
in the AIG to multi-input ANDSs to create more opportunities fogic sharing detection,
and performs AlG resynthesis to optimize the netlist. Thecpdure in lines 7-10 is ap-
plied several times to achieve better optimization (thiees$ in our implementation). At
completion, we apply a technology mapping step to produeditial netlist.

flow CleanSlatéTruthTablg

1 foreachrow € TruthTable
2 expand the cube @bw until a different cube is reached;
3 remove other rows in TruthTable subsumeddy;

4 convertTruthTableto a two-level netlist;

5 perform fast logic sharing detection of the netlist witta[ski and Vasudevamurthy 1992];
6 repeal times

7 transform the network to an AIG by 1-level structural haghi

8 expand 2-input ANDs in AIG to multi-input ANDs;

9 perform fast logic sharing detection using [Rajski andudeeyamurthy 1992];
0 perform AIG resynthesis (AIG balancing, rewriting anthotoring);

1 returnnetlistby technology mapping the AIG;

Fig. 1. The CleanSlate synthesis flow.

The rationale behind our solution is that the large numbelooft-cares enables even a
greedy algorithm to generate a reasonably small two-lestish within a short time. We
then bypass a time-consuming two-level optimization psecand instead perform multi-
level synthesis. As our experimental results in Sectiondicate, CleanSlate runs 10X
faster than exiting tools, handles more complex circuitsl, provides comparable or better
synthesis quality.

3.2.2 The InterSynth Techniquénother specification-based synthesis technique is
InterSynth. It is a heuristic procedure that attempts toimire the size of multi-level
logic implementing a given function. There is no guarantes it will find the smallest
or even a relatively good circuit structure, but for most teses in practical applications
(such as interpolation-based model checking), it was fausedul for circuit minimization.
This approach is based on computing multi-output intemmtsiaas shown in the pseudo-
code of Figure 2. The computation begins by dividing the trpatterns into the on-set
and the off-set for each output of the design. Next, the raultput on-sets and off-sets are
converted into AIGs and synthesized to reduce the total mummbAIG nodes. After that,
an incremental SAT problem is solved for each output, byragsgithat the on-set and the
off-set of this output are true at the same time. The proohstisfiability of this instance
is used to derive the interpolant for the output under casiibn. The interpolants for
all outputs are then combined into a single AIG, which is bgstzed to reduce the total
number of AIG nodes. Finally, the AIG is mapped into two-ihgates as described in
Section 3.2.1.

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 7

functionInterSyntiiTruthTable
divide TruthTableinto on-set and off-set for each output;
synthesize shared AIEO for off-sets of all outputs;
synthesize shared AIEL1 for on-sets of all outputs;
for each pair of outputd,1 andf0, of AIGsF1 andFO
derive proofP of f1A f0 being unsatisfiable;
derive interpolant from the proofP;
create shared AIG from the set of interpolant AIG§f };
synthesize AIG to minimize the numbers of nodes and levels;
return netlist by technology mapping the AIG;

© oO~NOOODWNPRE

Fig. 2. The InterSynth synthesis flow

InterSynth differs from [Mishchenko et al. 2007] in thatritérpolates all primary out-
puts of the network rather than one node. For this, we exteadhterpolation procedure
to work for multi-output unsatisfiability proofs derived bglving several incremental SAT
problems. The interface of a SAT solver such as MiniSAT [Bad Sorensson 2003] al-
lows us to specify assumptions for each incremental SAT M#hen the run is proved
unsatisfiable, assumptions are lifted and the SAT solvebeareused. The assumptions
used in the incremental runs express the condition thatnhgeband the off-set are true
simultaneously. This condition is, by construction, uis$etble for the on-set and the off-
set. The resulting interpolant is a multi-output AIG suchttthe function of each outputis
contained in the interval defined by the on-set of this fuorcand the complement of the
off-set.

3.3 Specializing an Existing Netlist

Given an existing netlist, FastShrink uses a two-step m®t@produce a specialized new
netlist. The first step, calleSignalMergequickly merges signals in an existing circuit that
are identical under the given input combinations. The seéaep, calledShannonSynth
performs further optimization using local don't-cares. eTdgorithm of SignalMerge is
shown in Figure 3. It first simulates care-term vectors aed therges signals with identi-
cal signatures. This allows SignalMerge to leverage botiragl and internal satisfiability
don’t-cares to remove redundant gates. Our implementattacts the signal closest to
primary inputs for merging to achieve smaller circuit delAfter the signals are merged,
unconnected gates are removed. To expose additional nyesgportunities, large cells
such as AOI, OAl, etc. are decomposed into smaller gate®r Aftjnals in the netlist are
merged, the netlist can be technology mapped again.

function SignalMergé€Circuit)
simulate vectors to generate signatures;
foreachsignalswith identical signatures
target — the signale signalsclosest to primary inputs
mergesignalsto target;
remove gates with no fanouts;

O WN PR

Fig. 3. The SignalMerge algorithm.

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

8 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

function ShannonSynt{ircuit)

1 simulate vectors to generate signatures;

2 compute the entropy of each signature;

3 foreachsignal whose signature has 20% smallest entropy
4 extract a subcircuit involvingignal as its output;

5 build a truth table using the subcircuits’ inputs and otgpu
6 resynthesize the truth table using CleanSlate;

7 if (resynthesized netlist is smaller)

8 replace the subcircuit with the resynthesized netlist;

Fig. 4. The ShannonSynth algorithm.

Signal merging can remove redundant logic that generateti@l signal functions.
ShannonSynth pushes the optimization further by reimpieimg subcircuits in smaller
structures using don't-cares. To quickly identify subgits with high optimization po-
tential, we use Shannon entropy to guide our resynthedigitirely, signatures with low
entropy contain less information and should be easier tonige. In our experience we
found that for a random subcircuit-extraction techniquprtmduce the same quality as our
entropy-guided approach, 50% more runtime is required.

The ShannonSynth algorithm in Figure 4 first simulates vsdtothe care terms to gen-
erate a signature for each signal. Next, it computes thepytf each signature. To make
sure its resynthesis attempts are worthwhile, the algoritimly tries subcircuits whose
output signatures have small entropy (the bottom 20% ofgiisgures in our implementa-
tion). The key idea in this algorithm is that, instead oftiyito resynthesize the netlist in
the subcircuit, we build a partial truth table using only $circuit’s input and output sig-
natures so that we can exploit don’t-cares. ShannonSyathsaiinthesizes the truth table
using the CleanSlate algorithm. In this step, however, veeHspresso to replace lines 1-3
of CleanSlate to achieve better resynthesis quality. Bhéppropriate in local resynthesis
because the truth tables are small. After an optimized talite is generated, ABC is still
called for further optimization and technology mappinghk new resynthesized netlist is
smaller than the original one, ShannonSynth replaces it.

The goal of ShannonSynth is to find local optimization oppoities by extracting sub-
circuits from the design and optimizing them using don'tesa It can find optimizations
that SignalMerge cannot find. However, runtime of Shannottsgan be considerably
longer than SignalMerge. As a result, SignalMerge shoulthy$ be performed first.
ShannonSynth can then be applied whenever there is spahémaac time left to achieve
further optimization.

3.4 A Circuit Specialization Example

We now illustrate the FastShrink algorithm on a 3-bit rippéry adder. In this example,
input A can only assume values 3, 4 or 5; while input B has &luer 7. SignalMerge first
simulates all possible six input combinations on the giwdshest to produce 6-bit signatures
for all internal signals. The circuit annotated with thergitures is shown in Figure 5(a).
SignalMerge then merges signals with identical signataresremoves all the gates that
are no longer connected (Figure 5(b)). At this point, onlyu8 af the 15 gates are still
needed, resulting in a much smaller circuit.

To further optimize the circuit, we invoke ShannonSynth.isTéxtracts a subcircuit

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 9

SI o
010110

SO 140000

001100 001100 i)
T -B

110011

110011

Al Bl A2 B2
(@
1001t —_ | 1 SO 110000 SL gog114 S2
! 001100 010110 j 011010 101011
L g B Je1D
110011 1110001
3 [ot0101 co
A0BO A 2 B2
S0 110000 S1 111 S2
110011
00 om0 B f) 011010.J1°1°“
110011
1010101 co
A0 AlBI A2B2

(©)

Fig. 5. Ripple-carry adder specialization example: (ajio&l circuit, (b) after SignalMerge, and (c) after Shan-
nonSynth. Allowed input values are 3, 4, 5 (for A) and 1 andor B).

composed of gates g7, g8 and g9 to explore further optinoizati First, a truth table is
built using the signatures of the subcircuit’s inputs antpats as follows:

Al A0 Bl g5]| g9
1 1 o0 1]1
1 1 1 o0]1
0 0 0 0|0
0o 0o 1 1|0
0o 1 0 0o
o 1 1 1|1

We then feed the truth table to CleanSlate for synthesis btadroa new netlist, “g9=A0
& (g5 | B1)", that only uses two gates. Since this resynthesizelishit smaller, it will
replace the original one. Another ShannonSynth run replge¢e g0 with an inverter,
and the final result is shown in Figure 5(c). By using the sigres of the subcircuit
instead of the netlist for resynthesis, we can fully utilifos’t-cares for optimization. This
optimization is not performed by many traditional syntkesiols that only use function-
preserving netlist transformations. Note that among thdd8t-care input combinations,
25.9% are still added correctly.

3.5 Analysis

An important property of FastShrink is that every netlistdification it performs always
preserves the output responses of the given input vectdris.i§ because we operate on

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

10 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

signatures, which are simulated values of the input vect8isce all the changes made
by FastShrink preserve signatures, the output responsedsar preserved. Moreover, we
observe that FastShrink subsumes the comoumstant propagatiotechnique, which is
used when a subset of the signals are constant O or 1. To Biraplireasoning, we assume
that the netlist is decomposed into 1- or 2-input gates, lieitseme holds in the general
case as well.

PrRoOPOSITION 1. SignalMerge followed by ShannonSynth subsumes the ogtiiomgz
produced by constant propagation.

PROOF Since the output of a 1-input gate can only be constant 0 &idnalMerge
connects the output signal to VCC or GND, thus eliminating glate. Given a 2-input
gate, suppose the constant input is the controlling valukefate, then the output of the
gate can only be constant 0 or 1. In this case, SignalMergeepds as the 1-input gate.
Now suppose that the constant input is not the controllingevaf the gate, then the output
of the gate can be either identical or the complement to therahput. If the output is
identical, then SignalMerge connects it directly to the4gonstant input, eliminating the
gate. Otherwise, we build a truth table using the gate’stiapd output signatures and rely
on ShannonSynth to simplify the gate to an invertén

Finally, note also that a SignalMerge pass guarantees ¢histosignals are identical in
the final circuit, since it merges all the signals with ideatisignatures.

Our analysis on how current commercial synthesis toolszatilon’t-cares suggests
that they perform inter-block optimizations by first dissob the boundaries between the
blocks to form a large flattened netlist, and then employegynthesis techniques such
as those introduced in Section 2.1. In other words, they edmxternal don’t-cares into
internal don’t-cares before optimizations are perfornfdthough effective, this approach
has the following drawbacks. First, the block boundariesent preserved after optimiza-
tion, which may make verification difficult, especially whdealing with third-party 1P
blocks in an SoC design. Second, dissolving boundaries snakidficult to use external
don’t-cares because the chip’s environment often dependgpplications and cannot be
modeled easily using a netlist. While state-of-the-artlsgsis tools mostly exploit inter-
nal don't-cares, our work shows how to effectively exploiteznal don’t-cares without
viewing them as internal don’t-cares and without blendingtiple blocks into one netlist.

4. CIRCUIT CUSTOMIZATION FLOW AND NEW APPLICATIONS

In this section we describe flows that reuse existing sinaridbased verification environ-
ments for circuit customization, including direct testsl@onstrained-random testbenches.
Since direct tests provide all the test patterns in the satef the circuit, the techniques
described in Section 3 can be applied directly. However,etones the inputs may only
be partially known. For example, although the program ragrin an embedded system
may be given, its input data may vary at runtime. To addresgttoblem, we propose an
innovative technique that uses the constrained-randdivetesh developed in most design
verification flows as a “synthesis IP” for circuit customipat This approach guarantees
that whatever verified by the testbench will still be coriiedhe customized circuit, even
when some inputs are not given in advance.

This section is organized as follows. We first describe otouif customization flow
using constrained-random testbenches and propose a niéieatEem method suitable for

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’t-Cares . 11

this flow. We then finalize this section by proposing sevepalliaations enabled by our
resynthesis techniques.

4.1 Circuit Customization Using Constrained-Random Testbench

Our circuit-customization flow using constrained-rand@stlbenches works as follows.
(1) Simulate the testbench for a certain number of cyclesadyce a direct test. (2) Use
the techniques described in the previous section to cugeothie circuit. (3) Verify the
correctness of the circuit with respect to the testbenddr &ch circuit modification in
step (2) and only accept changes that passes verification. v@iification step will be
described in Section 4.2.

4.2 \Vferification of Circuit Customization Changes

Although many verification techniques can perform competpiential equivalence check-
ing between two circuits, such as reachability analysis @mabunded model checking
[Ganai and Gupta 2007], they may not be scalable enough Widérday’s designs. To
address this problem, we describe a new algorithm to véré@ygbrrectness of a customized
circuit with respect to a constrained-random testbencle.algorithm is based on symbolic
simulation and bounded model checking, and it utilizes ptyeinduction to achieve com-
plete proof. Due to its bounded nature, the algorithm carpipéied to much larger designs
than traditional techniques. The algorithm is shown in FégéL In the algorithmgktlis
the original circuit,ckt2is the customized circuitb is the testbench amais the number
of cycles to be simulated. Functiaerify then checks itktl andckt2 produce identical
results athecker variablesvithin n cycles under the given constraints, whereas a checker
variable is typically a primary output or a register in thecait. Note that to achieve com-
plete proof, we replace scalar random values in the testbeftt symbols in line 4 to
make sure all possible inputs are verified in our approach.

functionverify(tb, cktl, ckt2, n)
1 initialize the circuit to a known symbolic state;
repean cycles
foreach random valuegenerated irth
replacev with a symbol;
symbolically simulate one cycle;
collect logic expressions generated at checker variables
in cktl andckt2;
7 check equivalency of expressions of checker variables
betweercktl andckt2;
8 if all the expressions are equivalent
9 return true;
10 else
11 return false;

O U WN

Fig. 6. Circuit verification using symbolic simulation anonstrained-random testbenches.

Ideally, initial symbolic state should be the set of all fealole states encoded symbol-
ically. However, reachability analysis may be impossildedven moderate-size designs.

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

12 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

Therefore, in this work we assign pure scalar (over-coimstti or pure symbolic (under-
constrained) values to the state bits depending on how thitssare used. If the verification
algorithm returns false, then we abandon the change matie tirtuit. Although we may
lose some optimization opportunities because part of tte &lits are under-constrained,
this step is necessary to ensure the scalability of our gatifin method. If the verifica-
tion algorithm returns true, then due to the over-consé@istate bits, proof-by-induction
should be used to generate additional rules for the constlaiandom testbench to en-
sure the equivalency betweektl andckt2 for all cycles, and the rules are derived as
follows. Suppose that the initial state is callgidite and the final state is callestate.

If state D state, then no further constraints are needed, ektd andckt2 will produce
identical outputs for all the inputs that can be generatethbyconstrained-random test-
bench if the circuits are both initialized &iatge. On the other hand, iftate C stateg,
then additional constraints must be added to make stiat® is reached evern cycles.
For example, if a pipelined processor is initialized to desta which all general registers
are symbols and all bypass control registers are 0. Fursemae that algorithmerify
successfully confirmed the equivalency betwektl andckt2 for 100 cycles. Then as
long as the program running on the customized circuit makéypass control registers 0
every 100 cycle, both circuits will produce the same outphtste that ifstate N state is
empty, then proof by induction fails and the customizedutiris correct only within the
simulated cycles.

From the analysis above, it can be observed that symbglisatiulating more cycles
will provide more flexibility for circuit customization. Rically, simulating cycles equal to
twice the number of pipeline stages will yield good resuéisduise most inputs will be able
to propagate through the pipeline. Note that if a wire rem8ior 1 throughout symbolic
simulation, then the wire can be replaced by the constadtitds can often initiate a chain
of further optimizations.

4.3 New Applications

In this subsection we discuss some of the new applicaticatsaite enabled by our tech-
niques, including three applications based on circuit ispieation followed by one that
requires synthesizing truth tables.

Acceleration of common-case computations:certain classes of SoC designs include
several instances of a computational module to improve #rallglism of the system.
For instance, this is the case for multimedia SoC where theired output throughput is
achieved by increasing the parallelism of the computattanong CPU designs, a specific
example is the case of the Sun Niagara T1 where 8 proces&swere sharing one Float-
ing Point Unit (FPU). However, due to its poor performancé-ertestbenches, the second
generation processor has been enhanced with 8 FPUs. O&érptlit distribution of com-
ponents embedded in a system is highly skewed for a very setallvhile remaining com-
binations are rare [Schnarr and Larus 1998]. For instanéepbserved that often under
10% of a program’s instructions account for 90% of its exiecutime [Lakshminarayana
etal. 2001]. Hence, SWEDE can be adopted to explore a “BEftan Worst-Case Design”
methodology [Austin et al. 2005], also known as “Common&C@smputation” [Laksh-
minarayana et al. 2001], where one of several units is fulhcfional, and all others are
optimized to only operate correctly for a few commonly-aetwg input combinations.
This approach reduces power and area of the final system. dbamized computation
fails at runtime, a fully-functional module is invoked asack-up. Note that, for this ap-

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 13

proach to be viable, it may be necessary to deploy either etimal checker (validating
the operation results) or a “valid input detection” circus we are planning to explore.
Alternatively, if one is only concerned with correctnessaosmall subset of inputs, faster
circuits are possible as well. For example, the main idesénha et al. 2008] is that much
faster arithmetic circuits can be designed by allowing alkfretion of incorrect results.
In contrast, we focus on circuit size rather than perforneanc

Customization of third-party IP components in an SoC:in order to improve reuse, SoC
designs often acquire some components from third-partgaen In the fourth quarter of
2007, total IP revenue has reached $265.4 million, with avtiregate of 4.1% each year
[EETimes 2008]. Such components are typically embedded iar@ironment that only
exploits a small fraction of their functionality. It is th@ossible to use SWEDE to reduce
the component’'s complexity (and power consumption) baseithe specific environment
in which it is embedded. For example, floating point logic meambedded processor is
redundant if the target application does not require anyifiggoint computation. Manu-
ally removing redundant portions of the design, howevaer,lmadifficult and error-prone.
While some hard IPs are difficult to modify, a large segmettief1B/year IP market con-
sists of soft IPs, such as ARM processors, USB and PCI-Egulegces, etc. The source
code is given to customers unencrypted because design oespeould not agree to put
unknown blocks in their chips. In addition, design housdsroheed to patch possible
problems and better optimize their entire SoC designs mgexf placement and floorplan-
ning. Importantly, such source code can be modified, ancettfeniques in our paper may
lead to new business models — competing on cost by simpgjfgiisting IPs automati-
cally. For example, there are many USB and PCI-Express lperdts for PCs and laptops
that are dedicated to a single function, like WiFi, WiMaxjogover-IP, Dolby 7.1 sound,
etc. Needless to say, such devices do not exercise the baosrprotocol, but the IP on
which they are built may support it. Therefore, to reducedbst, one may automatically
customize the inherited bus IP to a given application. Wéretin not the cost differential
is significant, IP specialization may noticeably reduce @oeonsumption. For example,
Apple iPhone contains the S-Gold2 baseband chipset fromeloifi in which Apple chose
to turn off FM radio support and MMC/SD card compatibilitparently to reduce power
[Walko 2007].

Graceful wear-out of electronic devicesextreme transistor scaling is leading to reduced
silicon reliability, including early device and intercogot wear-out. To overcome the im-
pact of this issue there is a growing need for low-cost rédialesign solution. The use of
SWEDE enables reliability through component sparing [Camtinides et al. 2006], where
spare components can be optimized to provide only bare-hmeionality, sufficient to
keep the system operational in critical aspects until éaced. An example of this spare-
optimization application is discussed by Wagner et al. Bi0@here the authors identify
a small subset of a processor design that must be kept apwahiin order to provide full
system functionality (in this case the spare was part of thegssor itself with acceleration
features excluded). When the original circuit becomesliaiie, it will be replaced by the
barebone spare component to avoid a system-level crash.

Synthesis for fast emulation:in the emulation domain, one common issue is the synthesis
of the input constraints. Emulation systems can apply caim&d-random simulation at
very high performance compared to logic simulation. Howeifethe input constraints
are not synthesizable, then at each clock cycle the emutatist communicate with a

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

14 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

simulating host, incurring a huge performance impact orethalation. At the same time,
input constraints are often written in a high-level langeiéG++, Vera, etc.) and cannot
be synthesized. SWEDE can be deployed by running the randouaiagion only on the
design’s input constraints (and not including the desigelfj. This simulation would
be very fast and generates a set of care terms that SWEDE yh#resizes in a circuit
uploaded on the emulator along with the design. Each eroulatin would use a different
constraint circuit, each synthesized by SWEDE based oratidom stimuli. On the other
hand, the design itself does not need to be resynthesizedd&brrun.

5. EXPERIMENTAL RESULTS

In this section, we use three design examples to evaluataebility of SWEDE in cus-
tomizing circuits: an Alpha processor running real appias, an integer multiplier, and
a DLX processor with constrained-random testbenches. ditiad, we compare SWEDE
with existing synthesis tools to evaluate its ability to thasize truth tables with external
don’t-cares. These tools are Espresso, MVSIS and a comahsigithesis tool. Table
| reports the numbers of primary inputs and outputs, as veelhiial cell count for the
benchmarks used. Benchmarks C1908-C7552 are from ISCA88tHh Alpha and DLX
are processors from the Bug UnderGround project [Bertatab. €007] that implement
subsets of the Alpha and MIPS ISA, respectively. Our expenits were performed on
Linux workstations with AMD Opteron 280 CPUs (2.4GHz) equep with 8GB of mem-
ory.

Table I. Characteristics of benchmarks.

Benchmark Description #In/Outputg #Cells
C1908 16-bit SEC/DED circuit 33/25 461

C2670 12-bit ALU and controller 233/140 | 484

C3540 8-bit ALU 50/22 1060
C5315 9-bit ALU 178/123 | 1057
C7552 32-bit adder/comparator 207/108 | 1187
Alpha 5-stage pipeline Alpha CPU | 3054/3619| 30531
DLX 5-stage pipeline MIPS-lite CPU2127/2160| 14725
Multiplier | 16-bit Wallace tree multiplier 32/32 1938

5.1 Case Studies

Case study 1 (Alpha processor)for this study we ran five applications from the SpecINT
[2000] suite, whose characteristics are summarized ineThbT he processor was synthe-
sized using Cadence RTL compiler with the highest optinoratffort, and was mapped
to a 0.18m library. Since our Alpha processor only implements a subt¢éhe Alpha
ISA, simulation was performed in lockstep with the Simplgacinstruction set simulator
[Austin et al. 2002]. We then use SignalMerge to optimizedineuit based on the stimuli
from each program. Figure 7 and 8 report the final sizes of fitienized designs and the
synthesis runtimes, respectively, achieved after sirmgaitp to half a million instructions.
They indicate that the optimization potential varies frgoplécation to application: for in-
stance, the bzip2 application has a very small stimuli sich we can exploit aggressive

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 15

optimizations on it; while gcc has a much wider span, heritte bptimization can be ex-
tracted. This is aligned with the intuition that bzip2 is &sjalized algorithm applying the
same operations to arbitrary data sets, while gcc’s oper&imuch more complex. This
result suggests that if the program running on a circuit @wm, SWEDE can potentially
reduce its size significantly, generating a much small@udithat consumes less power.
Figure 8 also shows that SignalMerge operates in approgigniatear time on the number
of input vectors in the care set, which enables it to handheptex designs efficiently. De-
signs can be further optimized by ShannonSynth: this stegteater runtime complexity;
however, this is offset by the fact that ShannonSynth oritggdnto consideration small
blocks in a circuit. For comparison, in the figures we alsanstie trend of optimizing for
a constrained-random trace generated by StressTest [Wagake 2005] (diamond-bullet
lines). Its curve indicates that with random inputs, we caly ceduce the circuit by 10%,
even when the number of instructions is as small as 6400. i$hist surprising since,
intuitively, random traces span a much larger fraction ef ¢ircuit's configurations than
real applications, making optimization difficult.

Table Il. Characteristics of SpecINT programs [SpecINT®00

Benchmark| Description Language
bzip2 Compression tool C
gcc Compiler C
mcf Combinatorial optimization C
parser Word processing C
perlbmk Perl programming language C
100%
< P o o
o 90%
§ oo)y — ~B-bzip2
"i 70% v /__‘
o 60% “=e=gCc
5 s0% —
'ﬁ / / =>emcf
40% —l
€ 30% %._4 —@—parser
o
; 20% £ o perlbmk
T 10% -
© o _ﬁ__-_._ —¢o—random

1600 6400 25600 102400 409600
Number of vectors

Fig. 7. Gate count after specializing the Alpha CPU with 8iyferge. 30-90% of the gates can be removed for
applications as long as half-million dynamic instructions

In Figure 9 we show the results when optimizing individuaingmnents in the Al-
pha processor using the gcc application. The blocks weesdualie the instruction fetch
unit (IF), the decode unit (ID), the execute block (EX) and themory access controller
(MEM). The result indicates that the optimization potehiBavery block specific. In par-
ticular, the EX block cannot be optimized well because thecaion unit needs to handle

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

16 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

10000

1000
~m=bzip2

—h—gcc
=>=mcf

=@-parser

Runtime (s)
=
o
o

~+=perlomk
=&—Random

=
o
'

1 T T T |

1600 6400 25600 102400 409600
Number of Vectors

Fig. 8. SignalMerge runtime to specialize Alpha. Runtimeggroximately linear on the number of stimulus
vectors used.

a wide range of input values, making don’t-cares less defse. MEM block also has
very limited optimization potential because it only has 8@8es but has 195 inputs. This
shallow logic structure makes signal sharing difficult.

100%
90%
80% /%
70%
60%)k,/';/ / ‘
50%

20% ././/', —
30% D -

Gate count after optimization

20% =>e=EX —
0% T T T T 1
1600 6400 25600 102400 409600
Number of vectors

Fig. 9. Gate count of Alpha blocks after specialization.

Case study 2 (constant-coefficient multiplier) embedded systems and digital signal pro-
cessors often need to perform simple operations repayitizai et al. 2008; Sarbishei
et al. 2009]. For example, consider a portable electroniasmeement device that must
convert between US units and metric units while keeping paeasumption low. To keep
the circuit simple, an integer multiplier can be used, attjgghe decimal point afterward.
To support conversions between inches, feet, miles andreetee needs to be able to
multiply by the following six constants: 2.54, 30.4, 1.6ddheir inverse. For the sake of
this example, we made the assumption that the user can omigute with 5-digit decimal
values. We used SWEDE to optimize the circuit starting froh®#it Wallace-tree multi-
plier. The original circuit had 1938 gates, and our carersgdtided 393216 patterns. For
comparison, we converted external DCs into internal DCsadrg{toding the constants in

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’t-Cares . 17

the RTL code, and then we synthesized the design using terelit commercial syn-
thesis tools, Tooll and Tool2. The results are summarizetabie 1ll. Since different
synthesis tools may use different multiplier architecsyithe reduction ratios should be
compared instead of the cell counts. As the results suggastsShrink performs better
than existing synthesis tools. For comparison with exgstools that support true external
don’t-care synthesis, we also attempted to synthesizeutietable of the 393216 patterns
using Espresso and Tooll (truth-table synthesis mode)dulti@ot obtain a result netlist
after 96 hours.

Table Ill. Comparison of two major commercial tools and SWED synthesizing constant-coefficient multipli-
ers. Original cell counts, optimized cell counts and thaiotidn ratios are shown. FastShrink runtime was 42
seconds.

Tooll Tool2 FastShrink
Orig. | Opt. | Orig. | Opt. | Orig. | Opt.
Cell count 1387 | 834 | 2238 | 1440 | 1938 | 981
Reduction Ratio 39.9% 35.7% 49.4%

While this multiplier only serves as a simple and intuitiv@mple, the case study in-
dicates that SWEDE can seamlessly handle even traditjodifficult synthesis problems,
such as multipliers. This is because SWEDE is unconcerntidthe complexity of the
original functionality and can focus on just a few importamuts for its optimization.
This characteristic makes SWEDE considerably differeminfidomain-specific optimiza-
tion techniques such as [Sarbishei et al. 2009] in that othats do not require architec-
tural information. To further study the behavior of the spbred multiplier, we computed
all the multiplications where one input ranges from 0 to 8558d the other from 100 to
199, producing a total of 6553600 input combinations. Timgegfor the second input was
selected around the range of our specialized input corsstahe results show that 29.33%
of the input combinations were still multiplied correctiyhile the average error over all
input combinations was 9.75%. The greatest error we obdeves 98.72%, produced by
56685x 188.

Case study 3 (customizing DLX with a constrained-random tebench): in this case
study we customize DLX with constrained-random testbesthat allow the use of differ-
ent combinations of instructions. Insight [Avery 2008],@ranercial symbolic simulator
that can symbolically simulate behavior-level testbesdmewell as gate-level netlists, is
used in this case study. The circuit is initialized to a statehich all general registers are
symbols and all control registers are scalar values. We pingpare four testbenches that
generate different combinations of instructions with ramddata values, and the number
of cycles used in verification is 10. In this case study, werefhe numbers of registers
that are proven to be constant under different testbenchhese registers can then be
removed to simplify the circuit, and the results are sumeeatiin Table IV. The results
suggest that when fewer numbers of instructions are use® lmgic becomes redundant
and can be removed. Since we assign random values to data inghe testbenches, the
customized circuit will produce correct outputs for anyubps long as the instructions
used in the program comply with those used in the testbera@she control registers
return to their initial scalar values every 10 cycles. Thielecondition can be achieved by
inserting a few NOPs before the 10-cycle boundary. This sas#y also suggests that by

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

18 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

developing different constrained-random testbenchesadetrdifferent usages, SWEDE
can generate various customized circuits to measure tte-tr#i among the functionality
of a circuit, the die area and its power consumption. Notéwlmle previous case stud-
ies only focus on optimizing the combinational part of thecwits, in this case study we
actually performed a simple form of sequential optimizatiecause some registers are
removed.

Table IV. Percentage of registers that can be removed usfiegesht combinations of instructions and random
data inputs. Runtime is the time for checking whether a tegis constant.
Instructions allowed | Register | Runtime
reduction (sec)

NOP 60.4% 1

ADD, ADDI, NOP 33.9% 8
ADD, ADDI, LW, SW 31.9% 12
ADD, ADDI, LW, SW, 10.1% 37

SLL, SRA, BEQ, ORI

5.2 Comparison with Existing Tools

In this experiment we compared CleanSlate and InterSyrthEspresso and a commer-
cial tool (Tooll). We used the ABC system [ABC 2007] to impkmhthe interpolation-
based procedure InterSynth for computing multi-level espntations of Boolean func-
tions that agree with the given on-set/off-set. The resallésverified by checking that
interpolants are implied by the on-sets and do not overldp thie off-sets. To avoid the
influence of technology mapping on our experiments, we oslduinverters and basic
two-input gates. To evaluate Espresso, which lacks a tédogyponapper, we fed the opti-
mized truth tables to ABC. We used 128 random patterns torgenthe truth tables, and
summarized the results in Table V. CleanSlate and IntefSgutperform Espresso and
Tool1, producing the smallest netlists in just a small fiacof the time. Moreover, in
several cases Tooll timed-out after one hour. We also tyiethesizing from care sets of
256, 512 and 1024 random patterns using the same circuitfoWiel that CleanSlate can
finish all the benchmarks within 6.5 minutes, while Espresmso Tooll timed-out after 1
hour for most of the benchmarks.

To compare CleanSlate and InterSynth with traditional mépines based on decision
diagrams and sum-of-product manipulations, we conduatethar experiment that op-
timizes the truth tables using the MVSI8fs command [MVSIS 2005]. Since MVSIS
requires don’t-care terms to be explicitly specified in thgdit file when the PLA format is
used, we reduced the truth tables to include only the firstp6ts so that the file sizes were
reasonable. The results are summarized in Table VI. Fromnethle we can observe that
MVSIS often produces the smallest netlists. However, simcgime is also significantly
longer, this solution cannot scale to large designs. Thdteealso indicate that CleanSlate
outperforms InterSynth in every instance, suggesting@hednSlate may be more suitable
for optimizing truth tables with fewer inputs.

Note that the complexity of the interpolation procedurethe worst case, is the same
as that of Boolean satisfiability for circuit-based probseraxponential in the number of
input variables of the circuit and in the number of logic leveHowever, in most of the

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’'t-Cares . 19

Table V. Comparison of existing tools and SWEDE using onerlime-out. All our solu-
tions, CleanSlate, InterSynth and FastShrink, provideebsynthesis quality with signifi-
cantly shorter runtime.

Bench- Number of cells after (re)synthesis
mark Truth table based Netlist based
Espressg Tooll | CleanSlate InterSynth|| FastShrink
(SignalMerge)
C1908 2518 6891 1352 828 284(332)
C2670 6098 T/O 4467 2592 571(665)
C3540 1925 6271 1140 1980 1059(1094)
C5315 5183 T/O 3594 5882 1238(1312)
C7552 5072 T/O 3644 4923 1311(1387)
Bench- Runtime (s)
mark Truth table based Netlist based
Espressg Tooll | CleanSlateg InterSynth|| FastShrink
(SignalMerge)
C1908 16.19 | 143.76 4.17 0.99 33.68(0.32)
C2670 || 1494.51| T/O 45.26 34.81 54.13(1.36)
C3540 29.12 | 193.69 3.55 2.01 115.4(1.54)
C5315 || 635.17 | T/O 27.70 25.04 179.56(1.42)
C7552 || 911.54 | T/O 35.39 26.68 150.51(0.71)

Table VI. Comparison of MVSIS and SWEDE. Due to input forniatifations of MVSIS,
the truth tables were reduced to contain only 16 inputs.

Bench-|| Number of cells after synthesis Runtime (s)

mark MVSIS | CleanSlatg InterSynth|| MVSIS | CleanSlate InterSynth
C1908 773 1485 1693 37.20 0.14 1.79
C2670 4053 4675 9188 210.36 0.37 6.30
C3540 814 1232 1652 32.33 0.12 1.76
C5315 3425 3757 7508 203.79 0.41 4.54
C7552 3443 3820 7355 166.01 0.41 4.34

practical cases, it works well because the number of cosfltbe metric that determines
the number of resolution steps and, therefore, the inial sf the interpolant) is relatively
small. For the designs synthesized by InterSynth in thisergent, there were no more
than 5,000 conflicts, which led to initial interpolants whaize did not exceed 50,000 AIG
nodes.

Although CleanSlate and InterSynth, which operate fromithttable specification, pro-
duce comparatively better results than Espresso and coeiahgrols, a comparison be-
tween Table V and Table | shows that the generated netliststiilarger than the original
ones. The reason is that the original netlists are oftenymed from higher-level specifi-
cations, which include conceptual structures that leagtteboptimizations. On the other
hand, trying to synthesize a compact netlist using only irgmd output values is much
more difficult. Therefore, if a netlist is available, the beptimizations can be obtained
through FastShrink, whose results are also shown in Table V.

SWEDE is based on signatures, which can be calculated essilg simulation. This

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

20 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

makes SWEDE simple to use because designers only need tm@roput vectors to
the circuit that belong to the care terms. Since signatusesbe represented compactly
using bit-vectors and allow bit-parallel computation, saiution is both fast and memory-
efficient. As our experimental results show, we can handlierhélion input vectors in
less than three hours.

6. CONCLUSIONS

To reduce circuit design complexity in the multi-billioratrsistor era, SoC and embedded
systems heavily rely on reuse and third-party IP componedften, the design environ-
ment surrounding such components uses only a fraction ofuthetionality that these
general-purpose components implement. The unused logioge circuit blocks not only
occupies valuable die area but also consumes more powéndilne circuit’s performance
and quality. Hence, new synthesis optimization opporiesére available in simplifying
these components to the subset of functionality requiretth®ypystem they are embedded
in. Surprisingly, existing synthesis tools perform podriythis context, which typically
involves a small care-set and a very large don’t-care seadtivess this problem, we pro-
posed a new tool called SWEDE, and provided three new syisttexhniques which can
specialize a circuit using external don’t-cares: Fast8hiCleanSlate and InterSynth. Un-
like traditional synthesis tools that pursue maximal useasf't-cares by explicitly branch-
ing on different don’t-care assignments, our greedy algors (SignalMerge and the first
phase of CleanSlate) implicitly exploit the fact that m@shis are don’t-cares and quickly
generate a small netlist. Further circuit optimization é&fprmed by our ShannonSynth
technique and the second phase of CleanSlate. This novlesis flow allows SWEDE
to scale better when massive don’t-cares exist. In addi®WEDE can reuse existing
verification environments, such as direct test or constchirandom testbenches, for cir-
cuit customization. Therefore, it can make sure whatevefiee by the testbenches is still
correct in the customized circuits. Since such testbenekissin most verification flows,
SWEDE can be adopted easily in most designs. As our empigsalts indicate, SWEDE
provides comparable or better synthesis quality than-statke-art tools while running
10X faster. In fact, SWEDE can handle designs as large as 80&with 0.5M care-set
vectors in a few hours, demonstrating its superior scatglaihd efficiency.

We discussed a number of new applications enabled by SWEDEding new system-
design paradigms and solutions to current engineeringg@m These new applications
promise to produce circuits that run faster, consume leggep@nd can be used as inex-
pensive back-up modules for larger circuits that may faiiryioperation.

REFERENCES

ABC. 2007. Berkeley logic synthesis and verification groBC: A system for sequential synthesis and veri-
fication, release 80308.

AUSTIN, T. M., BERTACCO, V., BLAAUW, D., AND MUDGE, T. N. 2005. Opportunities and challenges for
better than worst-case design.ASP-DAC2—7.

AUSTIN, T. M., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computertays
modeling.I[EEE Computer 352, 59-67.

AVERY. 2008. Avery Design Systems, company web site http://wwevyadesign.com/.

BERTACCO, V. 2005. Scalable Hardware Verification with Symbolic Simulati@pringer.

BERTACCO, V., AUSTIN, T.,AND WAGNER, |. 2007. Bug UnderGround project, http:/bug.eecs.unaidty.

BRAYTON, R. K., GAO, M., JANG, J.-H. R., JANG, Y., LI, Y., MISHCHENKO, A., SINHA, S.,AND VILLA,
T. 2002. Optimization of multi-value multi-level networks ISMVL 168-177.

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

Logic Synthesis and Circuit Customization Using Extensive External Don’t-Cares . 21

CHANG, K.-H., BERTACCO, V., AND MARKOV, I. L. 2009. Customizing IP cores for system-on-chip design
using extensive external don’t-cares.DATE 582-585.

CHOUDHURY, M. R. AND MOHANRAM, K. 2009. Masking timing errors on speed-paths in logicltec In
DATE 87-92.

CONSTANTINIDES, K., PLAZA, S., BLOME, J. A., ZHANG, B., BERTACCO, V., MAHLKE, S. A., AUSTIN,
T. M., AND ORSHANSKY, M. 2006. BulletProof: a defect-tolerant CMP switch arebitire. INHPCA 5-16.

CRAIG, W. 1957. Linear reasoning: a new form of the Herbrand-Gamtheorem.Jour. of Sym. Logic 223,
250-287.

EEN, N. AND SORENSSON N. 2003. An extensible SAT-solver. BAT 502-518.

EETIMES. Apr. 03, 2008. EDA sales jump in Q4, http://www.eetimeméshowarticle.jhtml?articleid=207001548.
In EETimes

GANAI, M. K. AND GUPTA, A. 2007. SAT-based Scalable Formal Verification Solutio8gringer.

GORIJIARA, B. AND GAJsSKI, D. 2008. Automatic architecture refinement techniquestistomizing processing
elements. I'DAC. 379-384.

LAI, C.-Y., HUANG, C.-Y.,AND KHOO, K.-Y. 2008. Improving constant-coefficient multipliernfecation by
partial product identification. IDATE 813-818.

LAKSHMINARAYANA , G., RAGHUNATHAN, A., KHOURI, K. S.,AND JHA, N. K. 2001. Method for syn-
thesis of common-case optimized circuits to improve pemnemice and power dissipationUnited States
Patent6,308,313 B1.

MATSUNAGA, Y. AND FUJITA, M. 1989. Multi-level logic optimization using binary de@n diagrams. In
ICCAD. 556-559.

McMILLAN, K. L. 2003. Interpolation and SAT-based model checkingCAY. 1-13.

MISHCHENKO, A., BRAYTON, R., JANG, J.-H. R.,AND JANG, S. 2007. SAT-based logic optimization and
resynthesis. IHWLS 358-364.

MUROGA, S., KAMBAYASHI, Y., LAI, H. C.,AND CULLINEY, J. N. 1989. The transduction method-design of
logic networks based on permissible functiofSEE Trans. Computers 380, 1404—-1424.
MVSIS. 2005. http://www-cad.eecs.berkeley.edu/regesparch/mvsis.

PLAZA, S., HANG, K.-H., MARKOV, |. L., AND BERTACCO, V. 2007. Node mergers in the presence of don't
cares. IPASP-DAC414-419.

RAJSKI, J.AND VASUDEVAMURTHY, J. 1992. The testability-preserving concurrent decoiitiposand factor-
ization of Boolean expressionlEEEE Trans. on CAD of Integrated Circuits and Systems61%,78—793.

RUDELL, R. L. AND SANGIOVANNI-VINCENTELLI, A. L. 1987. Multiple-valued minimization for PLA opti-
mization. IEEE Trans. on CAD of Integrated Circuits and Systen's, §27—-750.

SARBISHEI, O., TABANDEH, M., ALIZADEH, B., AND FUJITA, M. 2009. High-level optimization of integer
multipliers over a finite bit-width with verification capdities. In MEMOCODE 56-65.

SAvoJ, H. AND BRAYTON, R. K. 1990. The use of observability and external don’t sdoe the simplification
of multi-level networks. IDAC. 297-301.

SCHNARR, E.AND LARUS, J. R. 1998. Fast out-of-order processor simulation usiegoization. IPASPLOS
283-294.

SHANNON, C. E. 1948. A mathematical theory of communicationhe Bell System Technical Journal,27
379-423.

SPECINT. 2000. SpecINT2000 benchmarks, http://www.spec.org/

VERMA, A. K., BRISK, P.,AND IENNE, P. 2008. Variable latency speculative addition: A new gima for
arithmetic circuit design. IDATE 1250-1255.

WAGNER, |., BERTACCO, V., AND AUSTIN, T. M. 2005. StressTest: an automatic approach to test geoer
via activity monitors. InDAC. 783—788.

WAGNER, |., BERTACCO, V., AND AUSTIN, T. M. 2006. Shielding against design flaws with field refaza
control logic. INDAC. 344-347.

WALKO, J. Jul. 02, 2007. Europe suppliers score in Apple’s iPhone,
http://eetimes.eu/showarticle.jhtml?articleid=200829. InEETimes Europe

YAMASHITA, S., SAWADA, H., AND NAGOYA, A. 1996. A new method to express functional permissibiiti
for LUT based FPGAs and its applications. I@CAD. 254—-261.

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

22 . K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko

YAMASHITA, S., SAWADA, H.,AND NAGOYA, A. 2000. SPFD: A new method to express functional flexipilit
IEEE Trans. on CAD of Integrated Circuits and Systems81840-849.

YANG, Y.-S., SNHA, S., VENERIS, A. G., AND BRAYTON, R. K. 2007. Automating logic rectification by
approximate SPFDs. IASP-DAC 402-407.

ACM Transactions on Computational Logic, Vol. V, No. N, Janu2010.

