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Traditional digital circuit synthesis flows start from an HDL behavioral definition and assume

that circuit functions are almost completely defined, making don’t-care conditions rare. However,

recent design methodologies do not always satisfy these assumptions. For instance, third-party IP

blocks used in a system-on-chip are often over-designed for the requirements at hand. By focusing

only on the input combinations occurring in a specific application, one could resynthesize the

system to greatly reduce its area and power consumption. Therefore we extend modern digital

synthesis with a novel technique, called SWEDE, that makes use of extensive external don’t-cares.

In addition, we utilize such don’t-cares present implicitly in existing simulation-based verification

environments for circuit customization. Experiments indicate that SWEDE scales to large ICs

with half-million input vectors and handles practical cases well.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Circuit customization, don’t-care optimization, logic synthesis

1. INTRODUCTION

Due to the increasing demand for integrated circuits to provide more functions while con-
suming less power, designing a new chip becomes more and moredifficult. One way to re-
duce this design effort is to reuse previously designed circuits, such as Intellectual Property
(IP) blocks and general-purpose processors. This approach, however, may result in designs
with unnecessarily large area and power consumption because they are over-provisioned
with respect to the target functionality. On the positive side, system performance and cost
may be improved by customizing reused components to the target applications and environ-
ment. This novel optimization, which we calldesign specialization, poses a new synthesis
challenge, which differs from traditional formulations bythe abundance of external don’t-
cares. In fact, both academic and commercial synthesis tools available today appear to be
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structured and optimized to extract optimization opportunities from small, localized sets
of external don’t-cares. While this approach succeeds on mainstream synthesis instances,
it does not perform well on the type of instances generated inthe context of design spe-
cialization and cannot handle some cases at all. Our experimental study revealed that the
performance of existing tools, such as Espresso [Rudell andSangiovanni-Vincentelli 1987]
and some commercial synthesis tools, greatly deteriorateswhen extensive don’t-cares are
added. In addition, several other tools, such as ABC [ABC 2007] and commercial tools,
do not handle our problem instances at all, or do not provide specification formats for
this situation. The latter problem is especially serious because without a simple and effi-
cient way to represent don’t-cares for synthesis tools, theadoption of circuit-customization
methodologies will be much more difficult.

In this work we address two types of synthesis problems in thepresence of extensive
external don’t-care sets. The first type assumes that the care-terms are known and repre-
sented using a truth table while the circuit structure is unknown. To solve this problem, we
propose CleanSlate and InterSynth algorithms that synthesize the truth table from scratch.
The second problem type assumes that an initial circuit already exists for customization.
To solve this problem, we developed a FastShrink algorithm,which takes as input an op-
timized design andreducesit based on the specified don’t-care set. Note that FastShrink
might find optimization opportunities even when applied after CleanSlate. Our approach
is based on an important insight: extensive don’t-cares allow simple greedy algorithms
to quickly produce a reasonably small netlist, and the missed optimization opportunities
can be recovered afterward using more sophisticated synthesis techniques. Since this latter
step does not consider don’t-cares, it can run much faster and leverages existing tools. This
two-step process eliminates the need for a time-consuming don’t-care optimizer, yet it is
still capable of generating high-quality netlists. Our second contribution is a methodology
that automatically extracts don’t-care information from existing verification environments,
which can be either a direct test or a constrained-random testbench, for circuit customiza-
tion. In this way, designers do not need to encode don’t-cares explicitly, which is often
difficult and time-consuming. We integrated these techniques in our tool, calledSWEDE
(Synthesis Within an Extensive Don’t-care Environment) [Chang et al. 2009]. In our ex-
periments we performed synthesis from truth tables with large don’t-care sets and observed
SWEDE completing ten times faster than state-of-the-art synthesis tools while producing
comparable or smaller circuits. We have also used SWEDE to customize circuits with up
to 30K gates and half-a-million input vectors in under two hours on a single processor in
most cases.

SWEDE’s high performance enables several new synthesis applications and enhances
many others, including (1) input constraint synthesis for emulation; (2) acceleration of
the most-frequent computation in a unit [Austin et al. 2005;Lakshminarayana et al. 2001;
Verma et al. 2008]; (3) customization of third-party IP components in an System-on-Chip
(SoC); and (4) support for graceful wear-out of electronic devices [Wagner et al. 2006].
Applications in category (1) can solve current engineeringproblems, while the others pro-
vide new system design paradigms. Our techniques may help address a wide range of
emerging concerns in IC design, including increasing verification difficulty, unpredictabil-
ity of manufacturing [Wagner et al. 2006], and lower-power circuits [Lakshminarayana
et al. 2001]. Since our simplified circuits provide correct outputs only within the specified
care set, stimuli outside this realm may not be viable. While“soft” application domains
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such as multimedia can tolerate these situations well, other applications may require an
output flag indicating that a given input cannot be processedcorrectly. To this end, tech-
niques for masking timing errors, such as the work by Choudhury and Mohanram [2009],
can be used to generate the flag.

The rest of the paper is organized as follows. In Section 2 we review previous work
and provide necessary background. We then describe our new synthesis techniques in
Section 3. Our circuit customization flow and proposed applications are given in Section
4. Experimental results are provided in Section 5, and Section 6 concludes this paper.

2. BACKGROUND

In this section we first review relevant previous work. Next,we describe five important
concepts: bit-signatures, Craig interpolation, Shannon entropy, simulation and proof by
induction. These concepts are used in our synthesis techniques and circuit customization
flows.

2.1 Prior Work on Synthesis with Don’t-Cares

Much research has been developed in exploiting don’t-caresin synthesis optimization. A
classic tool implementing some of the most commonly-used techniques is Espresso [Rudell
and Sangiovanni-Vincentelli 1987]. Although other more sophisticated synthesis tools ex-
ist, such as ABC [ABC 2007] and MVSIS [MVSIS 2005], these focus specially on syn-
thesis problems with a small number of don’t-cares. Moreover, their input specification
format makes it impractical to describe a large number of don’t-cares. For example, a de-
sign that could arise in our problem domain may have 50 inputsand as many as one million
care terms, leaving more than 1015 combinations to be don’t-care terms. In order to specify
such a complex set of don’t-cares, Brayton et al. [2002] proposed the use of an external
netlist to encode them. The construction of such a netlist, however, can be challenging.

In addition to synthesizing from a truth table, it is also possible to optimize a design
starting from an existing circuit and simplifying it using the don’t-cares via resynthesis
techniques such as rewiring [Yamashita et al. 1996], node merging [Plaza et al. 2007] and
multi-level logic optimizations [Matsunaga and Fujita 1989]. One major challenge in this
context is the representation and manipulation of such don’t-cares. For instance, Muroga
et al. [1989] proposed the concept ofCompatible Sets of Permissible Functions (CSPFs),
which was used by Savoj and Brayton [1990] to optimize multi-level networks composed
of NOR gates. This representation was later improved by Yamashita et al. [2000] and
becameSets of Pairs of Functions to be Distinguished (SPFDs). One major drawback in
these techniques is that representing the don’t-cares is cumbersome and the related data
structures are difficult to work with. Traditionally, thesedon’t-cares are represented by
BDDs, often exhausting all memory resources even for moderate-size designs. To address
this problem, Sinha proposed an efficient representation ofSPFDs based on graphs that
can be used in logic resynthesis [Yang et al. 2007]. This approach improves the memory
profile of SPFDs, but deteriorates the computing time. Recently, Plaza et al. [2007] relied
on bit-signatures generated by functional simulation to approximate observability don’t-
cares for node merging, followed by SAT-based verification.This approach is faster and
is more efficient in memory than other solutions. However, external don’t-cares were not
used in the optimization. Gorjiara and Gajski [2008] proposed a framework to generate
customized circuits and showed that those circuits are muchmore power efficient than
the original versions. Their work demonstrated that IP customization can be extremely
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useful. Nonetheless, their techniques cannot customize generic existing circuits like we
do. In stead of utilizing don’t-cares for circuit optimization, techniques based on logic
decomposition and refactoring can also effectively reducethe size of a circuit. To this
end, the greedy algorithm proposed by Rajski and Vasudevamurthy [1992] is used in our
CleanSlate synthesis flow.

2.2 Craig Interpolation

The concept of Craig interpolation originated in mathematical logic in 1957 and has re-
cently become popular in formal verification. In contrast, we are going to use it in logic
synthesis.

DEFINITION 1. Consider a pair of Boolean functions, A(x,y) and B(y,z), such that
A(x,y)∧B(y,z) = 0, where x and z are variables appearing only in A and B, respectively,
and y are common variables of A and B. An interpolant of A(x,y) w.r.t. B(y,z) is a
Boolean function I over the common variables y that satisfiesthe following conditions:
A(x,y)⇒ I(y) and I(y)⇒ B(y,z) [Craig 1957].

Consider an unsatisfiable SAT instance composed of two sets of clausesA andB. In
this case,A(x,y)∧B(y,z) = 0. An interpolant ofA can be computed from the proof of
unsatisfiability of the SAT instance by the algorithm found in [McMillan 2003] (Definition
2). The resulting interpolant is a single-output multi-level logic network represented as an
And-Inverter-Graph (AIG) [ABC 2007]. IfA(x,y) is the on-set of a function,B(y,z) is its
off-set, andA(x,y)∧B(y,z) is its don’t-care set, thenI(y) can be seen as an optimized ver-
sion ofA(x,y) where the don’t-cares are used in a particular way to optimize representation
of I .

Interpolation is used in formal verification to compute an over-approximation of the
complete set of reachable states [McMillan 2003]. Interpolation has also been used in
area- and delay-driven technology mapping intoK-input LUTs [Mishchenko et al. 2007].
When applied to technology mapping, interpolation is used to generate new functions for
the node being synthesized.

2.3 Bit-Signatures and Entropy

Our FastShrink synthesis technique is based on bit-signatures generated using simulation,
which are defined below. Note that a signature is essentiallya signal’s partial truth table.
If the input vectors are applied exhaustively, then the signature of a signal is its complete
truth table.

DEFINITION 2. Given a wire (signal) w in a circuit, computing function f, and input
vectors v1, v2 ... vk, thesignatureof w is the bit-vector( f (v1), ..., f (vk)), where f(vi) ∈
{0,1} represents the output of f given the input vector vi .

The second step of the FastShrink technique (see Section 3.3) exploits short-range op-
timization opportunities in a circuit. Intuitively, signals with less information are easier to
optimize. To quickly identify such signals, we useShannon entropy, which is calculated
as follows [Shannon 1948]:

Es =−
#ones

k
log2(

#ones
k

)−
#zeros

k
log2(

#zeros
k

) (1)
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In the equation,Es is the entropy of signatures, #onesis the number of 1s in the signa-
ture, and #zerosis the number of 0s in the signature. Variablek is the number of bits in the
signature and is also the number of vectors applied to the circuit. A largerE means that
the signature contains more information.

2.4 Simulation and Proof by Induction

Simulation is one of the most commonly-used verification methods: input stimuli are ap-
plied to a circuit’s inputs, and the circuit’s outputs are checked against expected results. In
logic simulation, scalar values are applied to the inputs. For example, feeding 2 and 3 to
the inputs of an adder will produce 5 on its output. Insymbolic simulation, symbols are
applied to the inputs, and the outputs are logic expressions[Bertacco 2005]. For example,
applyinga andb to the inputs of an adder will producea+ b on its output. Since a sym-
bol can represent all possible values simultaneously, symbolic simulation has much larger
verification power than logic simulation.

One major limitation of simulation-based verification is that it can only check circuit
correctness within the simulated cycles. In other words, itcan only verify bounded proper-
ties. One way to solve this problem is to use proof by induction [Ganai and Gupta 2007].
The basic idea behind this method is that if the initial states before simulation are a super-
set of the final states after simulating a certain number of cycles, then the properties that
hold throughout simulation are guaranteed to hold unboundedly if the circuit is initialized
to one of those initial states.

3. CIRCUIT OPTIMIZATION WITH EXTERNAL DON’T-CARES

In this section we formalize the synthesis problem described earlier and propose three
circuit-optimization techniques. One shrinks an existingnetlist, while the other two per-
form synthesis starting from a functional specification (truth table). We then illustrate our
techniques by example and provide in-depth analysis of our techniques.

3.1 Problem Formulation

We formulate the circuit-specialization problem as follows. Given a circuit, the complete
set of all possible input vectors and their output responses(or, equivalently, a functional
specification in the form of a truth table), we seek to producea small netlist that generates
the correct outputs for the given inputs. Our solution considers a combinational flattened
circuit and performs the optimization without any structural or other information from the
user. On the other hand, if structural information is available in the original netlist, it can
be used to improve quality of results.

3.2 Fast Synthesis based on Truth Tables

In this section we introduce two fast synthesis techniques based on truth tables. The
first one, called CleanSlate, greedily expands cubes and then performs more sophisticated
resynthesis to minimize the size of the netlist. The second one, called InterSynth, is based
on interpolation.

3.2.1 The CleanSlate Technique.Our specification-based synthesis technique, called
CleanSlate, starts from a truth table and produces a technology-mapped netlist. The al-
gorithm is outlined in Figure 1: CleanSlate first greedily expands a cube, one literal at a
time, similar to the heuristic used in Espresso (lines 1-3).A cube is subsumed by the ex-
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panding cube and is eliminated if its outputs are the same as those of the expanding cube.
The expansion stops when the cube overlaps another cube withdifferent outputs. After
producing an optimized truth table, CleanSlate generates atwo-level netlist (line 4), which
is fed to ABC for further optimization. Using ABC, CleanSlate first performs fast logic
sharing detection of the netlist [Rajski and Vasudevamurthy 1992], and then converts the
netlist to an And-Inverter-Graph (AIG) [ABC 2007]. After that, it expands 2-input ANDs
in the AIG to multi-input ANDs to create more opportunities for logic sharing detection,
and performs AIG resynthesis to optimize the netlist. The procedure in lines 7-10 is ap-
plied several times to achieve better optimization (three times in our implementation). At
completion, we apply a technology mapping step to produce the final netlist.

flow CleanSlate(TruthTable)
1 foreachrow∈ TruthTable
2 expand the cube ofrow until a different cube is reached;
3 remove other rows in TruthTable subsumed byrow;
4 convertTruthTableto a two-level netlist;
5 perform fast logic sharing detection of the netlist with [Rajski and Vasudevamurthy 1992];
6 repeatN times
7 transform the network to an AIG by 1-level structural hashing;
8 expand 2-input ANDs in AIG to multi-input ANDs;
9 perform fast logic sharing detection using [Rajski and Vasudevamurthy 1992];

10 perform AIG resynthesis (AIG balancing, rewriting and refactoring);
11 returnnetlist by technology mapping the AIG;

Fig. 1. The CleanSlate synthesis flow.

The rationale behind our solution is that the large number ofdon’t-cares enables even a
greedy algorithm to generate a reasonably small two-level netlist within a short time. We
then bypass a time-consuming two-level optimization process, and instead perform multi-
level synthesis. As our experimental results in Section 5 indicate, CleanSlate runs 10X
faster than exiting tools, handles more complex circuits, and provides comparable or better
synthesis quality.

3.2.2 The InterSynth Technique.Another specification-based synthesis technique is
InterSynth. It is a heuristic procedure that attempts to minimize the size of multi-level
logic implementing a given function. There is no guarantee that it will find the smallest
or even a relatively good circuit structure, but for most test cases in practical applications
(such as interpolation-based model checking), it was founduseful for circuit minimization.
This approach is based on computing multi-output interpolants, as shown in the pseudo-
code of Figure 2. The computation begins by dividing the input patterns into the on-set
and the off-set for each output of the design. Next, the multi-output on-sets and off-sets are
converted into AIGs and synthesized to reduce the total number of AIG nodes. After that,
an incremental SAT problem is solved for each output, by assuming that the on-set and the
off-set of this output are true at the same time. The proof of unsatisfiability of this instance
is used to derive the interpolant for the output under consideration. The interpolants for
all outputs are then combined into a single AIG, which is synthesized to reduce the total
number of AIG nodes. Finally, the AIG is mapped into two-input gates as described in
Section 3.2.1.
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function InterSynth(TruthTable)
1 divideTruthTableinto on-set and off-set for each output;
2 synthesize shared AIGF0 for off-sets of all outputs;
3 synthesize shared AIGF1 for on-sets of all outputs;
4 for each pair of outputs,f 1 and f 0, of AIGsF1 andF0
5 derive proofP of f 1∧ f 0 being unsatisfiable;
6 derive interpolantf from the proofP;
7 create shared AIGF from the set of interpolant AIGs{ f};
8 synthesize AIG to minimize the numbers of nodes and levels;
9 return netlist by technology mapping the AIG;

Fig. 2. The InterSynth synthesis flow
.

InterSynth differs from [Mishchenko et al. 2007] in that it interpolates all primary out-
puts of the network rather than one node. For this, we extend the interpolation procedure
to work for multi-output unsatisfiability proofs derived bysolving several incremental SAT
problems. The interface of a SAT solver such as MiniSAT [Eénand Sörensson 2003] al-
lows us to specify assumptions for each incremental SAT run.When the run is proved
unsatisfiable, assumptions are lifted and the SAT solver canbe reused. The assumptions
used in the incremental runs express the condition that the on-set and the off-set are true
simultaneously. This condition is, by construction, unsatisfiable for the on-set and the off-
set. The resulting interpolant is a multi-output AIG such that the function of each output is
contained in the interval defined by the on-set of this function and the complement of the
off-set.

3.3 Specializing an Existing Netlist

Given an existing netlist, FastShrink uses a two-step process to produce a specialized new
netlist. The first step, calledSignalMerge, quickly merges signals in an existing circuit that
are identical under the given input combinations. The second step, calledShannonSynth,
performs further optimization using local don’t-cares. The algorithm of SignalMerge is
shown in Figure 3. It first simulates care-term vectors and then merges signals with identi-
cal signatures. This allows SignalMerge to leverage both external and internal satisfiability
don’t-cares to remove redundant gates. Our implementationselects the signal closest to
primary inputs for merging to achieve smaller circuit delay. After the signals are merged,
unconnected gates are removed. To expose additional merging opportunities, large cells
such as AOI, OAI, etc. are decomposed into smaller gates. After signals in the netlist are
merged, the netlist can be technology mapped again.

functionSignalMerge(Circuit)
1 simulate vectors to generate signatures;
2 foreachsignalswith identical signatures
3 target← the signal∈ signalsclosest to primary inputs;
4 mergesignalsto target;
5 remove gates with no fanouts;

Fig. 3. The SignalMerge algorithm.
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functionShannonSynth(Circuit)
1 simulate vectors to generate signatures;
2 compute the entropy of each signature;
3 foreachsignal whose signature has 20% smallest entropy
4 extract a subcircuit involvingsignal as its output;
5 build a truth table using the subcircuits’ inputs and outputs;
6 resynthesize the truth table using CleanSlate;
7 if (resynthesized netlist is smaller)
8 replace the subcircuit with the resynthesized netlist;

Fig. 4. The ShannonSynth algorithm.

Signal merging can remove redundant logic that generates identical signal functions.
ShannonSynth pushes the optimization further by reimplementing subcircuits in smaller
structures using don’t-cares. To quickly identify subcircuits with high optimization po-
tential, we use Shannon entropy to guide our resynthesis. Intuitively, signatures with low
entropy contain less information and should be easier to optimize. In our experience we
found that for a random subcircuit-extraction technique toproduce the same quality as our
entropy-guided approach, 50% more runtime is required.

The ShannonSynth algorithm in Figure 4 first simulates vectors in the care terms to gen-
erate a signature for each signal. Next, it computes the entropy of each signature. To make
sure its resynthesis attempts are worthwhile, the algorithm only tries subcircuits whose
output signatures have small entropy (the bottom 20% of all signatures in our implementa-
tion). The key idea in this algorithm is that, instead of trying to resynthesize the netlist in
the subcircuit, we build a partial truth table using only thesubcircuit’s input and output sig-
natures so that we can exploit don’t-cares. ShannonSynth then synthesizes the truth table
using the CleanSlate algorithm. In this step, however, we use Espresso to replace lines 1-3
of CleanSlate to achieve better resynthesis quality. This is appropriate in local resynthesis
because the truth tables are small. After an optimized truthtable is generated, ABC is still
called for further optimization and technology mapping. Ifthe new resynthesized netlist is
smaller than the original one, ShannonSynth replaces it.

The goal of ShannonSynth is to find local optimization opportunities by extracting sub-
circuits from the design and optimizing them using don’t-cares. It can find optimizations
that SignalMerge cannot find. However, runtime of ShannonSynth can be considerably
longer than SignalMerge. As a result, SignalMerge should always be performed first.
ShannonSynth can then be applied whenever there is spare machine or time left to achieve
further optimization.

3.4 A Circuit Specialization Example

We now illustrate the FastShrink algorithm on a 3-bit ripple-carry adder. In this example,
input A can only assume values 3, 4 or 5; while input B has values 1 or 7. SignalMerge first
simulates all possible six input combinations on the given adder to produce 6-bit signatures
for all internal signals. The circuit annotated with the signatures is shown in Figure 5(a).
SignalMerge then merges signals with identical signaturesand removes all the gates that
are no longer connected (Figure 5(b)). At this point, only 8 out of the 15 gates are still
needed, resulting in a much smaller circuit.

To further optimize the circuit, we invoke ShannonSynth. This extracts a subcircuit
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(a)

(b)

(c)

Fig. 5. Ripple-carry adder specialization example: (a) original circuit, (b) after SignalMerge, and (c) after Shan-
nonSynth. Allowed input values are 3, 4, 5 (for A) and 1 and 7 (for B).

composed of gates g7, g8 and g9 to explore further optimizations. First, a truth table is
built using the signatures of the subcircuit’s inputs and outputs as follows:

A1 A0 B1 g5 g9
1 1 0 1 1
1 1 1 0 1
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1

We then feed the truth table to CleanSlate for synthesis and obtain a new netlist, “g9=A0
& (g5 | B1)”, that only uses two gates. Since this resynthesized netlist is smaller, it will
replace the original one. Another ShannonSynth run replaces gate g0 with an inverter,
and the final result is shown in Figure 5(c). By using the signatures of the subcircuit
instead of the netlist for resynthesis, we can fully utilizedon’t-cares for optimization. This
optimization is not performed by many traditional synthesis tools that only use function-
preserving netlist transformations. Note that among the 58don’t-care input combinations,
25.9% are still added correctly.

3.5 Analysis

An important property of FastShrink is that every netlist modification it performs always
preserves the output responses of the given input vectors. This is because we operate on
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signatures, which are simulated values of the input vectors. Since all the changes made
by FastShrink preserve signatures, the output responses are also preserved. Moreover, we
observe that FastShrink subsumes the commonconstant propagationtechnique, which is
used when a subset of the signals are constant 0 or 1. To simplify our reasoning, we assume
that the netlist is decomposed into 1- or 2-input gates, but the same holds in the general
case as well.

PROPOSITION 1. SignalMerge followed by ShannonSynth subsumes the optimizations
produced by constant propagation.

PROOF. Since the output of a 1-input gate can only be constant 0 or 1,SignalMerge
connects the output signal to VCC or GND, thus eliminating the gate. Given a 2-input
gate, suppose the constant input is the controlling value ofthe gate, then the output of the
gate can only be constant 0 or 1. In this case, SignalMerge proceeds as the 1-input gate.
Now suppose that the constant input is not the controlling value of the gate, then the output
of the gate can be either identical or the complement to the other input. If the output is
identical, then SignalMerge connects it directly to the non-constant input, eliminating the
gate. Otherwise, we build a truth table using the gate’s input and output signatures and rely
on ShannonSynth to simplify the gate to an inverter.

Finally, note also that a SignalMerge pass guarantees that no two signals are identical in
the final circuit, since it merges all the signals with identical signatures.

Our analysis on how current commercial synthesis tools utilize don’t-cares suggests
that they perform inter-block optimizations by first dissolving the boundaries between the
blocks to form a large flattened netlist, and then employing resynthesis techniques such
as those introduced in Section 2.1. In other words, they convert external don’t-cares into
internal don’t-cares before optimizations are performed.Although effective, this approach
has the following drawbacks. First, the block boundaries are not preserved after optimiza-
tion, which may make verification difficult, especially whendealing with third-party IP
blocks in an SoC design. Second, dissolving boundaries makes it difficult to use external
don’t-cares because the chip’s environment often depends on applications and cannot be
modeled easily using a netlist. While state-of-the-art synthesis tools mostly exploit inter-
nal don’t-cares, our work shows how to effectively exploit external don’t-cares without
viewing them as internal don’t-cares and without blending multiple blocks into one netlist.

4. CIRCUIT CUSTOMIZATION FLOW AND NEW APPLICATIONS

In this section we describe flows that reuse existing simulation-based verification environ-
ments for circuit customization, including direct tests and constrained-random testbenches.
Since direct tests provide all the test patterns in the care-set of the circuit, the techniques
described in Section 3 can be applied directly. However, sometimes the inputs may only
be partially known. For example, although the program running on an embedded system
may be given, its input data may vary at runtime. To address this problem, we propose an
innovative technique that uses the constrained-random testbench developed in most design
verification flows as a “synthesis IP” for circuit customization. This approach guarantees
that whatever verified by the testbench will still be correctin the customized circuit, even
when some inputs are not given in advance.

This section is organized as follows. We first describe our circuit customization flow
using constrained-random testbenches and propose a new verification method suitable for
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this flow. We then finalize this section by proposing several applications enabled by our
resynthesis techniques.

4.1 Circuit Customization Using Constrained-Random Testbench

Our circuit-customization flow using constrained-random testbenches works as follows.
(1) Simulate the testbench for a certain number of cycles to produce a direct test. (2) Use
the techniques described in the previous section to customize the circuit. (3) Verify the
correctness of the circuit with respect to the testbench after each circuit modification in
step (2) and only accept changes that passes verification. The verification step will be
described in Section 4.2.

4.2 Verification of Circuit Customization Changes

Although many verification techniques can perform completesequential equivalence check-
ing between two circuits, such as reachability analysis andunbounded model checking
[Ganai and Gupta 2007], they may not be scalable enough to handle today’s designs. To
address this problem, we describe a new algorithm to verify the correctness of a customized
circuit with respect to a constrained-random testbench. The algorithm is based on symbolic
simulation and bounded model checking, and it utilizes proof-by-induction to achieve com-
plete proof. Due to its bounded nature, the algorithm can be applied to much larger designs
than traditional techniques. The algorithm is shown in Figure 6. In the algorithm,ckt1 is
the original circuit,ckt2 is the customized circuit,tb is the testbench andn is the number
of cycles to be simulated. Functionverify then checks ifckt1 andckt2 produce identical
results atchecker variableswithin n cycles under the given constraints, whereas a checker
variable is typically a primary output or a register in the circuit. Note that to achieve com-
plete proof, we replace scalar random values in the testbench with symbols in line 4 to
make sure all possible inputs are verified in our approach.

functionverify(tb,ckt1,ckt2,n)
1 initialize the circuit to a known symbolic state;
2 repeatn cycles
3 foreach random valuev generated intb
4 replacev with a symbol;
5 symbolically simulate one cycle;
6 collect logic expressions generated at checker variables

in ckt1 andckt2;
7 check equivalency of expressions of checker variables

betweenckt1 andckt2;
8 if all the expressions are equivalent
9 return true;

10 else
11 return false;

Fig. 6. Circuit verification using symbolic simulation and constrained-random testbenches.

Ideally, initial symbolic state should be the set of all reachable states encoded symbol-
ically. However, reachability analysis may be impossible for even moderate-size designs.
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Therefore, in this work we assign pure scalar (over-constrained) or pure symbolic (under-
constrained) values to the state bits depending on how thosebits are used. If the verification
algorithm returns false, then we abandon the change made to the circuit. Although we may
lose some optimization opportunities because part of the state bits are under-constrained,
this step is necessary to ensure the scalability of our verification method. If the verifica-
tion algorithm returns true, then due to the over-constrained state bits, proof-by-induction
should be used to generate additional rules for the constrained-random testbench to en-
sure the equivalency betweenckt1 andckt2 for all cycles, and the rules are derived as
follows. Suppose that the initial state is calledstatei and the final state is calledstatef .
If statei ⊇ statef , then no further constraints are needed, andckt1 andckt2 will produce
identical outputs for all the inputs that can be generated bythe constrained-random test-
bench if the circuits are both initialized tostatei. On the other hand, ifstatei ⊂ statef ,
then additional constraints must be added to make surestatei is reached everyn cycles.
For example, if a pipelined processor is initialized to a state in which all general registers
are symbols and all bypass control registers are 0. Further assume that algorithmveri f y
successfully confirmed the equivalency betweenckt1 andckt2 for 100 cycles. Then as
long as the program running on the customized circuit makes all bypass control registers 0
every 100 cycle, both circuits will produce the same outputs. Note that ifstatei ∩statef is
empty, then proof by induction fails and the customized circuit is correct only within the
simulated cycles.

From the analysis above, it can be observed that symbolically simulating more cycles
will provide more flexibility for circuit customization. Typically, simulating cycles equal to
twice the number of pipeline stages will yield good results because most inputs will be able
to propagate through the pipeline. Note that if a wire remains 0 or 1 throughout symbolic
simulation, then the wire can be replaced by the constant, and this can often initiate a chain
of further optimizations.

4.3 New Applications

In this subsection we discuss some of the new applications that are enabled by our tech-
niques, including three applications based on circuit specialization followed by one that
requires synthesizing truth tables.
Acceleration of common-case computations:certain classes of SoC designs include
several instances of a computational module to improve the parallelism of the system.
For instance, this is the case for multimedia SoC where the required output throughput is
achieved by increasing the parallelism of the computation.Among CPU designs, a specific
example is the case of the Sun Niagara T1 where 8 processor cores were sharing one Float-
ing Point Unit (FPU). However, due to its poor performance onFP testbenches, the second
generation processor has been enhanced with 8 FPUs. Often the input distribution of com-
ponents embedded in a system is highly skewed for a very smallset, while remaining com-
binations are rare [Schnarr and Larus 1998]. For instance, it is observed that often under
10% of a program’s instructions account for 90% of its execution time [Lakshminarayana
et al. 2001]. Hence, SWEDE can be adopted to explore a “BetterThan Worst-Case Design”
methodology [Austin et al. 2005], also known as “Common-Case Computation” [Laksh-
minarayana et al. 2001], where one of several units is fully functional, and all others are
optimized to only operate correctly for a few commonly-occurring input combinations.
This approach reduces power and area of the final system. If anoptimized computation
fails at runtime, a fully-functional module is invoked as a back-up. Note that, for this ap-
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proach to be viable, it may be necessary to deploy either a functional checker (validating
the operation results) or a “valid input detection” circuit, as we are planning to explore.
Alternatively, if one is only concerned with correctness ona small subset of inputs, faster
circuits are possible as well. For example, the main idea in [Verma et al. 2008] is that much
faster arithmetic circuits can be designed by allowing a small fraction of incorrect results.
In contrast, we focus on circuit size rather than performance.

Customization of third-party IP components in an SoC:in order to improve reuse, SoC
designs often acquire some components from third-party vendors. In the fourth quarter of
2007, total IP revenue has reached $265.4 million, with a growth rate of 4.1% each year
[EETimes 2008]. Such components are typically embedded in an environment that only
exploits a small fraction of their functionality. It is thenpossible to use SWEDE to reduce
the component’s complexity (and power consumption) based on the specific environment
in which it is embedded. For example, floating point logic in an embedded processor is
redundant if the target application does not require any floating point computation. Manu-
ally removing redundant portions of the design, however, can be difficult and error-prone.
While some hard IPs are difficult to modify, a large segment ofthe $1B/year IP market con-
sists of soft IPs, such as ARM processors, USB and PCI-Express devices, etc. The source
code is given to customers unencrypted because design companies would not agree to put
unknown blocks in their chips. In addition, design houses often need to patch possible
problems and better optimize their entire SoC designs in terms of placement and floorplan-
ning. Importantly, such source code can be modified, and the techniques in our paper may
lead to new business models — competing on cost by simplifying existing IPs automati-
cally. For example, there are many USB and PCI-Express peripherals for PCs and laptops
that are dedicated to a single function, like WiFi, WiMax, voice-over-IP, Dolby 7.1 sound,
etc. Needless to say, such devices do not exercise the entirebus protocol, but the IP on
which they are built may support it. Therefore, to reduce thecost, one may automatically
customize the inherited bus IP to a given application. Whether or not the cost differential
is significant, IP specialization may noticeably reduce power consumption. For example,
Apple iPhone contains the S-Gold2 baseband chipset from Infineon in which Apple chose
to turn off FM radio support and MMC/SD card compatibility, apparently to reduce power
[Walko 2007].

Graceful wear-out of electronic devices:extreme transistor scaling is leading to reduced
silicon reliability, including early device and interconnect wear-out. To overcome the im-
pact of this issue there is a growing need for low-cost reliable design solution. The use of
SWEDE enables reliability through component sparing [Constantinides et al. 2006], where
spare components can be optimized to provide only bare-bonefunctionality, sufficient to
keep the system operational in critical aspects until it is replaced. An example of this spare-
optimization application is discussed by Wagner et al. [2006], where the authors identify
a small subset of a processor design that must be kept operational in order to provide full
system functionality (in this case the spare was part of the processor itself with acceleration
features excluded). When the original circuit becomes unreliable, it will be replaced by the
barebone spare component to avoid a system-level crash.

Synthesis for fast emulation:in the emulation domain, one common issue is the synthesis
of the input constraints. Emulation systems can apply constrained-random simulation at
very high performance compared to logic simulation. However, if the input constraints
are not synthesizable, then at each clock cycle the emulatormust communicate with a
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simulating host, incurring a huge performance impact on theemulation. At the same time,
input constraints are often written in a high-level language (C++, Vera, etc.) and cannot
be synthesized. SWEDE can be deployed by running the random simulation only on the
design’s input constraints (and not including the design itself). This simulation would
be very fast and generates a set of care terms that SWEDE then synthesizes in a circuit
uploaded on the emulator along with the design. Each emulation run would use a different
constraint circuit, each synthesized by SWEDE based on the random stimuli. On the other
hand, the design itself does not need to be resynthesized foreach run.

5. EXPERIMENTAL RESULTS

In this section, we use three design examples to evaluate thecapability of SWEDE in cus-
tomizing circuits: an Alpha processor running real applications, an integer multiplier, and
a DLX processor with constrained-random testbenches. In addition, we compare SWEDE
with existing synthesis tools to evaluate its ability to synthesize truth tables with external
don’t-cares. These tools are Espresso, MVSIS and a commercial synthesis tool. Table
I reports the numbers of primary inputs and outputs, as well as initial cell count for the
benchmarks used. Benchmarks C1908-C7552 are from ISCAS’85. Both Alpha and DLX
are processors from the Bug UnderGround project [Bertacco et al. 2007] that implement
subsets of the Alpha and MIPS ISA, respectively. Our experiments were performed on
Linux workstations with AMD Opteron 280 CPUs (2.4GHz) equipped with 8GB of mem-
ory.

Table I. Characteristics of benchmarks.
Benchmark Description #In/Outputs #Cells
C1908 16-bit SEC/DED circuit 33/25 461
C2670 12-bit ALU and controller 233/140 484
C3540 8-bit ALU 50/22 1060
C5315 9-bit ALU 178/123 1057
C7552 32-bit adder/comparator 207/108 1187
Alpha 5-stage pipeline Alpha CPU 3054/3619 30531
DLX 5-stage pipeline MIPS-lite CPU2127/2160 14725
Multiplier 16-bit Wallace tree multiplier 32/32 1938

5.1 Case Studies

Case study 1 (Alpha processor):for this study we ran five applications from the SpecINT
[2000] suite, whose characteristics are summarized in Table II. The processor was synthe-
sized using Cadence RTL compiler with the highest optimization effort, and was mapped
to a 0.18µm library. Since our Alpha processor only implements a subset of the Alpha
ISA, simulation was performed in lockstep with the Simplescalar instruction set simulator
[Austin et al. 2002]. We then use SignalMerge to optimize thecircuit based on the stimuli
from each program. Figure 7 and 8 report the final sizes of the optimized designs and the
synthesis runtimes, respectively, achieved after simulating up to half a million instructions.
They indicate that the optimization potential varies from application to application: for in-
stance, the bzip2 application has a very small stimuli set, hence we can exploit aggressive
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optimizations on it; while gcc has a much wider span, hence little optimization can be ex-
tracted. This is aligned with the intuition that bzip2 is a specialized algorithm applying the
same operations to arbitrary data sets, while gcc’s operation is much more complex. This
result suggests that if the program running on a circuit is known, SWEDE can potentially
reduce its size significantly, generating a much smaller circuit that consumes less power.
Figure 8 also shows that SignalMerge operates in approximately linear time on the number
of input vectors in the care set, which enables it to handle complex designs efficiently. De-
signs can be further optimized by ShannonSynth: this step has greater runtime complexity;
however, this is offset by the fact that ShannonSynth only takes into consideration small
blocks in a circuit. For comparison, in the figures we also show the trend of optimizing for
a constrained-random trace generated by StressTest [Wagner et al. 2005] (diamond-bullet
lines). Its curve indicates that with random inputs, we can only reduce the circuit by 10%,
even when the number of instructions is as small as 6400. Thisis not surprising since,
intuitively, random traces span a much larger fraction of the circuit’s configurations than
real applications, making optimization difficult.

Table II. Characteristics of SpecINT programs [SpecINT 2000].
Benchmark Description Language
bzip2 Compression tool C
gcc Compiler C
mcf Combinatorial optimization C
parser Word processing C
perlbmk Perl programming language C

Fig. 7. Gate count after specializing the Alpha CPU with SignalMerge. 30-90% of the gates can be removed for
applications as long as half-million dynamic instructions.

In Figure 9 we show the results when optimizing individual components in the Al-
pha processor using the gcc application. The blocks we studied are the instruction fetch
unit (IF), the decode unit (ID), the execute block (EX) and the memory access controller
(MEM). The result indicates that the optimization potential is very block specific. In par-
ticular, the EX block cannot be optimized well because the execution unit needs to handle
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Fig. 8. SignalMerge runtime to specialize Alpha. Runtime isapproximately linear on the number of stimulus
vectors used.

a wide range of input values, making don’t-cares less dense.The MEM block also has
very limited optimization potential because it only has 363gates but has 195 inputs. This
shallow logic structure makes signal sharing difficult.

Fig. 9. Gate count of Alpha blocks after specialization.

Case study 2 (constant-coefficient multiplier): embedded systems and digital signal pro-
cessors often need to perform simple operations repetitively [Lai et al. 2008; Sarbishei
et al. 2009]. For example, consider a portable electronic measurement device that must
convert between US units and metric units while keeping power consumption low. To keep
the circuit simple, an integer multiplier can be used, adjusting the decimal point afterward.

To support conversions between inches, feet, miles and meters, one needs to be able to
multiply by the following six constants: 2.54, 30.4, 1.61 and their inverse. For the sake of
this example, we made the assumption that the user can only compute with 5-digit decimal
values. We used SWEDE to optimize the circuit starting from a16-bit Wallace-tree multi-
plier. The original circuit had 1938 gates, and our care set included 393216 patterns. For
comparison, we converted external DCs into internal DCs by hard-coding the constants in
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the RTL code, and then we synthesized the design using two different commercial syn-
thesis tools, Tool1 and Tool2. The results are summarized inTable III. Since different
synthesis tools may use different multiplier architectures, the reduction ratios should be
compared instead of the cell counts. As the results suggest,FastShrink performs better
than existing synthesis tools. For comparison with existing tools that support true external
don’t-care synthesis, we also attempted to synthesize the truth table of the 393216 patterns
using Espresso and Tool1 (truth-table synthesis mode) but could not obtain a result netlist
after 96 hours.

Table III. Comparison of two major commercial tools and SWEDE in synthesizing constant-coefficient multipli-
ers. Original cell counts, optimized cell counts and the reduction ratios are shown. FastShrink runtime was 42
seconds.

Tool1 Tool2 FastShrink
Orig. Opt. Orig. Opt. Orig. Opt.

Cell count 1387 834 2238 1440 1938 981
Reduction Ratio 39.9% 35.7% 49.4%

While this multiplier only serves as a simple and intuitive example, the case study in-
dicates that SWEDE can seamlessly handle even traditionally difficult synthesis problems,
such as multipliers. This is because SWEDE is unconcerned with the complexity of the
original functionality and can focus on just a few importantinputs for its optimization.
This characteristic makes SWEDE considerably different from domain-specific optimiza-
tion techniques such as [Sarbishei et al. 2009] in that our methods do not require architec-
tural information. To further study the behavior of the specialized multiplier, we computed
all the multiplications where one input ranges from 0 to 65535, and the other from 100 to
199, producing a total of 6553600 input combinations. The range for the second input was
selected around the range of our specialized input constants. The results show that 29.33%
of the input combinations were still multiplied correctly,while the average error over all
input combinations was 9.75%. The greatest error we observed was 98.72%, produced by
56685×188.
Case study 3 (customizing DLX with a constrained-random testbench): in this case
study we customize DLX with constrained-random testbenches that allow the use of differ-
ent combinations of instructions. Insight [Avery 2008], a commercial symbolic simulator
that can symbolically simulate behavior-level testbenches as well as gate-level netlists, is
used in this case study. The circuit is initialized to a statein which all general registers are
symbols and all control registers are scalar values. We thenprepare four testbenches that
generate different combinations of instructions with random data values, and the number
of cycles used in verification is 10. In this case study, we report the numbers of registers
that are proven to be constant under different testbenches.Those registers can then be
removed to simplify the circuit, and the results are summarized in Table IV. The results
suggest that when fewer numbers of instructions are used, more logic becomes redundant
and can be removed. Since we assign random values to data inputs in the testbenches, the
customized circuit will produce correct outputs for any input as long as the instructions
used in the program comply with those used in the testbenchesand the control registers
return to their initial scalar values every 10 cycles. The latter condition can be achieved by
inserting a few NOPs before the 10-cycle boundary. This casestudy also suggests that by
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developing different constrained-random testbenches to model different usages, SWEDE
can generate various customized circuits to measure the trade-off among the functionality
of a circuit, the die area and its power consumption. Note that while previous case stud-
ies only focus on optimizing the combinational part of the circuits, in this case study we
actually performed a simple form of sequential optimization because some registers are
removed.

Table IV. Percentage of registers that can be removed using different combinations of instructions and random
data inputs. Runtime is the time for checking whether a register is constant.

Instructions allowed Register Runtime
reduction (sec)

NOP 60.4% 1
ADD, ADDI, NOP 33.9% 8

ADD, ADDI, LW, SW 31.9% 12
ADD, ADDI, LW, SW, 10.1% 37
SLL, SRA, BEQ, ORI

5.2 Comparison with Existing Tools

In this experiment we compared CleanSlate and InterSynth with Espresso and a commer-
cial tool (Tool1). We used the ABC system [ABC 2007] to implement the interpolation-
based procedure InterSynth for computing multi-level representations of Boolean func-
tions that agree with the given on-set/off-set. The resultsare verified by checking that
interpolants are implied by the on-sets and do not overlap with the off-sets. To avoid the
influence of technology mapping on our experiments, we only used inverters and basic
two-input gates. To evaluate Espresso, which lacks a technology mapper, we fed the opti-
mized truth tables to ABC. We used 128 random patterns to generate the truth tables, and
summarized the results in Table V. CleanSlate and InterSynth outperform Espresso and
Tool1, producing the smallest netlists in just a small fraction of the time. Moreover, in
several cases Tool1 timed-out after one hour. We also tried synthesizing from care sets of
256, 512 and 1024 random patterns using the same circuits. Wefound that CleanSlate can
finish all the benchmarks within 6.5 minutes, while Espressoand Tool1 timed-out after 1
hour for most of the benchmarks.

To compare CleanSlate and InterSynth with traditional techniques based on decision
diagrams and sum-of-product manipulations, we conducted another experiment that op-
timizes the truth tables using the MVSISmfscommand [MVSIS 2005]. Since MVSIS
requires don’t-care terms to be explicitly specified in the input file when the PLA format is
used, we reduced the truth tables to include only the first 16 inputs so that the file sizes were
reasonable. The results are summarized in Table VI. From thetable we can observe that
MVSIS often produces the smallest netlists. However, sinceruntime is also significantly
longer, this solution cannot scale to large designs. The results also indicate that CleanSlate
outperforms InterSynth in every instance, suggesting thatCleanSlate may be more suitable
for optimizing truth tables with fewer inputs.

Note that the complexity of the interpolation procedure, inthe worst case, is the same
as that of Boolean satisfiability for circuit-based problems: exponential in the number of
input variables of the circuit and in the number of logic levels. However, in most of the
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Table V. Comparison of existing tools and SWEDE using one-hour time-out. All our solu-
tions, CleanSlate, InterSynth and FastShrink, provide better synthesis quality with signifi-
cantly shorter runtime.

Bench- Number of cells after (re)synthesis
mark Truth table based Netlist based

Espresso Tool1 CleanSlate InterSynth FastShrink
(SignalMerge)

C1908 2518 6891 1352 828 284(332)
C2670 6098 T/O 4467 2592 571(665)
C3540 1925 6271 1140 1980 1059(1094)
C5315 5183 T/O 3594 5882 1238(1312)
C7552 5072 T/O 3644 4923 1311(1387)

Bench- Runtime (s)
mark Truth table based Netlist based

Espresso Tool1 CleanSlate InterSynth FastShrink
(SignalMerge)

C1908 16.19 143.76 4.17 0.99 33.68(0.32)
C2670 1494.51 T/O 45.26 34.81 54.13(1.36)
C3540 29.12 193.69 3.55 2.01 115.4(1.54)
C5315 635.17 T/O 27.70 25.04 179.56(1.42)
C7552 911.54 T/O 35.39 26.68 150.51(0.71)

Table VI. Comparison of MVSIS and SWEDE. Due to input format limitations of MVSIS,
the truth tables were reduced to contain only 16 inputs.

Bench- Number of cells after synthesis Runtime (s)
mark MVSIS CleanSlate InterSynth MVSIS CleanSlate InterSynth
C1908 773 1485 1693 37.20 0.14 1.79
C2670 4053 4675 9188 210.36 0.37 6.30
C3540 814 1232 1652 32.33 0.12 1.76
C5315 3425 3757 7508 203.79 0.41 4.54
C7552 3443 3820 7355 166.01 0.41 4.34

practical cases, it works well because the number of conflicts (the metric that determines
the number of resolution steps and, therefore, the initial size of the interpolant) is relatively
small. For the designs synthesized by InterSynth in this experiment, there were no more
than 5,000 conflicts, which led to initial interpolants whose size did not exceed 50,000 AIG
nodes.

Although CleanSlate and InterSynth, which operate from a truth table specification, pro-
duce comparatively better results than Espresso and commercial tools, a comparison be-
tween Table V and Table I shows that the generated netlists are still larger than the original
ones. The reason is that the original netlists are often produced from higher-level specifi-
cations, which include conceptual structures that lead to better optimizations. On the other
hand, trying to synthesize a compact netlist using only input and output values is much
more difficult. Therefore, if a netlist is available, the best optimizations can be obtained
through FastShrink, whose results are also shown in Table V.

SWEDE is based on signatures, which can be calculated easilyusing simulation. This
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makes SWEDE simple to use because designers only need to provide input vectors to
the circuit that belong to the care terms. Since signatures can be represented compactly
using bit-vectors and allow bit-parallel computation, oursolution is both fast and memory-
efficient. As our experimental results show, we can handle half-million input vectors in
less than three hours.

6. CONCLUSIONS

To reduce circuit design complexity in the multi-billion transistor era, SoC and embedded
systems heavily rely on reuse and third-party IP components. Often, the design environ-
ment surrounding such components uses only a fraction of thefunctionality that these
general-purpose components implement. The unused logic inthose circuit blocks not only
occupies valuable die area but also consumes more power, hurting the circuit’s performance
and quality. Hence, new synthesis optimization opportunities are available in simplifying
these components to the subset of functionality required bythe system they are embedded
in. Surprisingly, existing synthesis tools perform poorlyin this context, which typically
involves a small care-set and a very large don’t-care set. Toaddress this problem, we pro-
posed a new tool called SWEDE, and provided three new synthesis techniques which can
specialize a circuit using external don’t-cares: FastShrink, CleanSlate and InterSynth. Un-
like traditional synthesis tools that pursue maximal use ofdon’t-cares by explicitly branch-
ing on different don’t-care assignments, our greedy algorithms (SignalMerge and the first
phase of CleanSlate) implicitly exploit the fact that most terms are don’t-cares and quickly
generate a small netlist. Further circuit optimization is performed by our ShannonSynth
technique and the second phase of CleanSlate. This novel synthesis flow allows SWEDE
to scale better when massive don’t-cares exist. In addition, SWEDE can reuse existing
verification environments, such as direct test or constrained-random testbenches, for cir-
cuit customization. Therefore, it can make sure whatever verified by the testbenches is still
correct in the customized circuits. Since such testbenchesexist in most verification flows,
SWEDE can be adopted easily in most designs. As our empiricalresults indicate, SWEDE
provides comparable or better synthesis quality than state-of-the-art tools while running
10X faster. In fact, SWEDE can handle designs as large as 30K cells with 0.5M care-set
vectors in a few hours, demonstrating its superior scalability and efficiency.

We discussed a number of new applications enabled by SWEDE, including new system-
design paradigms and solutions to current engineering problems. These new applications
promise to produce circuits that run faster, consume less power, and can be used as inex-
pensive back-up modules for larger circuits that may fail during operation.
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