
8

Probabilistic Transfer Matrices in Symbolic
Reliability Analysis of Logic Circuits

SMITA KRISHNASWAMY, GEORGE F. VIAMONTES, IGOR L. MARKOV,
and JOHN P. HAYES

University of Michigan, Ann Arbor

We propose the probabilistic transfer matrix (PTM) framework to capture nondeterministic behav-

ior in logic circuits. PTMs provide a concise description of both normal and faulty behavior, and are

well-suited to reliability and error susceptibility calculations. A few simple composition rules based

on connectivity can be used to recursively build larger PTMs (representing entire logic circuits)

from smaller gate PTMs. PTMs for gates in series are combined using matrix multiplication, and

PTMs for gates in parallel are combined using the tensor product operation. PTMs can accurately

calculate joint output probabilities in the presence of reconvergent fanout and inseparable joint

input distributions. To improve computational efficiency, we encode PTMs as algebraic decision

diagrams (ADDs). We also develop equivalent ADD algorithms for newly defined matrix opera-

tions such as eliminate variables and eliminate redundant variables, which aid in the numerical

computation of circuit PTMs. We use PTMs to evaluate circuit reliability and derive polynomial

approximations for circuit error probabilities in terms of gate error probabilities. PTMs can also

analyze the effects of logic and electrical masking on error mitigation. We show that ignoring logic

masking can overestimate errors by an order of magnitude. We incorporate electrical masking

by computing error attenuation probabilities, based on analytical models, into an extended PTM

framework for reliability computation. We further define a susceptibility measure to identify gates

whose errors are not well masked. We show that hardening a few gates can significantly improve

circuit reliability.

Categories and Subject Descriptors: B.6.2 [Logic Design]: Design Aids; B.6.3 [Logic Design]:

Reliability and Testing

General Terms: Reliability, Performance

Additional Key Words and Phrases: Symbolic analysis, fault tolerance

ACM Reference Format:
Krishnaswamy, S., Viamontes, G. F., Markov, I. L., and Hayes, J. P. 2008. Probabilistic trans-

fer matrices in symbolic reliability analysis of logic circuits. ACM Trans. Des. Autom. Electron.

Syst. 13, 1, Article 8 (January 2008), 35 pages. DOI = 10.1145/1297666.1297674 http://doi.acm.org/

10.1145/1297666.1297674

This work has been supported by the National Science Foundation under Grant CCF-0205288, by

the DARPA QuIST program, and by the U.S. Air Force under agreement No. FA8750-05-1-0282.

Authors’ addresses: Department of Electrical Engineering and Computer Science, Advanced Com-

puter Architecture Lab, 2260 Hayward, Ann Arbor, MI 48109-2121; email: {smita, gviamont,

imarkov, jhayes}@eecs.umich.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/01-ART8 $5.00 DOI 10.1145/1297666.1297674 http://doi.acm.org/

10.1145/1297666.1297674

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:2 • S. Krishnaswamy et al.

1. INTRODUCTION AND BACKGROUND

As digital device technology evolves, nondeterministic circuit behavior is be-
coming more prevalent for several reasons:

—Single-event upsets induced by external radiation, which can temporarily
affect logical functionality.

—Increased process variation and quantization effects in deep-submicron
CMOS VLSI circuits (common effects for which many statistical models have
been proposed).

—Inherently probabilistic technologies such as quantum computing devices
and carbon nanotubes.

The literature on circuit testing has a long history of treating circuits prob-
abilistically. Many papers have dealt with the problem of signal probability es-
timation [Parker and McCluskey 1975; Ercolani et al. 1989; Savir et al. 1983],
which was originally motivated by random pattern testability concerns. The
main idea is that the probability of a signal being a 0 or 1 gives some indication
of the difficulty in controlling (and therefore testing) the signal. In contrast to
signal probability estimation, we deal with complex probabilistic failure modes,
error propagation conditions, and their effects on circuit behavior and reliabil-
ity. Exact circuit reliability evaluation, in general, involves computing not just a
single output distribution, but rather the output error probability for each input
pattern. In cases where each gate has errors that are input pattern-dependent,
even if the input distribution is fixed, simply computing the output distribu-
tion does not give the overall circuit error probability. For instance, if only the
XOR gate in Figure 1 has an output bit-flip error, then the output distribution
is unaffected—but the wrong output is paired with each input. Therefore, we
need to compute the error associated with each input vector separately.

Consider the circuit in Figure 1. Given that each gate has error probability
p = 0.1, the circuit error probability for input combination 000 is 0.244. Input
combination 111 has error probability 0.205. The overall error rate of the circuit
is the sum of the error probabilities weighted by the input combination prob-
abilities. The probability of error for the circuit in Figure 1, given the uniform
input distribution, is 0.225. Note that joint probabilities of input combinations
rather than individual input probabilities are necessary to capture correlations
among inputs.

We reason about circuit reliability and other aspects of probabilistic behav-
ior using the probabilistic transfer matrix (PTM) framework. This framework
forms an algebra to represent circuits with probabilistic failure modes, that
is, gates exhibiting varying pattern-dependent error probabilities. PTM meth-
ods implicitly capture signal correlations caused by reconvergent fanout. These
methods are useful in determining the impact of path-based cumulative effects
such as glitch attenuation and logic masking on error propagation.

We will first describe PTMs, and then an ADD-based implementation. As is
well known, a truth table represents the full range of input/output combina-
tions for a gate, wire, or any logic function. The truth table can be viewed as a
0/1 matrix whose binary row (column) indices correspond to inputs (outputs).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:3

Fig. 1. Sample logic circuit and its symbolic PTM formula.

In such a matrix M for an n-input, m-output logic function f , each entry M (i, j),
with binary indices i = i0i1 . . . in−1, j = j0 j1 . . . jm−1, contains a 1 if the binary
inputs i0, i1, . . . in−1 produce the binary output values j0, j1, . . . jm−1, and con-
tains a 0 otherwise. This representation is referred to here as an ideal transfer
matrix (ITM). A probabilistic transfer matrix (PTM) is obtained from an ITM,
and therefore from a truth table, by allowing each entry to contain any real
value in the range

[
0, 1

]
. Each such value gives the conditional probability that

a certain input combination produces a certain output combination, potentially
as the result of an error. As we demonstrate, PTMs can represent a wide variety
of faults, both probabilistic and deterministic.

The PTMs for logic circuits are constructed from the PTMs of their con-
stituent gates and wires in a systematic way based on their connectivity. The
PTMs of gates connected in series are multiplied, while the PTMs of gates in
parallel are tensored, that is, combined using the tensor or Kronecker product.
The PTM formula for a circuit provides a concise algebraic representation of
the structure and function (both deterministic and probabilistic) of a circuit,
akin to a Boolean formula, where ⊗ denotes the tensor product. Figure 1 shows
a circuit and its PTM formula. Each term in the formula corresponds to a gate
or wiring PTM. For instance, NAND2p is a 2-input NAND gate with output
error probability p. The numerical evaluation of a symbolic PTM formula for
an entire circuit can produce valuable information about output error proba-
bilities. To aid in such evaluation, we introduce new matrix operations such as
eliminate variables, eliminate redundant variables and compute fidelity.

Limited scalability is often a price that is paid for a general framework that
captures complex circuit behavior. Therefore, we develop an implementation of
the PTM framework that uses algebraic decision diagrams (ADDs) to compress
matrices. We also derive several ADD algorithms that can be used to directly
compress and combine the PTMs in order to compute the circuit PTM. Figure 2
gives a PTM for the circuit in Figure 1 along with the corresponding ADD. The
PTM represents the situation where each gate of Figure 1 has a probability
p = 0.05 of an output bit flip. Multiple occurrences of the same value in the PTM
of Figure 2 suggests that PTMs are normally compressible. ADDs recognize
and eliminate this repetition by retaining only one copy of each distinct PTM
entry, although they introduce additional structural nodes. In some cases, ADDs
contain exponentially fewer nodes than the number of entries in the explicit

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:4 • S. Krishnaswamy et al.

Fig. 2. (a) ITM for the circuit in Figure 1; (b) circuit PTM where each gate experiences error with

probability p = 0.05; (c) ADD encoding of the PTM.

matrix. In this situation, linear-algebraic transformations can be applied to the
ADD exponentially faster than to the matrix.

A major technical challenge is to develop efficient ADD algorithms for PTM
operations that operate directly on the compressed forms. As noted above, ten-
sor and matrix multiplication algorithms are needed for PTM-based computa-
tion. An ADD algorithm for matrix multiplication is given in Bahar et al. [2003],
which involves taking a series of dot products using the APPLY operation. An
ADD algorithm for the tensor product is given in Viamontes et al. [2003]. In
addition, we develop ADD operations for the new operations mentioned above.
These operations are often needed to reconcile dimensions as the algorithms
from Bahar et al. [2003] and Viamontes et al. [2003] were originally intended
for square matrices.

Recently, a lot of attention has been given to calculating the soft error rate
(SER) of a digital circuit [Zhang et al. 2006; Miskov-Zivanov and Marculescu
2006; Zhang and Shanbhag 2004; Dhillon et al. 2005]. Most proposed tech-
niques primarily model masking mechanisms such as logic masking, electri-
cal masking, and latching-window masking in various levels of electrical de-
tail [Shivakumar et al. 2002]. The PTM framework provides a matrix-based
mathematical formalism for such work. We illustrate this by showing how to
approximate electrical masking explicitly using PTMs. Our goal is technology-
independent logical modeling where relevant electrical effects can be approxi-
mated if desired.

Various probabilistic approaches have also been applied to symbolic model
checking and reachability analysis. These methods are mainly concerned with
verifying finite state machines whose transitions are nondeterministic [Hinton
and Kwiatkowska 2006]. They do not generally address circuit-specific failure
modes although they have been shown to be useful in analyzing Von Neumann’s
NAND-multiplexing fault-tolerant architecture [Norman et al. 2005].

The main contributions of this work are:

—The matrix-based PTM framework which can represent a wide variety of
probabilistic behavior in logic circuits, both symbolically and numerically.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:5

—Rigorous computation and compression methods which involve the encoding
of PTMs into ADDs.

—Heuristics that enable the efficient implementation of PTM-based
algorithms.

—The application of PTMs to logic-level reliability analysis and gate hardening
against soft errors.

The remainder of this article is organized as follows: Section 2 introduces
PTMs and their basic operations. Section 3 explains how ADDs are used to
compress PTMs and efficiently implement PTM operations. Section 3 also out-
lines our general PTM evaluation algorithm, and presents empirical results.
Section 4 discusses approximations and heuristics that can be used to increase
the scalability of PTM-based computation and presents additional empirical
results. Section 5 examines several applications. Finally, Section 6 discusses
conclusions and future work.

2. PTM THEORY

In this section, we describe the PTM algebra and some key operations to ma-
nipulate PTMs and compute reliability. First we discuss the basic operations
needed to describe circuits and to compute circuit PTMs from gate PTMs. Next,
we define additional operations to extract reliability information, eliminate
variables and handle fanout efficiently. Finally we discuss how PTMs capture
signal correlation and a wide variety of errors.

2.1 PTM Algebra

Consider a circuit C with n inputs and m outputs. We order the inputs for
purposes of PTM representation and label them in0, . . . inn−1; similarly, the m
outputs are labeled out0, . . . outm−1. The circuit C can be represented by a 2n×2m

PTM M . The rows of M are indexed by an n-bit vector whose values range
from 000 . . . 0︸ ︷︷ ︸

n

to 111 . . . 1︸ ︷︷ ︸
n

. The row indices correspond to truth assignments

of the circuit’s inputs. Therefore, if i = i0i1 . . . in is an n-bit vector, then row
M (i) gives the output probability distribution for n input values in0 = i0, in1 =
i1 . . . inn−1 = in−1. Column indices, similarly, correspond to truth assignments of
the circuit’s m outputs. If j is an m-bit vector then entry M (i, j) is the conditional
probability that the outputs have values out0 = j0, out1 = j1 . . . outm−1 = jm−1

given input values in0 = i0, in1 = i1 . . . inn−1 = in−1, that is, P [outputs =
j|inputs = i]. Therefore, each entry in M gives the conditional probability that
a certain output combination occurs given a certain input combination.

Definition 1. Given a circuit C with n inputs and m outputs, the proba-
bilistic transfer matrix for C is a 2n × 2m matrix M whose entries are M (i, j) =
P [outputs = j|inputs = i].

Definition 2. A fault-free circuit has a PTM called an ideal transfer matrix
(ITM), in which the correct logic value of each output occurs with probability 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:6 • S. Krishnaswamy et al.

The PTM for a circuit represents its functional behavior for all input and
output combinations. An input vector for an n-input circuit is a row vector with
dimensions 1×2n. Entry v(i) of an input vector v represents the probability that
the input values in0 = i0, in1 = i1 . . . inn−1 = in−1 occur. When an input vector
is right-multiplied by the PTM the result is an output vector of size 1×2m. The
output vector gives the resulting output distribution.

Often, PTMs are defined for the gates of a logic circuit. A PTM for the entire
circuit can then be derived from the PTMs of its gates and their interconnec-
tions. The basic operations needed to compute the circuit PTM from compo-
nent PTMs are the matrix and tensor products. Consider the circuit C formed
by connecting two gates g1 and g2 in series; that is, the outputs of g1 are
connected to the inputs of g2. Suppose these gates have PTMs M1 and M2,
then the entry M (i, j) of the resulting PTM M for C represents the probability
that g2 produces output j given g1 has input i. This probability is computed
by summing over all values of intermediate signals (outputs of g1 which are
also inputs of g2) for input i of g1 and output j of g2. Therefore each entry
M (i, j) = ∑

all l M1(i, l)M2(l, j). This operation corresponds to the matrix prod-
uct M1M2 of the two component PTMs.

Now suppose that circuit C is formed by two parallel gates g1 and g2 with
PTMs M1 and M2. Each entry in the resulting matrix M should represent
the joint conditional probability of a pair of input-output values from g1 and
a pair of input-output values from g2. Each such entry is therefore a product
of independent conditional probabilities from M1 and M2 respectively. These
joint probabilities are given by the tensor product operation.

Definition 3. Given two matrices M1 and M2 with dimensions 2k × 2l and
2m×2n respectively, the tensor product M = M1⊗M2 of M1 and M2 is a 2km×2ln

matrix whose entries are:

M (i0 . . . ik+m−1, j0 . . . jl+n−1) = M1(i0 . . . ik−1, i0 . . . jl−1)

× M2(ik . . . ik+m−1, jl . . . jl+n−1)

Figure 3 shows the tensor product of an AND ITM with an OR ITM. Note that
the OR ITM appears once for each occurrence of a 1 in the AND ITM; this is a
basic feature of the tensor product.

Besides the usual logic gates (AND, OR, NOT, etc.), it is useful to define
three special gates for circuit PTM computation. These are (i) the n-input iden-
tity gate with ITM denoted In, (ii) the n-output fanout gate Fn, and (iii) the
swap gate swap. These wiring PTMs are shown in Figure 4.

An n-input identity gate simply outputs its input values with probability
1. It corresponds to a set of independent wires or buffers and has the 2 × 2
identity matrix as its ITM. Larger identity ITMs can be formed by the tensor
product of smaller identity ITMs. For instance, the ITM for a 2-input, 2-output
identity gate is I2 = I ⊗ I . More generally, Im+n = Im ⊗ In. An n-output fanout
gate, Fn, copies an input signal to its n outputs. The ITM of a 2-output fanout
gate, shown in Figure 4(b), has entries of the form F2(i0, j0 j1) = 1 where i0 =
j0 = j1 with all other entries being 0. Therefore, the 5-output fanout ITM F5

has entries F5(0, 00000) = F5(1, 11111) = 1, with all other entries 0. Wire

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:7

Fig. 3. Illustration of the tensor product operation: (a) circuit with parallel AND and OR gates;

(b) circuit ITM formed by the tensor product of the AND and OR ITMs.

Fig. 4. Wiring PTMs: (a) identity gate (I) ; (b) 2-output fanout gate (F2); (c) adjacent swap gate

(swap).

Fig. 5. Illustration of PTM calculation; vertical lines separate levels of the circuit.

permutations such as crossing wires are represented by swap gates. The ITM
for an adjacent wire swap (a simple two-wire crossover) is shown in Figure 4(c).
Any permutation of wires can be modeled by a series of adjacent swaps.

Example 1. Consider the circuit in Figure 5—this is the same circuit as in
Figure 1 with the wiring gates made explicit. The PTMs for the gates with error

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:8 • S. Krishnaswamy et al.

probability p are as follows:

⎡
⎢⎢⎢⎢⎣

p 1 − p

p 1 − p

p 1 − p

1 − p p

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − p p

p 1 − p

p 1 − p

1 − p p

p 1 − p

1 − p p

1 − p p

1 − p p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
p 1 − p

1 − p p

]

NAND2p XOR3p NOTp

The circuit PTM is expressed symbolically by the formula in Figure 5. Each
parenthesized term in the equation corresponds to a level in the circuit. The
advantage of evaluating the circuit PTM using such an expression is that the
error probabilities for the entire circuit can be extracted from it.

2.2 Additional Operations

In addition to the basic operations of matrix multiplication and tensor product,
we introduce the following three operations to increase the scope and efficiency
of PTM-based computation:

—fidelity: This operation measures the similarity between an ITM and a cor-
responding PTM. It is used to evaluate the reliability of a circuit.

—eliminate variables: This operation computes the PTM of a subset of inputs
or outputs starting from a given PTM. It can also be used to compute the
probability of error of individual outputs.

—eliminate redundant variables: This operation eliminates redundant input
variables which result from tensoring matrices of gates that are in different
fanout branches of the same signal.

We now formally define and describe these operations in more detail. First,
we define the element-wise product used in computing fidelity.

Definition 4. The element-wise product of two matrices A and B, both of
dimension n×m, is denoted A.∗B = M and defined by M (i, j) = A(i, j)×B(i, j).

To obtain the fidelity, the element-wise product of the ITM and the PTM is
multiplied on the left by the input vector, and the norm of the resulting matrix
is computed. In the definition below, ||v|| denotes the l1 norm of vector v.

Definition 5. Given a circuit C with PTM M , ITM J , and input vector v,
fidelity(v, M , J) = ||v(M . ∗ J)||.

The fidelity of a circuit is a measure of its reliability. Figure 6 illustrates the
fidelity computation on the circuit from Figure 1. The ITM, shown in Figure 2(a),
is denoted J and the PTM, shown in Figure 2(b), is denoted M .

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:9

Fig. 6. Matrices used to compute fidelity for the circuit from Figure 1: (a) input vector; (b) result

of element-wise multiplication of ITM and PTM; (c) result of left-multiplication by input vector.

Example 2. Consider the circuit C from Figure 1 with inputs {w, x, y} and
output {z} . The circuit PTM is calculated using the PTMs from Example 1 with
probability of error p = .05 at each gate, on all inputs. Figure 6 shows inter-
mediate matrices needed for this computation. The fidelity(v, M , J) is found by
first element-wise multiplying J and M , then left-multiplying by an input vec-
tor v. The l1 norm of the resulting matrix is fidelity(v, M , J) = (0.371 + 0.371) =
0.743. The probability of error is 1 − 0.743 = 0.257.

The eliminate variables operation is used to compute the “sub-PTM” of a
smaller set of input and output variables. We formally define it for 1-variable
elimination.

Definition 6. Given a PTM matrix M that represents a circuit C with inputs
in0 . . . inn−1, eliminate variables(M , ink) is the matrix M ′ with n − 1 input
variables in0 . . . ink−1ink+1 . . . ink+1 . . . inn−1 whose rows are M ′(i0 . . . ik−1ik+1 . . .

in−2, j) = M (i0 . . . ik−1 0 ik+1 . . . in−2, j) + M (i0 . . . ik−1 1 ik+1 . . . in−2, j).

The eliminate variables1 operation is defined similarly for output variables.
The elimination of two variables can be achieved by eliminating each of the
variables individually in arbitrary order. Figure 7 demonstrates the elimination
of a column variable from a subcircuit C′ of the circuit in Figure 5 formed by the
logic between inputs w, x and outputs g , h. The PTM for C′ with probability of
error p = 0.05 on all its gates is given by:

(F2 ⊗ F2)(swap ⊗ NOTp)(NAND2p ⊗ NAND2p).

If we eliminate output h, then we can isolate the conditional probability dis-
tribution of output g , and vice versa. Output h corresponds to the second vari-
able of the PTM in Figure 7(b). To eliminate this variable, columns 0 and 1
of Figure 7(b) are added and the result is stored in column 1 of Figure 7(c).
Columns 2 and 3 of M are also added and the result is stored in column 2. The
final PTM gives the probability distribution of output variable g in terms of

1The eliminate variables operation is analogous to the existential abstraction of a set of variables x
in Boolean a function f [Hachtel and Somenzi 1996], given by the sum of the positive and negative

cofactors of f with respect to x: ∃x f = fx + fx . The eliminate variables operation on PTMs relies

on arithmetic addition of matrix entries instead of the Boolean disjunction of cofactors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:10 • S. Krishnaswamy et al.

Fig. 7. Example of the eliminate variables operation: (a) ITM of sub-circuit C′ from Figure 5;

(b) PTM of C′; (c) PTM with output variable h eliminated; (d) PTM with first output variable g
eliminated.

the inputs w and x. The same process is undertaken for elimination of the first
column variable in the PTM of Figure 7(d).

Often, parallel gates have common inputs due to fanout at an earlier level.
An example of this situation appears in level L3 of Figure 5 due to fanout at
level L1. The fanout gate was introduced to handle such situations; therefore,
the level L1 PTM in Example 1 was composed of fanout PTMs tensored with an
identity PTM. However, this method of handling fanout can be computationally
inefficient because it requires numerous matrix multiplications. Therefore, we
introduce an operation called eliminate redundant variables to remove redun-
dant signals due to fanout or other causes, in either inputs or outputs. This
operation is more efficient than matrix multiplication because it is linear in the
size of the matrix, whereas matrix multiplication is cubic.

Definition 7. Given a circuit C with n inputs in0, . . . inn−1, and PTM M , let
ink and inl be two inputs that are identified with each other. Then eliminate
redundant variables(M , ink , inl) = M ′ where M ′ is a matrix with n − 1 input
variables whose rows are M ′(i1 . . . ik . . . il−1 il+1 . . . in−1, j) = M (i1 . . . ik . . . il−1

ik il+1 . . . in−1, j).

The definition of eliminate redundant variables can be extended to a set
of input variables that are redundant. Figure 8 shows an example of the
eliminate redundant variables operation. PTMs yield correct output probabil-
ities despite reconvergent fanout because the joint probabilities of signals on
different fanout branches are computed correctly using the tensor product and
the eliminate redundant variables operations. Suppose two signals on differ-
ent fanout branches reconverge at the same gate in a subsequent circuit level.
Since the joint probability distribution of these two signals is computed cor-
rectly, the serial composition of the fanout branches with the subsequent gate
is also correct by the properties of matrix multiplication. On the other hand,
if the individual signal probabilities are computed separately then these prob-
abilities cannot be recombined into the joint probability without some loss of
accuracy.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:11

Fig. 8. Signal forwarding using the eliminate redundant variables operation: (a) circuit with sig-

nal b fanning out to two different levels; (b) NAND ⊗ I , adding b as an input and output; (c) final

ITM for circuit computed by removing rows in boldface.

Fig. 9. Example of output inseparability: (a) PTM for a probabilistic wire-swap; (b) PTM for each

individual output after applying eliminate variables; (c) incorrect result from tensoring two copies

of the PTM from part (b) and applying eliminate redundant variables.

The eliminate redundant variables operation can efficiently handle fanout to
different levels by “signal forwarding” as seen in Figure 8. Signal b is required
at a later level in the circuit; therefore, b is added to the ITM as an output
variable by tensoring the AND ITM with an identity matrix. However tensoring
with the identity ITM adds both an input and output to the level. Hence, the
additional input is redundant with respect to the second input of the AND gate
and removed using eliminate redundant variables. Note that the removed rows
correspond to assigning contradictory values on identical signals.

2.3 Remarks

There are many cases of errors where input and output values cannot be sep-
arated, and combinations of these values must be taken into account. For ex-
ample, the conditional probabilities of the inputs or outputs cannot always be
stored separately in different matrices using the eliminate variables operation.
While such storage can alleviate the problem of state-space explosion inherent
in storing all possible combinations of inputs and outputs, it may not capture
correlations within the circuit.

Example 3. Suppose two wires have probability of 0.25 of swapping. The
matrix corresponding to this error is given in Figure 9(a). If we try to separate
the probability of each output using eliminate variables, the output probabil-
ities both have the PTM of Figure 9(b). If these outputs are tensored (with
redundant inputs eliminated) they result in the erroneous combined matrix
of Figure 9(c). This demonstrates that these two outputs cannot be correctly
separated; their joint conditional distributions are in fact inseparable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:12 • S. Krishnaswamy et al.

Fig. 10. PTMs for various types of gate errors: (a) a fault-free (ideal) 2-1 MUX gate; (b) first input

signal stuck-at 1; (c) first two input signals swapped; (d) probabilistic output bit-flip with p = 0.05;

(e) wrong gate: MUX replaced by 3-input XOR gate.

Just as some errors cannot be separated, some faults affect multiple gates
simultaneously. In this case, the combined PTM cannot be built from individual
PTMs and the joint probabilities must be obtained (or the exact correlation
determined). This same effect can occur with input vectors, which cannot always
be separated into probabilities of individual inputs. An example is given here:

00 01 10 11

[0.5 0 0 0.5]T

PTMs have the advantage that they can represent and manipulate joint proba-
bilities from the inputs to the outputs at every level. When necessary, individual
output distributions can be obtained using el iminate variables.

The PTM model can also represent a wide variety of circuit behaviors in-
cluding stuck-at faults and transient errors. The fact that there are separate
probabilities for each input and output, and the fact that they are propagated
simultaneously enable this generality. Figure 10 lists a sampling of errors rep-
resentable by PTMs.

3. COMPUTATION AND COMPRESSION OF CIRCUIT PTMs

The memory needed to store PTMs can be reduced by compressing them and
operating on the compressed forms. In this section, we discuss the compression
of PTMs using algebraic decision diagrams (ADDs) and develop a procedure for
computing circuit PTMs from gate PTMs.

3.1 Compressing Matrices with ADDs

In general, all entries of a 2n × 2m PTM can be distinct. However, commonly
used PTMs and most ITMs have many identical submatrices. For example, in
the ITM of an ideal n-input AND gate, all but the last row are identical (see
Figure 3). This suggests that circuit matrices can be significantly compressed
using decision diagrams.

Bahar et al. [1997] describe the encoding of a matrix using ADDs. Recall
that a BDD (binary decision diagram) is a directed acyclic graph representing
a Boolean function f (x0, x1, x2, . . . xn) with root node x0. The subtree formed
by the outgoing edge labeled 0 represents the cofactor f x ′

0
(x1 . . . xn) or the else

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:13

BDD. The subtree formed by the outgoing edge labeled 1 represents the cofactor
f x0

(x1 . . . xn), or the then BDD. Boolean constants are represented by terminal
nodes. ADDs are variants of BDDs where terminal nodes can take on any real
value; see Figure 2(c).

The ADD encoding of a matrix M is a rooted directed acyclic graph whose
entries depend on the row and column index variables (r0, c0, r1, c1 . . . rn, cn)
of M . The root of the ADD is the node labeled r0. The subtree formed by the
outgoing edge labeled 0 represents the top half of M , i.e., the half corresponding
to r0 = 0. The subtree formed by the outgoing edge labeled 1 represents the
bottom half of M , which has r0 = 1. Therefore, branches of ADDs correspond
to portions of PTMs. As in BDDs, the same path can encode several entries if
variables are skipped. The input variables are queried in a predefined order,
and this facilitates reductions by using the same node for identical submatrices.

We use the QuIDDPro library [Viamontes et al. 2003] to encode PTMs into
ADDs; we also added additional functions to this library for performing oper-
ations on PTMs. QuIDDPro includes the CUDD library and uses interleaved
row and column variable ordering. This ordering facilitates fast tensor prod-
ucts and matrix multiplications—key operations in the quantum-mechanical
simulations for which QuIDDPro was designed. The basic ADD functions used
in PTM computations include

—topvar(Q) : returns the root node of an ADD Q
—then(Q) : returns the 1 branch

—else(Q) : returns the 0 branch

—ITE(Q , T, E): refers to if-then-else. It takes a node Q corresponding to the
root, two ADDs T and E corresponding to the then and else branches, and
combines them into a larger ADD.

3.2 Handling Nonsquare Matrices

All matrix algorithms for ADDs that we are aware of assume square matrices,
but can represent nonsquare matrices using zero padding [Bahar et al. 1997;
Clarke et al. 1996; Viamontes et al. 2003]. A nonsquare matrix has fewer row
variables than column variables or vice versa. Recall that ADD variables are or-
dered, and nodes are levelized by decision variables. Any variable missing from
the ADD is interpreted as marking replicated matrix entries. In other words,
there is no dependence on the missing variable for the matrix entries, so the
matrix entries are identical for both values of the missing variable. Figure 11
illustrates a situation in which missing variables can create ambiguity. Both
the matrices in Figure 11 have identical ADDs despite the fact that the matrix
on the left has one column variable and the matrix on the right has two column
variables. Without zero-padding, these matrices have identical ADDs because
the matrix on the right has no dependency on the second column variable.
Therefore, the ADD for this matrix has only one column variable as well. To
prevent this ambiguity, missing rows or columns can be explicitly padded with
zeros.

Figure 12 describes an algorithm for padding matrices with zeros. This al-
gorithm assumes that there are more row variables than column variables;

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:14 • S. Krishnaswamy et al.

Fig. 11. PTMs with identical ADDs without zero-padding: (a) Matrix with only one column vari-

able; (b) matrix without dependency on the second column variable.

Fig. 12. The pad with zeros algorithm.

however, it can be easily modified to handle cases with more column variables
than row variables. Suppose a PTM with ADD A has 2m+1 rows and 2m columns.
The zero-padding of A is done by introducing a new node q with then(q) pointing
to the original ADD and else(q) pointing to the zero terminal. In Figure 12 the
function shift col var labels renames nodes representing column variables by
shifting the column variable number up to facilitate the introduction of missing
variables into the ADD.

Matrix multiplication and addition are compatible with zero padding [Bahar
et al. 1997]; however, the tensor product is not. When the tensor product of two
padded matrices A and B is computed, the result has spurious rows of zeros
which are carried over from the zero-padding of B. Figure 13 shows an exam-
ple of an ideal NOT gate tensored with an ideal zero-padded NAND gate and
illustrates the incorrect results obtained from tensoring zero-padded matrices.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:15

Fig. 13. (a) NOT gate ITM; (b) zero-padded NAND gate ITM; (c) their tensor product with incorrect

placement of all-zero columns.

Columns 3 and 4 erroneously consist entirely of zeros carried over from the
zero-padding of the NAND matrix.

To reconcile tensor products with zero padding we add dummy outputs
(copies of input signals) to a gate PTM to equalize the number of inputs and
outputs. This makes the PTM square, thereby eliminating spurious zeros. In
order to add a dummy output to a gate matrix we can simply “forward” one of
its input signals to the output as was done in Figure 8. Dummy outputs can
be subsequently removed by eliminating the corresponding column variable.
Since eliminate variables removes a variable, it may be necessary to pad the
matrix with zeros to retain an equal number of row and column variables. In
such cases the zero padding is restored using the algorithm given in Figure 12.

3.3 Computing Circuit PTMs

A general algorithm for PTM computation is presented in Figure 14. First, a
gate library is specified by gate PTMs, and a circuit (in BLIF format) is read into
a data structure that stores individual gates. Next, gate PTMs are converted to
ADDs. The circuit is then topologically sorted from primary outputs to primary
inputs and the subsequent computation proceeds by topological level. The ADDs
for gates at each level are tensored, zero-tracking is performed, and finally
the eliminate redundant variables operation is applied. The ADD representing
each level, called levelADD in Figure 14, is then multiplied with circuitADD.
After all levels are multiplied, the circuitADD computation is complete. A detail
not shown in Figure 14 is that when a circuit has fanouts to multiple levels,
then the gate is placed at the first level at which it is needed, and its output is
forwarded to other levels as shown in Figure 8. The intermediate-level ADDs are
discarded after they are multiplied with the circuitADD. This is important for
the scalability of the implementation because levelADDs are the tensor products
of several gate ADDs and can have large memory complexity.

In place of the fanout gates described in Section 2, we use the
eliminate redundant variables operation from Definition 7, whose ADD imple-
mentation is given in Figure 15. By removing each duplicated input signal due
to fanout, the number of levels decreases and multiplications are saved. Previ-
ously computed partial results of the eliminate redundant variables operation
are stored in a common hash table, which is searched first to avoid travers-
ing down common paths or recomputing existing results. In the pseudo-code,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:16 • S. Krishnaswamy et al.

Fig. 14. Algorithm to compute the ADD representation of a circuit PTM. The gate struct stores

functional information associated with a gate including the PTM, input names, output names and

ADD.

capitalized variables refer to ADDs and lower-case variables refer to nodes. This
algorithm for the eliminate redundant variables operation searches the ADD
along all paths for the first of two redundant variables v1, v2 with v1 < v2 in the
ADD node ordering. Whenever v1 is found on a path, we traverse down then(v1)
until v2 is found. We eliminate the v2 node and point the preceding node to
then(v2). Next, we traverse down else(v1) and search for v2, this time we elimi-
nate v2 and point the preceding node to else(v2). This process can be repeated in
cases where there are more redundant variables. Both eliminate variables and
eliminate redundant variables are operations that could disturb the equality
between row and column variables since they both remove variables. There-
fore, it may be necessary to introduce zero-padding by applying pad with zeros
(Figure 12).

After the ADD for the PTM and ITM of a circuit are computed, we can com-
pute the fidelity of the circuit to extract reliability information (see Figure 16).
This operation is implemented by first taking the element-wise product of the
ADD for the ITM with the ADD for the PTM and then performing a depth-first

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:17

Fig. 15. The eliminate redundant variables algorithm.

traversal to sum probabilities of correctness. The traversal of the ADD sums the
terminal values while keeping track of skipped nodes. A node which is skipped
in an ADD is an indication that the terminal value is repeated a power-of-two
times, depending on the skipped variable’s ordering. Note the ADD implementa-
tions of both eliminate redundant variables and fidelity have complexity linear
in the size of the ADDs in their arguments. This is important because, once
PTMs are calculated, we cannot resort to decompression since the entire PTM
may be large.

Results from calculation of circuit ITMs, circuit PTMs, and reliability (com-
puted using the fidelity operation) are listed in Table I. We use the smaller
LGSynth 91 and LGSynth 93 benchmarks with independent uniform distri-
butions on all primary inputs. These simulations were conducted on a Linux
workstation with a 2GHz Pentium 4 processor. In our experiments CPU time
was limited to 24 hours. The run-times and memory requirements are sen-
sitive to the width of a circuit, that is, the largest number of signals at any
level, which determines the size of the tensor products and zero-tracking ma-
trices. Empirically, circuits with widths of around 40 signals can be evaluated

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:18 • S. Krishnaswamy et al.

Fig. 16. The fidelity algorithm.

efficiently. In these experiments, we calculate entire circuit PTMs which means
output combination probabilities are computed for all input combinations. If
we separate output cones and calculate individual output probabilities, the re-
sults would scale much further. However, as discussed before, individual output
probabilities cannot always be accurately combined to obtain the overall error
probability of a circuit. The number of ADD nodes required for reliability com-
putation on each of the circuits (including all intermediate nodes required in
computation) is also listed in Table I. This includes the number of nodes used
for the ITM, PTM, and intermediate computations.

Table I gives the overall reliability of the circuits for gate error probabilities
of 0.05 and also for one-way gate errors of 0.05. In CMOS gates, an erroneous
output value 0 is more likely than an erroneous value 1 because SEUs typically
short-circuit power to ground. PTMs can encode this bias easily since error
probabilities can be different for different input combinations. Relevant empir-
ical results are given in the “one-way” columns in Table I. Note that circuits
with a high output-to-input ratio, such as DECOD.blif, tend to magnify gate er-
rors at fanout stems, and therefore have lower reliability. PTM computation for
p = 0.05 requires greater memory and longer runtime because less compres-
sion is possible. Ideal matrices have large blocks of 0s, which lend themselves
to more compression.

4. HEURISTICS FOR INCREASED SCALABILITY

We have presented ADD algorithms for PTM-based computation, but their
scalability appears limited due to the possibility of combinatorial explosion in

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:19

T
a

b
le

I.
R

e
li

a
b

il
it

y
C

o
m

p
u

ta
ti

o
n

a
n

d
P

e
rf

o
rm

a
n

ce
S

ta
ti

st
ic

s
o
n

V
a

ri
o
u

s
S

m
a

ll
B

e
n

ch
m

a
rk

s

C
h

a
ra

ct
e
ri

st
ic

s
P

ro
b
.

E
rr

o
r,

p
=

0
.0

5
N

o
.

o
f

P
e
rf

o
rm

a
n

ce
,

p
=

0
P

e
rf

o
rm

a
n

ce
,

p
=

0
.0

5

C
ir

cu
it

G
a

te
s

In
p

u
ts

O
u

tp
u

ts
W

id
th

T
w

o
-w

a
y

O
n

e
-w

a
y

0
O

n
e
-w

a
y

1
A

D
D

N
o
d

e
s

M
e
m

o
ry

(M
B

)
T

im
e
(s

)
M

e
m

o
ry

(M
B

)
T

im
e
(s

)

C
1

7
6

5
2

5
0

.2
1

6
0

.1
4

5
0

.0
8

5
2

0
0

3
1

.0
9

0
0

.0
0

2
0

.0
7

1
0

.3
1

3

m
u

x
6

2
1

1
2

3
0

.0
9

2
0

.0
3

6
0

.0
6

1
1

3
5

0
1

2
6

.1
3

0
3

.1
0

9
8

.3
4

1
2

.1
1

3

z4
m

l
8

7
4

2
0

0
.3

2
9

0
.1

8
3

0
.1

8
3

7
0

0
9

6
.5

9
4

1
.1

1
3

3
.0

3
0

0
.8

4
0

x
2

1
2

1
0

7
2

3
0

.3
8

6
0

.2
4

2
0

.1
8

8
2

8
4

8
6

1
1

.0
1

5
2

.3
4

4
2

3
7

.9
2

6
1

0
.5

2
3

p
a

ri
ty

1
5

1
6

1
2

3
0

.3
9

7
0

.2
6

8
0

.2
6

8
1

9
5

7
1

.0
6

0
0

.1
1

3
0

.3
3

7
0

.2
6

2

p
cl

e
1

6
1

9
9

1
6

0
.4

1
9

0
.1

2
2

0
.3

3
2

5
4

6
1

6
0

2
8

.5
8

6
6

.1
6

0
4

1
.9

5
6

4
.3

0
0

cu
2

3
1

4
1

1
2

3
0

.5
1

8
0

.1
7

2
0

.4
1

8
1

0
5

7
9

7
1

3
.3

8
5

2
.1

7
6

2
1

.5
4

9
3

.4
3

0

p
m

1
2

4
2

7
1

7
2

7
0

.6
2

4
0

.3
7

3
0

.4
0

3
4

5
4

6
2

3
7

7
.6

6
1

5
.0

3
1

2
1

.5
4

9
1

3
.3

4
0

9
sy

m
m

l
4

4
9

1
3

7
0

.4
6

5
0

.1
4

2
0

.0
6

2
1

0
4

6
6

7
4

2
4

4
4

5
.7

0
0

5
5

2
.6

6
8

5
3

4
1

.0
0

0
6

9
6

.2
1

1

x
o
r5

4
7

5
1

1
9

0
.4

6
5

0
.2

6
1

0
.4

3
0

4
6

7
8

5
4

6
.7

2
1

3
.5

3
9

1
0

5
5

6
.0

0
0

1
9

.5
8

2

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:20 • S. Krishnaswamy et al.

Fig. 17. Tree of AND gates used in Example 4 to illustrate the effect of evaluation ordering on

computational efficiency.

PTM sizes. In this section, we develop heuristic approximations that allow the
methodology to scale to industry-sized circuits. First, we discuss how dynamic
evaluation ordering improves scalability. Next, we demonstrate the use of hi-
erarchy in estimating the reliability of partitioned circuits. Finally, we present
reliability calculations using input vector sampling. Note that the role of PTMs
remains central to these heuristics because the cumulative effect of various
error-prone components is incorporated into the computation via vector-matrix
multiplication by PTMs.

4.1 Dynamic Evaluation Ordering

The ADD multiplication algorithm used in QuIDDPro, and adapted from
Bahar et al. [2003], has a major impact on the efficiency of PTM computations.
The worst-case time and memory complexity of this operation is O((|A||B|)2) for
two ADDs A and B. The PTM evaluation algorithm described in the previous
section first tensors gates for each level to form level PTMs, and then mul-
tiplies the level PTMs. This creates relatively large multiplication instances.
Smaller multiplications can be created by rescheduling the order of evaluation,
since delaying the tensor product operation until just before inputs need to be
multiplied can result in smaller multiplications.

Example 4. Consider the tree of AND gates in Figure 17. Suppose we
wish to compute its circuit PTM. The algorithm of Figure 14 requires topo-
logically sorting the circuit, calculating the PTM for each level and multiply-
ing the levels in order. The levels are L4 = {G15}, L3 = {G14, G13}, L2 =
{G12, G11, G10, G9}, L1 = {G8, G7, G6, G5, G4, G3, G2, G1}. The level PTMs
have dimensions 22 ×2, 24 ×22, 28 ×24, and 216 ×28 respectively. First we com-
pute L3 × L4 which is of dimension 24 × 2. Next, L2 is multiplied by L3 × L4,
yielding a matrix of size 28 × 2 and so on. The following matrix products are
performed: (22 × 2, 24 × 22), (24 × 2, 28 × 24), (28 × 2, 216 × 28). In the worst case,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:21

Table II. Comparison of Runtimes and Memory Usage for Levelized

Ordering and Ordering Computed by Dynamic Programming

Improved Ordering Levelized Ordering

Circuit Time(s) Memory(MB) Time(s) Memory(MB)

C17 0.212 0.000 1.090 0.004

mux 18.052 2.051 26.314 3.109

z4ml 3.849 1.004 6.594 1.113

x2 11.015 2.344 193.115 12.078

parity 1.060 0.113 1.07 0.133

pcle 28.810 3.309 98.586 6.160

decod 5.132 1.020 30.147 24.969

cu 23.700 2.215 13.385 2.176

pm1 72.384 3.734 77.661 5.031

cc 57.400 4.839 1434.370 155.660

9symml 89.145 6.668 4445.670 552.668

xor5 3.589 0.227 46.721 3.539

b9 9259.680 165.617 23164.900 295.984

c8 35559.500 930.023 mem-out mem-out

the ADD sizes are close to matrix sizes (in general, they are smaller as ADDs
provide compression), so the total cost of matrix multiplication is 250 +234 +218.
On the other hand, separating the gates (not tensoring) for as long as possible
starting from the primary inputs yields the following multiplication instances:
4(24 × 22, 22 × 2), 2(24 × 2, 22 × 2), (28 × 2, 22 × 2). Here, the total multiplication
cost is only 220 +227 +242. Therefore, scheduling matrix multiplication carefully
leads to a more efficient PTM computation algorithm.

If the output of a source gate is connected to more than one sink gate, there
are two possibilities: the first is to tensor these gate PTMs and eliminate the
redundant variables; the second possibility is to process these gates and keep
logic cones separate until they are naturally tensored at some future level. We
choose the latter approach, which exchanges multiplications for tensor prod-
ucts. This is advantageous as the tensor product has lower complexity than
multiplication. Determining the optimal order to multiply levels is similar to
solving the matrix chain multiplication problem [Cormen et al. 2001], which can
be solved by a dynamic programming algorithm in O(n3) time. Our application
can use the same algorithm if the cost of multiplying two matrices is estimated
based on their dimensions without taking ADD compression into account.

The results of applying the improved ordering for multiplication of levels
are given in Table II. Values in this table were produced on a Pentium 4 Xeon
processor running at 2GHz. In general this ordering method uses less memory
with a modest increase in runtimes. The runtime increase is partially due to
the overhead of the dynamic programming. However since memory was the
main bottleneck previously, this ordering stops the PTM evaluation program
from thrashing on some larger benchmarks.

4.2 Hierarchical Reliability Estimation

In this section, we extend PTM analysis hierarchically to estimate the relia-
bility of larger circuits partitioned into subcircuits. First the ITMs and PTMs
of all subcircuits are calculated. Then, in topological order, we calculate the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:22 • S. Krishnaswamy et al.

Fig. 18. Circuit used in Example 5 to illustrate hierarchical reliability estimation.

bit fidelities and output distributions of each of the subcircuit outputs. Since
evaluation proceeds in topological order, input fidelities are already calculated
for previously processed subcircuits.

Consider the circuit in Figure 18. We process subcircuit 1 first using the
primary input distributions of b, c, d , and e. We multiply the joint input distri-
bution of b, c, d , and e by the PTM for subcircuit 1 to obtain the bit-fidelities
and distributions on g and h. These are, in turn, used to form the input distri-
bution for subcircuit 2, along with a and f . After subcircuit 2 is processed we
will obtain the bit fidelity of the primary output i.

In order to formally define bit fidelity we introduce the abstract operation
for notational convenience.

Definition 8. For a PTM M and an output variable ok , M ′ = abstract(M , k)
is the matrix which results from the elimination of all variables except ok from
M. Therefore M ′ = eliminate variables(M , 0, 1, 2 . . . k − 1, k + 1 . . . m)

Definition 9. The bit fidelity of output ok of circuit C, with ITM J , PTM M ,
and input distribution v is the probability of error of the kth output bit, given by
bit fidelity(k, v, J, M) = fidelity(vk , Jk , Mk), where Jk = abstract(J, k), Mk =
abstract(M , k) and vk = abstract(v, k)

Suppose the input bit fidelities for a particular subcircuit are p1, p2, p3 . . . pn.
Then, in order to account for input error, the subcircuit PTM is multiplied by

Ip1
⊗ Ip2

. . . Ipn where Ip has the form
[p 1 − p

1 − p p

]
.

The probability distribution of each signal is also calculated by multiplying the
input distribution of each subcircuit by its ITM and then abstracting each of
the output probabilities. The algorithm details are given in Figure 19, where
SubCircArray is the topologically sorted array of subcircuits, PIs is the list of
primary inputs, POs is the list of primary outputs, Distro stores the separated
probability distribution of intermediate variables, and the Bfid array contains
bit fidelities of previously processed signals. At each iteration Bfid is updated
with output fidelities of the current subcircuit. At the termination of the algo-
rithm Bfid will contain the bit fidelities of the primary outputs.

This algorithm has several interesting features. First, it only calculates
PTMs of subcircuits and thus avoids the state space explosion associated with

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:23

Fig. 19. The Bit fidelity estimation algorithm.

directly computing the entire circuit PTM. For instance, if a circuit with n inputs
and m outputs is partitioned into two subcircuits each with n/2 inputs and m/2
outputs, the PTMs of the two subcircuits together are of size 2(2(n+m)/2), which
is significantly smaller than the circuit PTM, which has size 2n+m. Second, the
heuristic approximates joint probability distributions using marginal probabil-
ity distributions and averages local error probabilities at each subcircuit. Any
loss of accuracy is a result of the abstract operation and the averaging effect
that occurs in bit fidelity calculations. Therefore, the estimation technique will
be very accurate in cases where there is no reconvergent fanout between the
subcircuits. In fact, the heuristic is exact when each output bit has the same
error on all input combinations because in such cases averaging does not result
in a loss of information. In other cases, the accuracy will depend on the amount
of correlation between signals, and the variation in signal errors.

Example 5. We apply the algorithm of Figure 19 to the circuit in Figure 18.
Assume that each of the AND gates in Figure 18 has the following PTM and
ITM:

AND20.1 =

⎡
⎢⎢⎢⎢⎣

0.9000 0.1000

0.9000 0.1000

0.9000 0.1000

0.1000 0.9000

⎤
⎥⎥⎥⎥⎦ AND2 =

⎡
⎢⎢⎢⎢⎣

1 0

1 0

1 0

0 1

⎤
⎥⎥⎥⎥⎦

Suppose that primary inputs are uniformly distributed and have no errors.
Initialize Bfid[a] = Bfid[b] = Bfid[c] = Bfid[d] = BFid[e] = Bfid[f] = 1 and
Distro[a] = Distro[b] = Distro[c] = Distro[e] = Distro[f] = [0.5 0.5]. The input
vector for subcircuit 1 is given by:

vin1 = [0.0625 0.0625 0.0625 0.0625 . . . 0.0625].

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:24 • S. Krishnaswamy et al.

The PTM and ITM for subcircuit 1 are calculated as follows:

ITM1 = AND2 ⊗ AND2

PTM1 = AND20.1 ⊗ AND20.1

ITM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PTM1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.09 0.81 0.01 0.09

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.09 0.81 0.01 0.09

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.09 0.81 0.01 0.09

0.09 0.01 0.81 0.09

0.09 0.01 0.81 0.09

0.09 0.01 0.81 0.09

0.01 0.09 0.09 0.81

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fidelity and probability distribution for each output of subcircuit 1 are
calculated as follows:

vout1 = vin1 ∗ ITM1 = [0.5625 0.1875 0.1875 0.0625]

Distro[g] = abstract(vin1, g) = [0.75 0.25]

Distro[h] = abstract(vin1, h) = [0.75 0.25]

PTM1′ = (I (1) ⊗ I (1) ⊗ I (1) ⊗ I) ∗ PTM1 = PTM1

Bfid[g] = bit fidelity(g , Distro[g], PTM1′, ITM1) = 0.9

Bfid[h] = 0.9.

Similarly for subcircuit 2:

ITM2 = (I ⊗ AND2 ⊗ I)(I ⊗ F2 ⊗ I)(AND2 ⊗ AND2)(AND2)

PTM2 = (I ⊗ AND20.1 ⊗ I)(I ⊗ F2 ⊗ I)(AND20.1 ⊗ AND20.1)(AND20.1)

PTM2′ = (I ⊗ I0.9 ⊗ I0.9 ⊗ I)(PTM2)

vin2 = [0.5 0.5] ⊗ [0.75 0.25] ⊗ [0.75 0.25] ⊗ [0.5 0.5]

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:25

ITM2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PTM2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8920 0.1080

0.8856 0.1144

0.8920 0.1080

0.8856 0.1144

0.8920 0.1080

0.8856 0.1144

0.8920 0.108

0.8344 0.1656

0.8856 0.1144

0.8280 0.1720

0.8856 0.1144

0.8280 0.1720

0.8856 0.1144

0.8280 0.1720

0.8344 0.1656

0.3160 0.6840

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PTM2′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8920 0.1080

0.8851 0.1149

0.8920 0.1080

0.8810 0.1190

0.8920 0.1080

0.8810 0.1190

0.8920 0.1080

0.8441 0.1559

0.8851 0.1149

0.8229 0.1771

0.8810 0.1190

0.7819 0.2181

0.8810 0.1190

0.7819 0.2181

0.8441 0.1559

0.4133 0.5867

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vout2 = [0.9922 0.0078]

Distro[l] = [0.9922 0.0078]

BFid[l] = bit fidelity(l , Distro[l], PTM2′, ITM2) = 0.869.

Alternatively, calculating the fidelity using the circuit PTM gives fidelity =
0.862. This has an error of only 0.003 for gate errors in the range 0.1.

The fidelity of the entire circuit (rather than just its output bits) can be
further estimated by calculating the probability that any of the output bits
have any error using the binomial probability distribution. This once again
assumes that output signals are independent.

4.3 Input Vector Sampling

Reliability estimation requires computing the error associated with each input
combination. One way to approximate this is to evaluate a sampling of input
vectors. Evaluating the output distribution under specific input vectors involves
a series of vector-matrix multiplications where vectors representing signals are
multiplied by gate PTMs. The advantage of using the gate PTMs in this process
is that the cumulative effects of complex error modes are processed as signals
travel through the logic circuit.

The complexity of this method is due to the signal correlations caused by re-
convergent fanout. To improve accuracy, we store outputs of the same multiple-
output gate or the same fanout branch as joint probability distributions. Then,
when a gate only uses one of a set of k correlated signals as an input, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:26 • S. Krishnaswamy et al.

Table III. Reliability Estimation Using Input Vector Sampling on ISCAS85 Circuits

Characteristics Performance, p = 0.1 Reliability

Circuit Gates Inputs Outputs Time(s) Memory (MB) One-Way

b9 117 41 21 15.7 1.74 0.257

C432 160 36 36 161.5 6.4 0.369

C499 202 41 32 18.7 2.4 0.221

C880 383 60 26 30.0 5.7 0.320

C1908 880 33 25 220.7 11.5 0.373

C2670 1193 233 140 72.7 17.55 0.128

C3540 1669 59 22 330.94 21.2 0.436

C5315 2307 178 123 233.62 31.457 0.303

gate PTM is enlarged by tensoring with an Ik−1 to process the additional corre-
lated inputs. This way correlated signal probabilities are never separated. This
method has complexity that is linear in the circuit size. The associated constant
is related to the maximum gate size multiplied by the maximum number of sig-
nals stored jointly. In other words, for a circuit with N gates where the largest
gate has n inputs, if we store a maximum of K correlated signals jointly, the
complexity of input vector sampling is O(2nK N).

Note that this is different from the hierarchical reliability estimation algo-
rithm of Section 4.2. In the extreme case of that algorithm, each gate is in its
own partition and the error probability for the particular input distribution and
output distribution is computed for each gate. In essence, the error probability
for the input distribution is propagated through to the output and no sampling
is required. However, the loss of accuracy is a result of the marginalization that
occurs in signals between partitions since inputs to partitions are treated as
pseudo-primary. In contrast, here we sample a selection of input vectors. We
maintain accuracy by storing correlated signals jointly as much as possible.
Benchmark results for this method are given in Table III. These results were
calculated while storing a maximum of 10 signals jointly. The input vectors in
Table III were chosen uniformly at random. Results are shown for average run
times and probabilities of error for 100 samples.

5. APPLICATIONS

In this section, we obtain various kinds of information related to circuit reli-
ability using PTMs. In Section 5.1, we analyze circuit reliability as a function
of gate reliability. Using data points for various gate error values, we derive
low-degree polynomial approximations for the error transfer functions of stan-
dard benchmark circuits. Such functions can be used to derive upper bounds
for tolerable levels of gate error. In Section 5.2 we identify the gates in a circuit
that are most susceptible to error. Finally, Section 5.3 discusses SEU modeling
where electrical attenuation effects are incorporated into gate PTMs.

5.1 Circuit Error Transfer Function

In [Krishnaswamy et al. 2005] we applied PTMs to von Neumann’s NAND-
multiplexer circuit [von Neumann 1956] in order to calculate how changes in
the number of signal replications, the error probability, and the number of levels

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:27

Fig. 20. Circuit error probability under various gate error probabilities.

Table IV. Polynomial Approximations of Circuit Error Transfer Curves and Residual Errors

(The fitted polynomials are of the form e(x) ≈ a0 + a1x + a2x2 + a3x3)

Polynomial Coefficients

Circuit Error a0 a1 a2 a3 a4 a5 a6

majority 2.5 E-7 0.2080 0.1589 0 0 0 0 0

mux 6.6 E-6 0.0019 1.9608 −2.8934 1.9278 0 0 0

parity 0.0040 0.0452 5.4892 −21.4938 31.9141 −4.2115 −30.3778 19.5795

tcon 0.0019 0.0152 6.2227 −13.5288 7.1523 9.2174 −9.0851 0

9symml 0.0010 0.0250 2.4599 −3.7485 1.5843 0 0 0

xor5 0.0043 0.0716 5.9433 −26.4666 51.1168 −44.6143 14.4246 0

affects the output reliability. In this section, we use PTMs to extend this type
of analysis to general combinational circuits. The irregularity of general com-
binational circuits makes their reliability analysis much more computationally
complex.

Definition 10. The error transfer function e(x) of a circuit C, on 0 ≤ x ≤ 1,
is the fidelity of C with output error probability x on all gates.

Figure 20 illustrates the error transfer functions for several standard bench-
mark circuit, determined by introducing varying amounts of error into gates
and then calculating the circuit fidelity according to Definition 5. Generally,
such error transfer curves can be described by polynomials. If two gates have
error p then their composition (serial, parallel, or a combination of both) has
terms that are linear combinations of p2 and p. The overall probability of er-
ror is O(p2). If a circuit has n gates, each with error p, then its fidelity is a
polynomial in p of degree n. Realistically, only gate error values under 0.5 are
useful since the gate can simply be viewed as its negated version for higher
error values. However, Figure 20 has probabilities of gate error up to 1 to make
the polynomial nature of the curves evident.

Table IV gives low-degree polynomials that estimate error transfer functions
with high accuracy. Such functional approximations are useful in determining

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:28 • S. Krishnaswamy et al.

Table V. The Average Probability

that Errors Occuring with p = 0.1

Propagate to the Output in

Various Circuits

Circuit Error

parity 0.010

pcle 0.067

z4ml 0.010

xor5 0.056

tcon 0.010

C17 0.082

upper bounds on the gate error probability necessary to achieve acceptable lev-
els of circuit error. For instance, it has been shown that replication techniques
such as TMR or NAND-multiplexing only decrease circuit error if the gate error
is strictly less than 0.5 [Pippenger 1998]. However, Figure 20 suggests that for
most circuits, replicating the entire circuit at gate errors of 0.20 or more will
only increase circuit error.

5.2 Error Susceptibility

Next, we examine the ability of a circuit to mask internal errors. We show that,
in general, circuit errors can be significantly overestimated when logic masking
is not considered. Since circuits mask errors at different locations with different
probabilities, we also define a measure of the susceptibility of a signal to error.

Table V shows the effect of logic masking averaged over all gates in some
representative circuits. For this experiment, we introduce an error of 0.1 at all
inputs of a particular gate and then calculate the resulting circuit error proba-
bility. We then repeat this for all the gates in the circuit and present the average
output error probability in Table V. On average, not taking logical masking
into consideration appears to overestimate circuit error by a factor of 10.

As is well known, gate location and size influence error propagation and
logic masking. For instance, errors at a primary output line have no chance of
being masked. Identifying and replicating gates that are highly susceptible to
soft errors can reduce the amount of internal redundancy needed for reliable
operation [Mohanram and Touba 2003]. PTMs can provide an exact measure of
the susceptibility of the circuit to errors at specific gates. This is in contrast to
other methods such as that in [Mohanram and Touba 2003], where test vector
sampling is used for this purpose.

Definition 11. Given a circuit C with ITM J , an internal gate g , input
vector v, and a PTM M computed by adding an error p to gate g only (with all
other gates being error-free), the susceptibility of C at gate g is:

susceptibility(C, g) = fidelity(v, M , J)/p.

The susceptibility of a circuit to a gate error can be computed by introducing
an error probability into the appropriate gate PTM and then evaluating the
fidelity of the corresponding circuit. The gates with highest susceptibility can be
regarded as those that affect the overall error the most. Since PTM calculations
simultaneously include all input vectors, sampling is unnecessary.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:29

Fig. 21. The compute susceptibility algorithm.

Table VI. Improvement in fidelity After Increasing Robustness of the Top 3 and 5 Most

Susceptible Gates

Circuit Original fidelity Top 3 gates % Improvement Top 5 Gates % Improvement

C17 0.864 0.959 11.0 % 0.980 13.4 %

mux 0.907 0.974 7.39 % 0.985 8.60 %

parity 0.603 0.637 5.64 % 0.666 10.4 %

xor5 0.047 0.068 46.2 % 0.070 50.5 %

pm1 0.375 0.429 14.4 % 0.469 25.1 %

The simplest way to compute susceptibility of a circuit to an error at gate
g is to introduce an error on g and leave all other gates in the fault-free ideal
state. However, for a circuit with n gates this method requires n circuit PTM
computations. In order to reduce time complexity, intermediate results can be
cached in such a way that only two PTM evaluations are necessary for comput-
ing the most susceptible gates in the circuit. In this method the PTM evaluation
is done twice, once in increasing level order and once in decreasing level order.
The intermediate results are stored. When a gate g at level i is evaluated for
susceptibility, the level(i)-PTM is recomputed and multiplied by the precom-
puted level-(0, i − 1) and level-(i + 1, k) PTMs. The computation of a level i
PTM can be similarly simplified by storing intermediate tensors of gate sub-
sets. Therefore each gate susceptibility computation will require two tensor
products and two matrix multiplications instead of an entire PTM evaluation.
This algorithm is shown in Figure 21.

Table VI illustrates gate susceptibility calculations for several small circuits.
The most susceptible gates are identified using the algorithm in Figure 21
and subsequently “hardened” by a factor of 10. All other gates retain error
probability 0.05. Hardening can be implemented by sizing up transistors so
that they can only be affected by higher-energy particles. However, such tran-
sistors occupy larger area and require more power. For many circuits, increasing

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:30 • S. Krishnaswamy et al.

the robustness of just a few gates can improve circuit reliability significantly
[Mohanram and Touba 2003].

5.3 Modeling Electrical Glitch Attenuation

We now demonstrate how the PTM model can be used to determine error rates
under SEUs. Recall that SEUs are mitigated by three types of error masking:
logical, electrical and timing masking [Shivakumar et al. 2002]. One of the main
challenges in estimating the error rate is determining the logical dependencies
between the three types of masking. In Section 5.2 we demonstrated that PTMs
can evaluate the impact of logic masking on errors throughout the circuit. We
now incorporate the effects of electrical attenuation into PTMs as well. We first
discuss a specific model of electrical attenuation presented in Omana et al.
[2003] and incorporate it directly into PTMs. This model has been validated
using SPICE and was shown to be over 90% accurate. The authors of Omana
et al. [2003] classify erroneous glitches into three types based on their duration
D relative to the gate propagation delay Tp.

—Type 1: If D > 2Tp, the glitch passes through un-attenuated because there
is sufficient energy to propagate it. The output amplitude in this case is
A′ = Vdd.

—Type 2: If 2Tp > D > Tp, the glitch propagates with amplitude A diminished
by attenuation to A′ = Vdd/(V T1−V T2) ∗ A(Vdd/2−V T1). Note that if A′ < Vs,
where V2 is the threshold voltage, then this glitch no longer has the amplitude
to cause a logical error. Hence, some glitches of Type 2 are also electrically
masked.

—Type 3: If Tp > D, the glitch will not propagate at all. Hence in this case
A′ = 0.

Let the probability that a glitch is of type i = 1, 2, 3 be Pi. As in Omana et al.
[2003], we assume a uniform distribution of glitch duration D in the range
[0, 2Tp], but other distributions can be handled by integration. Also let P (A)
be the probability distribution of the glitch amplitude A. The probability that
a glitch becomes attenuated by a gate is given by:

Patt = P3 + P2 ∗ P (A′ < Vs) (1)

Since this model is discrete and probabilistic, it can be abstracted into a log-
ical form and incorporated into the gate PTM model using an additional input
bit representing the glitch type. In the resulting PTM, the first bit indicates the
logic value, that is, whether the amplitude A of the glitch is greater than the
gate threshold voltage. The second bit indicates the duration (long or short) of
the glitch. Since glitches of type 3 do not propagate, we only need to differen-
tiate between the first two types. Therefore, glitches of type 1 are represented
by 11, and glitches of type 2 are represented by 10. Glitches with amplitude
smaller than the logic threshold value can be represented by 01 regardless of
duration. According to this model, 10 signals are transformed into 00 signals
with a certain probability. All other signals retain their original output value
given by the logic function of the gate. Figure 22 illustrates the attenuation
PTM for the identity gate and the two-input AND gate. Calculating the circuit

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:31

Fig. 22. PTMs modeling buffers and AND gates with glitch-attenuating properties: (a) Iatt-ideal,
(b) Iatt, (c) ANDatt-ideal, (d) ANDatt.

PTM with the attenuation PTMs from Figure 22 automatically tracks signals
on sensitized paths only. In order to describe the probabilities of SEU strikes
at each circuit node, we can define a glitch creation PTM which gives the prob-
ability distribution of glitch generation at a particular node; see Figure 23.

Observe that if different gates have vastly different propagation delays, then
the relative probabilities of glitches of each type will be different. This effect may
need to be taken into account by remapping signal probabilities in neighboring
gates based on their relative propagation delays. Such a remapping can be
done using a modified identity matrix at each fanout stem, which does not
significantly change the complexity of PTM evaluation.

Note also that PTMs can readily handle multiple glitches and reconvergence.
For instance, the row with index 1010 has two inputs with logic-1 values of
type 2 which can represent glitches arriving at both outputs. In Figure 22,
we assumed that an error propagates if one or both glitches propagate. More
complex glitch models, such as the one in Mohanram and Touba [2003] can also
be used to derive Patt if desired.

Example 6. For the circuit in Figure 24, suppose an SEU strike produces
a glitch at input b. By inspection, we see that this glitch will only logically
propagate for the primary input combination 101. In this case, the glitch passes
through both AND gates. Therefore, the probability that the glitch causes an

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:32 • S. Krishnaswamy et al.

error, averaged over all inputs, is:

(1/8) ∗ Pstrike(P1 + P2 ∗ (1 − Patt)
2) = .000052083

In other words, the glitch propagates if the input sensitizes the appropriate
path and the glitch propagates to d and then e. If we let P1 = P2 = P3 = 0.333,
Pstrike = 0.001, Patt = 0.5, and ANDatt is as shown in Figure 22, then the circuit
PTM is given by:

(I2 ⊗ Istrike ⊗ I2) (ANDatt ⊗ I2) (ANDatt)

The corresponding PTM and fidelity are given in the following.⎡
⎢⎢⎢⎣

1 0 0 0
...
1 0 0 0

0.9996 0.0001 0.0003 0
0.9996 0.0002 0.0002 0

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

0.2500 0.1875 0.5625 0
0.2500 0.3750 0.3750 0

1 0 0 0
1 0 0 0

0.5000 0.1250 0.3750 0
0.5000 0.2500 0.2500 0

1 0 0 0
1 0 0 0

0.9995 0.0002 0.0003 0
0.9995 0.0001 0.0001 0.0003

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0.1250 0.3750 0
0 0.2500 0.2500 0
1 0 0 0
1 0 0 0
0 0.5000 0.5000 0
0 0 0 1

⎤
⎥⎥⎥⎦

fidelity = .99994791

Perror = 1 − fidelity = .000052083

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:33

Fig. 23. Glitch creation PTM; Pi denotes the probability of a glitch type i, and Pstrike denotes the

probability of an SEU.

Fig. 24. Circuit used in example 6 to illustrate the incorporation of electrical masking into PTMs.

This example demonstrates that a PTM-based approach can be used to dis-
cover the logical paths through which a glitch propagates and the probability
of its propagation. For this purpose, gate attenuation properties have to be con-
verted into probabilities of error, which can be done straightforwardly as in
Equation 1.

6. CONCLUSIONS

In this work we used PTMs to develop a powerful new methodology for rep-
resenting probabilistic behavior in logic circuits. PTMs provide a rigorous al-
gebraic representation of a circuit’s structural and functional information. An
exceptionally wide variety of errors, both deterministic and probabilistic, can
be represented by PTMs. They subsume deterministic fault models like the
stuck-at model and can be used to model glitch propagation at the logic level.
PTMs also allow for the computation of useful functions like circuit fidelity, in
a systematic and computationally efficient manner.

We implemented PTMs using ADD-based compression and developed algo-
rithms which operate directly on the compressed forms. PTM computation has
a wide variety of applications in circuit reliability. It can be used to determine
the error transfer behavior and error susceptibility of combinational circuits.
In addition, PTM-based reliability evaluation can be extended hierarchically to
evaluate arbitrarily large circuits with a small loss in accuracy. PTMs can also
incorporate electrical phenomena such as error attenuation.

PTMs can be used to derive test vectors for circuits that are susceptible to
transient faults, as discussed in Krishnaswamy et al. [2005]. The general idea
is to choose a multi-set of test vectors to increase the detection probability of
a transient fault. For instance, in Example 2, rows with indices {001, 011, 101}
deviate from the ITM the most, which indicates that they are highly sensitive to
transient errors. Therefore these vectors can be repeated fewer times than less
sensitive test vectors. Other applications include measuring the testability of
signals under transient errors, and reliability-driven logic restructuring where
parts of circuits are re-synthesized locally.

A future topic of research is exploration of ADD variants that yield further
compression when representing probabilistic circuits. For instance, the use of
edge-valued ADDs may curb the blowup associated with the tensor product

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

8:34 • S. Krishnaswamy et al.

operation. Several BDD-variants such as indexed-BDDs [Jain et al. 1997]
(where the variable ordering can be different in different subtrees), or par-
titioned BDDs [Jain et al. 1992] (where the signals are split into disjoint par-
titions) can be considered for PTM compression. Partitioned ADDs could rep-
resent partitioning the PTM into sets of conditional probabilities for subsets of
input or output variables.

REFERENCES

ALEXANDRESCU, D., ANGHEL, L., AND NICOLAIDIS, M. 2002. New methods for evaluating the impact

of single event transients in VDSM ICs. In Proceedings of the IEEE Symposium on Defect and
Fault Tolerance in VLSI Systems. 99–107.

BAHAR, R. I., MUNDY, J., AND. CHAN, J. 2003. A probabilistic-based design methodology for nanoscale

computation. In Proceedings of the International Conference on Computer-Aided Design. 480–

486.

BAHAR, R. I., FROHM, E. A., GAONA, C. M., HACHTEL, G. D., MACII, E., PARDO, A. AND SOMENZI, F.

1993. Algebraic decision diagrams and their applications. In Proceedings of the International
Conference on Computer-Aided Design. 188–191.

BRGLEZ, F., POWNALL, P., AND HUM, R. 1984. Applications of testability analysis: From ATPG to

critical delay path tracing. In Proceedings of the International Test Conference. 705–712.

BRYANT, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. 35, 677–691.

CHOW, C. AND LIU, C. 1968. Approximating discrete probability distributions with dependence

trees. IEEE Trans. Inform. Theo. 14, 11, 462–467.

CLARKE, E., FUJITA, M., AND ZHAO, X. 1996. Multi-terminal binary decision diagrams and hybrid

decision diagrams. In Representations of Discrete Functions, T. Sasao and M. Fujita, Eds., Kluwer

Academic Publishers, 93–108.

CORMEN, T., LIESERSON, C., RIVEST, R., AND STEIN, C. 2001. Introduction to Algorithms. MIT Press,

331–338.

DHILLON, Y. S., DIRIL, A. U., AND CHATTERJEE, A. 2005. Soft-error tolerance analysis and opti-

mization of nanometer circuits. In Proceedings of the Conference on Design and Test in Europe.

288–293.

EGNER, S., PÜSCHEL, M., AND BETH, T. 1997. Decomposing a permutation into a conjugated tensor

product. In Proceedings of the International Symposium on Symbolic and Algebraic Computation.

101–108.

ERCOLANI, S., FAVALLI, M., DAMIANI, M., OLIVIO, P., AND RICO, B. 1989. Estimate of signal probability

in combinational logic networks. In Proceedings of the European Test Conference. 132–38.

HACHTEL, G. AND SOMENZI, F. 1996. Logic Synthesis and Verification Algorithms. Kluwer Academic

Publishers, Boston, MA.

HAN, J. AND. JONKER, P. 2002. A system architecture solution for unreliable nanoelectronic devices.

IEEE Trans. Nanotech. 1, 201–208.

HINTON, A. AND KWIATKOWSKA, M. 2006. PRISM: A tool for automatic verification of probabilistic

systems. Lecture Notes in Computer Science. vol. 3920, 441–444.

JAIN, J., BITNER, J., FUSSELL, D. S., AND ABRAHAM, J. A. 1992. Functional partitioning for verification

and related problems. In Proceedings of the Brown MIT VLSI Conference. 210–226.

JAIN, J., BITNER, J., ABADIR, M. S., ABRAHAM, J. A., AND FUSSEL, D. S. 1997. Indexed BDDs: Algo-

rithmic advances in techniques to represent and verify Boolean functions. IEEE Trans. Comput.
46, 11, 1230–1245.

KRISHNASWAMY, S., MARKOV, I. L., AND HAYES, J. P. 2005. Testing logic circuits for transient faults.

In Proceedings of the European Test Symposium. 102–107.

KRISHNASWAMY, S., VIAMONTES, G. F., MARKOV, I. L., AND HAYES, J. P. 2005. Accurate reliability

evaluation and enhancement via probabilistic transfer matrices. In Proceedings of the Conference
on Design Automation and Test in Europe. 282–287.

S. KULLBACK, S. AND LEIBLER, R. A. 1951. On information and sufficiency. Annals of Math. Stat.
22, 1, 79–86.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

Probabilistic Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits • 8:35

LEVIN, V. L. 1964. Probability analysis of combination systems and their reliability. Engin.
Cybern. 6, 78–84.

MALVESTUTO, F. M. 1991. Approximating discrete probability distributions with decomposable

models. IEEE Trans. Syst. Man, Cybern. 21, 5, 1287–1894.

MISKOV-ZIVANOV, N. AND MARCULESCU, D. 2006. MARS-C: Modeling and reduction of soft errors in

combinational circuits. In Proceedings of the Design Automation Conference. 767–772.

MOHANRAM, K. AND TOUBA, N. A. 2003. Cost-effective approach for reducing soft error failure rate

in logic circuits. In Proceedings of the International Test Conference. 893–901.

MOHANRAM, K. 2005. Simulation of transients caused by single-event upsets in combinational

logic. In Proceedings of the International Test Conference.
NORMAN, G., PARKER, D., KWIATKOWSKA, M., AND SHUKLA, S. 2005. Evaluating the reliability of

NAND multiplexing with PRISM. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Sys. 24, 10, 1629–

1637.

OMANA, M., PAPASSO, G., ROSSI, D., AND METRA, C. 2003. A model for transient fault propagation

in combinatorial logic. In Proceedings of the International Online Testing Symposium. 111–115.

PARKER, K. P. AND MCCLUSKEY, E. J. 1975. Probabilistic treatment of general combinational net-

works. IEEE Trans. Comput. 24, 6, 668–670.

PATEL, K. N., HAYES, J. P., AND MARKOV, I. L. 2003. Evaluating circuit reliability under probabilistic

gate-level fault models. In Proceedings of the International Workshop on Logic and Synthesis. 59–

64.

PIPPENGER, N. 1998. Reliable computation by formulas in the presence of noise. IEEE Trans.
Inform. Theo. 34, 2, 194–197.

SAVIR, J., DITLOW, G., AND BARDELL, P. H. 1983. Random pattern testability. In Proceedings of the
IEEE Symposium on Fault Tolerant Computing. 80–89.

SHIVAKUMAR, P., KISTLER, M., KECKLER, S. W., BURGER, D., AND ALVISI, L. 2002. Modeling the effect

of technology trends on soft error rate of combinational logic. In Proceedings of the International
Conference on Dependable Systems and Networks. 389–398.

SRINIVASAN, R., GUPTA, S. K., AND BREUER, M. A. 1993. An efficient partitioning strategy for pseudo-

exhaustive testing. In Proceedings of the Design Automation Conference. 242–248.

VIAMONTES, G. F., MARKOV, I. L., AND HAYES, J. P. 2003. Improving gate-level simulation of quantum

circuits. Quant. Inform. Proces. 2, 5, 347–380.

VIAMONTES, G. F., RAJAGOPALAN, M., MARKOV, I. L., AND HAYES, J. P. 2003. Gate-level simulation of

quantum circuits. In Proceedings of the Asia and South Pacific Design Automation Conference.

295–301.

VON NEUMANN, J. 1956. Probabilistic logics and synthesis of reliable organisms from unreliable

components. In Automata Studies, C.E. Shannon and J. McCarthy Eds., Princeton University

Press, 43–98.

ZHANG, B., WANG, W. S., AND ORSHANSKY, M. 2006. FASER: Fast analysis of soft error susceptibility

for cell-based designs. In Proceedings of the International Symposim on Quality Electronic Design.

755–760.

ZHANG, M. AND SHANBHAG, N. R. 2004. A soft error rate analysis (SERA) methodology. In Proceed-
ings of the International Conference on Computer Aided Design. 111–118.

ZHAO, C., BAI, X., AND DEY, S. 2004. A scalable soft spot analysis methodology for compound noise

effects in nano-meter circuits. In Proceedings of the Design Automation Conference. 894–899.

Received June 2006; revised March 2007, June 2007; accepted July 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 8, Pub. date: January 2008.

