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Abstract—We explore the use of signatures, i.e., partial truth
tables generated via bit-parallel functional simulation, during soft
error analysis and logic synthesis. We first present a signature-
based CAD framework that incorporates tools for the logic-level
Analysis of Soft Error Rate (AnSER) and for Signature-based
Design for Reliability (SiDeR). We observe that the SER of a
logic circuit is closely related to various testability parameters,
such as signal observability and probability. We show that these
parameters can be computed very efficiently (in linear time)
by means of signatures. Consequently, AnSER evaluates logic
masking two to three orders of magnitude faster than other
SER evaluators while maintaining accuracy. AnSER can also
compute SER efficiently in sequential circuits by approximating
steady-state probabilities and sequential signal observabilities. In
the second part of the paper, we incorporate AnSER into logic
synthesis design flows aimed at reliable circuit design. SiDeR
identifies and exploits redundancy already present in a circuit
via signature comparison to decrease SER. We show that SiDeR
reduces SER by 40% with only 13% area overhead. We also
describe a second signature-based synthesis strategy that employs
local rewriting to simultaneously improve area and decrease SER.
This technique yields 13% reduction in SER with a 2% area
decrease. We show that combining the two synthesis approaches
can result in further area-reliability improvements.

I. INTRODUCTION

Soft (transient) errors are becoming an important concern
in digital integrated circuits. It has long been known that
many soft faults are masked and do not lead to observable
circuit errors. Therefore, analyzers are needed to assess the
impact of masking mechanisms on the soft error rate (SER)
of a circuit. Further, deliberately increasing masking is key to
low-SER designs. Hence, SER analysis can effectively guide
and evaluate synthesis by accounting for relevant masking
mechanisms.

In this paper, we present a methodology to guide the logic
synthesis process towards greater design robustness. First,
we develop an SER analyzer, AnSER, which estimates logic
masking efficiently and accurately. When a fault occurs in
a portion of the circuit that is logically un-sensitized, it is
said to be “logically masked”. This type of masking originates
during logic synthesis and remains in effect through the rest
of the design flow. The difficulty in estimating logic masking
is the input (state) space explosion problem when considering
the different paths of sensitization invoked by different input
patterns (states). We use signature-based analysis to efficiently
solve this problem.

A signature is a partial truth-table of a Boolean function,
computed by bit-parallel functional simulation of the circuit

on applying random inputs. Signatures allow us to compute
probabilistic information about a circuit that is relevant to SER
computation. First, we compute signatures for all nodes in
a circuit. Then, we compute observability don’t-care (ODC)
masks from the signatures to estimate node observability and
testability. This information is used, in turn, to compute the
SER. Figure 1 outlines our SER-aware synthesis methodology,
which exploits the intimate relations between logic masking,
simulation signatures, ODCs, and the testability of stuck-at
faults. We also extend our techniques to evaluate the impact of
soft faults on sequential circuits. We find that signatures offer
a way to overcome computational challenges associated with
sequential-circuit analysis including steady-state probability
computation, reachability analysis, and Markov-chain analysis,
which often tax other analysis methodologies.

The second part of the paper focuses on design for decreased
SER. Soft-error reliability can be improved by increasing
masking opportunities. In the past, researchers have resorted
to massive functional redundancy in schemes such as in triple
modular redundancy (TMR) to improve reliability. However,
these methods require a substantial increase in area and
power consumption. In contrast, as we show, closely cou-
pling synthesis and SER analysis can reduce overhead with
significant improvements in reliability. We present a novel
synthesis technique called SiDeR that uses signatures and
ODCs to identify partial redundancies among critical nodes
of the circuit. Then, SiDeR can protect logic in the fan-in
cone of the critical node with the addition of a single gate.
The paper’s main contributions are as follows:

• A fast incremental SER analyzer, AnSER, that can be
used stand-alone or integrated with logic synthesis

• A novel synthesis technique, SiDeR, that decreases SER
by exploiting logical covering relationships and observ-
ability don’t-cares

In addition, we demonstrate the use of AnSER in a general
logic synthesis flow to guide a local restructuring technique
known as rewriting. This technique rewrites small windows of
logic throughout the circuit in order to improve area. The use
of AnSER can simultaneously improve area and SER.

The paper is organized as follows. Section II discusses
previous work on SER analysis and SER-aware synthesis.
Section III covers background on bit-parallel simulation and
signatures. Section IV introduces our SER analysis methodol-
ogy and Section V extends the analysis to sequential circuits.
Section VI describes two strategies for synthesis to decrease
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Fig. 1. The proposed signature-based analysis framework for SER evaluation
and synthesis.

SER. Section VII presents empirical results. Finally, Section
VIII concludes the paper.

II. PREVIOUS WORK

Recent SER evaluators include SERA [28], FASER [27],
SERD [23], and MARS-C [18] along with its sequential
extension MARS-S [19]. These tools estimate the SER of a
technology-mapped circuit by accounting for three masking
mechanisms with varying levels of detail. The three masking
mechanisms are [24]: 1) logic masking (the glitch occurs in a
non-sensitized portion of the circuit), 2) electrical masking (the
glitch is attenuated and blocked by the electrical characteristics
of CMOS gates), and 3) temporal masking (the glitch occurs
in a non-latching portion of the clock cycle). Logic masking
is accounted for by explicit enumeration of the input vector
(or state) space in decision diagram-based methods [18], [27]
or by fault simulation on specific vectors [23], [28]. Electrical
masking is assessed using SPICE-based pre-characterization
of the gate library. Timing masking is either approximated as
a derating factor proportional to the latching time of flip-flops
in the design [27], or based on timing analysis information
[18]. In addition, MARS-S [19] uses Markov chain analysis
and symbolic simulation to analyze SER in sequential circuits.

While these methods offer detailed analysis of SER, they
can be difficult to use during logic design because: 1) they re-
quire complete information such as electrical characterization
and timing analysis, which may be unavailable during logic
design, and 2) they use unscalable methods for logic masking
analysis. Some tools [13], [18], [27] use ADDs (DDs with
multiple real valued-terminals) to completely enumerate input
patterns and calculate pattern-dependent error probabilities
for logic masking analysis —this has exponential worst-case
complexity. This use of ADDs in SER analysis is different
from the use of BDDs in logic synthesis to represent Boolean
functions. The latter is generally much more efficient. Other
tools electrically simulate circuits vector-by-vector, which can
slow down SER analysis and become a bottleneck in circuit
optimization as well.

Several techniques are known to reduce the impact of soft
errors on logic circuits. Rao et al. [22] use the algorithm
from [23] to selectively resize gates and flip-flops. Low-energy
particle strikes are less likely to cause a glitch in larger gates
due to the increased internal capacitance of the gate. Larger
gates also imply that glitches are less likely to appear at gate
outputs, and those that do appear are often electrically masked.

Soft errors can also be mitigated by adding redundant logic.
Classic techniques such as TMR and quadded logic [25]
achieve this by systematically replicating logic. In quadded
logic, each gate is replaced by a network of four gates
which logically mask single faults. TMR triplicates the entire
circuit and uses voters to mask faults. Mohanram and Touba
[20] reduce the cost of TMR by replicating only the most
susceptible gates. However, even partial replication of this kind
is quite expensive.

Almukhaizim et al. [2] proposed SER reduction via guided
rewiring. In the form of rewiring that they use [26], one of
four design errors is introduced to the circuit at each step.
These include: 1) removing a target wire, 2) changing the
gate driven by the target wire, 2) adding an extra input to the
gate driven by the target wire, and 3) replacing the target wire
with a different wire. Then, the algorithm from [26] is called
to provide a list of possible single-operation corrections for
the introduced errors. The correction that improves SER by
the most is chosen based on re-evaluation of SER by the tool
SERA [28]. ATPG-based rewiring [5] has been used in other
contexts such as in optimizing sequential circuits [16], and
timing optimization [8]. However, the work in [2] appears to
be the first example of reliability-guided circuit restructuring
without the explicit addition of redundancy.

Almukhaizim and Makris have recently [3] proposed im-
proving SER through the addition of redundant wires. Redun-
dant wires are identified by deriving relations between wires
using logical implication. Others have used logic implication
to add (and remove) redundancies in circuits for logic opti-
mization [14], [16]. The approach of [3] related to our SiDeR
approach, originally proposed in [12]. However, in contrast
to logic implication analysis, we identify redundancy using
signature comparison. Empirical results show that our methods
improve SER by a wider margin.

III. SIGNATURES AND ODC MASKS

In this paper, we systematically use node signatures to
compute the SER, to target error-sensitive areas of a cir-
cuit, and to identify redundant nodes for resynthesis. A
circuit node g can be labeled by a signature sig(g) =
Fg(X1)Fg(X2) . . . Fg(XK) defined as the sequence of logic
values observed at g in response to a sequence of K input
vectors X1, X2, . . . , XK . Here, Fg(Xi) ∈ {0, 1} indicates the
value appearing at g in response to Xi. The signature sig(g)
thus partially specifies the Boolean function Fg realized by g.
Applying all possible input vectors (exhaustively simulating)
generates a signature that corresponds to a full truth table.
In general, sig(g) can be seen as a kind of ”supersignal”
appearing on g. It is composed of individual binary signals
that are defined by some current set of vectors. Like the
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individual signals, sig(g) can be processed by EDA tools
such as simulators and synthesizers, e.g., it is a single entity.
It can be propagated through a sequence of logic gates and
combined with other signatures via Boolean operations. This
processing can take advantage of bitwise operations to speed
up the overall computation compared to processing the signals
that compose sig(g) one at a time. Signatures with thousands
of bits can be useful in pruning non-equivalent nodes during
equivalence checking [21], [29]. A related speedup technique
is also the basis for “parallel” fault simulation [4]. The basic
algorithm for computing signatures is shown for reference in
Figure 2. Here, Op < g > refers to the operation gate g. This
operation is applied to the signatures of the input nodes of
gate g, denoted inputsigs(g).

compute_sigs(Circuit C, size K)
{
for(all inputs i ∈ C)
sig(i) = gen_random_sig(K)

sort_topological(C)
for(all nodes g ∈ C)
sig(g) = Op < g > (inputsigs(g))

}

Fig. 2. An algorithm for signature computation.

Figure 3 shows a 5-input circuit where each of the 10
nodes is labeled by an 8-bit signature SIG computed with
eight input vectors. These vectors are randomly generated,
and conventional functional simulation propagates signatures
to the internal and output nodes. In a typical implementation
such as ours, signatures are stored as logical words and manip-
ulated with 64-bit logical operations, ensuring high simulation
throughput. Therefore 64 vector simulations are conducted
in parallel with each signature processed. Generating K-bit
signatures in an N -node circuit takes O(NK) time.

Observability don’t-cares (ODCs) occur at node g for certain
input vectors when the values at g do not affect the pri-
mary outputs. For example, in the circuit AND(a, OR(a, b)),
the output of the OR gate is inconsequential when a =
0. Corresponding to the K-bit signature sig(g), we define
ODCmask(g) as the K-bit sequence whose ith bit is 0 if
input vector Xi is in the don’t-care set of g; otherwise the ith

bit is 1. Formally, ODCmask(g) = X1 6∈ ODC(Fg)X2 6∈
ODC(Fg) . . . XK 6∈ ODC(Fg). The ODCmask is com-
puted by bitwise negating sig(g) and re-simulating the circuit
through the fan-out of g to check if the changes are propagated
to any of the primary outputs. This algorithm is shown as
compute odc exact in Figure 4 and has complexity O(N 2)
for a circuit with N gates. Its practical implementations may
truncate re-simulation at gates where signatures do not change,
thus achieving an additional speed-up.

We found the heuristic algorithm from [21], which has only
O(N) complexity to be particularly convenient to use. This
algorithm is also shown in Figure 4. Here, the circuit traversed
in reverse topological order and, for each node, a local ODC
mask is computed for its immediate downstream gates. The
local ODC mask is derived by flipping each value in the input
signatures of a gate to see if the output of the gate changes. The
local ODC mask is then bitwise-ANDed with the respective
global ODC mask at the output of the gate to produce the ODC

Fig. 3. Signatures, ODC masks, and testability information associated with
circuit nodes.

mask of the gate for a particular fan-out branch. The ODC
masks for all fan-out branches are then ORed to produce the
final ODC mask for the node. The ORing takes into account
the fact that a node is observable for an input vector if it
is observable along any of its fan-out branches. Reconvergent
fan-out can eventually lead to incorrect values. The masks can
be corrected by performing exact simulation downstream from
the converging nodes. This step is not strictly necessary for
SER evaluation as we show later.

Example 1: Figure 3 shows a sample 8-bit signature and the
accompanying ODC mask for each node of a 10-node circuit.
The ODC mask at c, for instance, is derived by computing
ODC masks for paths through nodes f and g respectively and
then ORing the two. The local ODC mask of c for the gate
through f is 01110101. When this is ANDed with the ODC
mask of f , we find the global ODC, 01110001, of c on paths
through f . Similarly, the local ODC mask of c for the gate
with output g is 11101100, and the global ODC mask for
paths through g is 01000100. We get the ODC mask of c
by ORing the ODC masks for paths through f and g, which
yields 01110101.

IV. ANALYSIS OF SER
We now present the SER analyzer AnSER, which was

specifically designed for use in logic synthesis. In this section,
we focus on combinational logic, in the next section we cover
SER in sequential circuits.

A. Fault Model for Soft Errors
Integrating SER analysis efficiently into logic synthesis

requires scalability and logical-level fault models that are
technology independent. Other existing tools typically use
complex SPICE-based electrical characterization to model soft
faults. For example, Rao et al. [23] model such faults by
averaging glitch waveforms defined by Weibull probability
distributions. Some existing tools only work with a single
process technology and very small gate libraries [23], [27].
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compute_odc_exact(Circuit C, size K)
{
compute_sigs(C,K)
sort_reverse_topological(C)
for(all nodes g ∈ C)
newsig(g) = sig(g)
recompute_sigs(C,K,g)
for(each output o ∈ C)
odc(g)| = newsig(o) ⊕ sig(o)

restore_computed_sigs(C)

}
(a)

compute_odc_approx(Circuit C, size K)
{
compute_sigs(C,K)
sort_reverse_topological(C)
for(all nodes g ∈ C)
newsig(g) = sig(g)
for(each fan-out branch f ∈ fanout(g))
sig(f) = Op < f > (inputsigs(f))
localodc(g, f) = newsig(f) ⊕ sig(f)
globalodc(g, f) = localodc(g, f)&odc(f)
odc(g)| = globalodc(g, f)

}
(b)

Fig. 4. (a) Exact and (b) approximate ODC mask computation algorithms.

AnSER uses a probabilistic logic-level fault model for
single to reason efficiently about the resulting errors. As clock
frequency increases and threshold voltages decrease, logical
masking also tends to dominate over electrical and timing
masking. Hence SER optimization need not be delayed until
layout and electrical information are available. By leveraging
fast bit-parallel simulation, AnSER offers linear-time SER
analysis and fast incremental updates after circuit transforma-
tions.

We propose a fault model based on the standard stuck-at
(SA) fault model. For every clock cycle, we assume that each
circuit node g has a temporary single stuck-at-1 (TSA-1) fault
with occurrence probability Perr1(g), and a temporary single
stuck-at-0 (TSA-0) fault with probability Perr0(g) otherwise.
While this TSA model focuses on logic masking, it can also
incorporate the other masking mechanisms, if desired. For
example, electrical masking can be approximated by derating
Perr0 and Perr1 by a factor dependent on adjacent gates
[23]. Zhang et al. [18], [27] demonstrate the incorporation of
timing masking by dividing error probabilities by a constant
dependent on the clock period.

Using the TSA fault model, AnSER computes the SER
of the entire circuit as a probability of error per cycle, by
considering primarily logic masking. The results can easily be
converted into units of FIT, or failures per 109 seconds. If the
soft error probability per cycle is p, then the FIT is simply
p× freq× 109 where freq is the clock frequency. Assuming
only one fault occurs in each cycle, Gerr0(g) is the FIT rate
of the gate g, and is related the probability of error Perr0(g),
by a constant.

B. SER Evaluation
AnSER computes the SER by counting the number of test

vectors that propagate the effects of a soft fault to the out-
put(s). Test-vector counting was also used in [10] to compute
SER, although the authors also used BDD-based techniques.
Intuitively, if a large number of test vectors are applied at
the inputs, then faults will be propagated to the outputs often.
It should be noted that SER computation is inherently more
difficult than test generation. Testing involves generating a
vector that sensitizes the fault on a node, and propagates the
resulting error to the output. SER evaluation involves counting
the number of vectors that detect each fault and is therefore
in the ]P -hard complexity class.

Next, we describe how AnSER uses signatures and ODC
masks to derive several metrics that are necessary for our SER

compute_TSA_SER(Circuit C, int K)
{
sort_topological(C)
compute_sigs(C,K)
compute_odc_approx(C,K)
for(all nodes g ∈ C)
test0(g) = zeros(sig(g)&ODCmask(g))/K
test1(g) = ones(∼ sig(g)&ODCmask(g))/K
Perr(C)+ = Perr0(g)test1(g)
Perr(C)+ = Perr1(g)test0(g)

return Perr(C)
}

Fig. 5. The SER computation algorithm for TSA faults.

computation. These metrics are based on the signal probability
(controllability), observability and testability parameters com-
monly used in ATPG [4].

Figure 5 summarizes the algorithm used by AnSER for SER
computation. It involves two topological traversals of the target
circuit: one to propagate signatures forward and another to
propagate ODC masks backwards. The ratio of 0s and 1s in a
node’s signature are taken as a measure of signal probability,
while the relative proportion of 1s in an ODC mask indicates
observability. These two measures are combined to obtain a
testability figure-of-merit for each node of interest, which is
then multiplied by the probability of the associated TSA to
obtain the SER for the node. This SER for the node captures
the probability that a fault occurs and its effects are propagated
to the output. Our estimate can be contrasted with technology-
dependent SER estimates that include timing and electrical
masking.

We define the probability of node g having logic value 1,
denoted P [g = 1], as the fraction of 1s in the signature sig(g):

P [g = 1] = ones
(

sig(g)
)

/K (1)

The corresponding 0-controllability metric is P [g = 0] = 1−
P [g = 1]. The observability of a node is defined as the number
of 1s in its ODC mask.

P [obs(g)] = ones
(

ODCmask(g)
)

/K (2)

This observability metric is an estimate of the probability that
g’s value is propagated to a primary output. The 1-testability
of g, denoted P [test1(g)] = P [obs(g), g = 1], is the number
of bit positions where g’s ODC mask and signature both are
1.

P [test1(g)] = ones
(

sig(g)&ODCmask(g)
)

/K (3)
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Similarly, 0-testability is the number of positions where the
ODC mask is 1 and the signature is 0. In other words, 0-
testability is an estimate of the number of vectors that test for
stuck-at-0 faults.

Example 2: Consider again the circuit in Figure 3. Node
g has signature sig(g) = 01011011 and ODC mask
ODCmask(g) = 01000100. Hence, P [g = 1] =
ones(sig(g)) = 5/8, P [g = 0] = 3/8, P [obs(g)] = 2/8,
P [test0(g)] = 1/8 and P [test1(g)] = 1/8.

Suppose each node g in a circuit C has fault probabilities
Perr0(g) and Perr1(g) for TSA-0 and TSA-1 faults, respec-
tively. Then the SER of C is the sum of SER contributions at
each gate g in the circuit. Here, we weight intrinsic gate fault
probabilities by the testability of the gate for the particular
TSA.

Perr(C) =
∑

g∈C

P [test1(g)]Perr0(g)+P [test0(g)]Perr1(g)

(4)
Example 3: The test0 and test1 measures for each gate

in the circuit are given in Figure 3. If each gate has TSA-1
probability Perr0 = p and TSA-0 probability Perr1 = q,
then the SER is given by Perr(C) = 2p + (13/8)q.

The metrics test0 and test1 implicitly incorporate fault
sensitization and propagation conditions, Hence Equation 4
accounts for the possibility of a fault being logically masked.
Note that the Perr0(g) refers to the 1-controllability of g and
so is weighted by the 1-testability; similarly for Perr1(g).

V. SER ANALYSIS IN SEQUENTIAL LOGIC

In this section, we extend our SER analysis to include
sequential circuits, which have memory elements (D flop-
flops) in addition to primary inputs and outputs. Recall that
the values stored in flip-flops collectively form the state of the
circuit. The combinational logic computes state information
and primary outputs as a function of the current state and
primary inputs. Below, we list three factors to consider while
analyzing sequential circuit SER:

1) Steady-state probability distribution: It has been shown
that under normal operation most sequential circuits
exhibit convergence to particular state distributions [9].
Discovering the steady-state probability is useful for
accurately computing the SER.

2) State reachability: Some states cannot be reached from
a given initial state, therefore only the reachable part of
the state space should account for the SER.

3) Sequential observability: Errors in sequential circuits can
persist past a single cycle if captured by a flip-flop. A
single fault may be captured by multiple flip-flops and
result in multiple faults in subsequent cycles. Such faults
can then be masked by logic.

The following two subsections develop a simulation-based
framework to address these issues. In Section V-A, we per-
form steady-state and reachability analysis through sequential
simulation. In Section V-B, we assess sequential observability
by applying techniques from Section IV-B to time-frame-
expanded circuits. In addition, we explain how these relatively

simple solutions handle subtle concerns in sequential circuit
SER analysis.

A. Steady-State and Reachability Analysis
Usually, the primary input distribution is assumed to be

uniform, or is explicitly given by the user, while the state
distribution has to be derived. Hachtel et al. [6], [9] show
that aperiodic finite-state machines (FSMs) with strongly-
connected state-spaces eventually reach a steady-state dis-
tribution. An FSM is periodic if its states can be visited
only at regular intervals, and aperiodic otherwise. Periodic
FSMs do not reach steady-state. A modulo-d counter is an
example of such an FSM. In [6], it is shown that most ISCAS
and other benchmark circuits reach steady state because they
are synchronizable, in other words they can be taken to a
reset state starting from any state, using a specific fixed-
length sequence. This indicates that the circuits are aperiodic
(otherwise different length sequences would have to be used
from each state) and strongly connected (otherwise some states
could not be taken to the reset state).

In order to approximate the steady-state distribution, we
perform sequential simulation using signatures. Assume that
a circuit with m flip-flops L = {l1, l2 . . . lm} is in state
SL = {s0, s1, s2 . . . sm} where each si ∈ {0, 1}. Our method
starts in state S0 for each simulation (sets of 64 are conducted
in parallel). Then, we simulate the circuit for n cycles. Each
cycle propagates signatures through the combinational logic
and stops when flip-flops are reached. Primary input values are
generated randomly from a given distribution. At the end of
each simulation cycle, flip-flop inputs are transferred to flip-
flop outputs, which are in turn fed into combinational logic
for the subsequent cycle. All other intermediate signatures are
erased before the next simulation cycle starts. The K-bit signa-
tures of flip-flops at the end of n simulations cycles together
define K states. We claim that for a large enough n, these
states are sampled from a steady-state probability distribution.
Empirical results suggest that most ISCAS benchmarks reach
steady-state in 10 cycles or less [19] under the above operating
conditions.

Our method can also handle systems that are decomposable.
Such systems pass through some transient states and are then
confined to a set of strongly connected closed (SCC) states.
That is, states in the system are partitioned into transient states
and sets of SCC states. For such systems, the steady state is
heavily dependent on the initial states. We address this implic-
itly performing by reachability analysis starting in a reset state.
Thus, each bit of the signature corresponds to a simulation
that (1) starts from a reset state and propagates through the
combinational logic, (2) moves to adjacent reachable states,
and (3) for large enough n, reaches steady-state within the
partition.

Using our method, simulating a circuit with g gates for n
simulation cycles, and K bit signatures takes time O(Kng).
Figure 6 summarizes our simulation algorithm for sequential
circuits. Note that it does not require matrix analysis which
is often the bottleneck in other methods. Markov matrices
usually encode state transition probabilities explicitly, and can
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seq_simulate(Circuit C, int K)
{
for(all flip-flops l ∈ C)
output_sig(l) = input_sig(l);

for(all inputs in0 ∈ C)
in0 = new_random_input();

compute_sigs(C,K)
}

Fig. 6. The algorithm for multi-cycle sequential circuit simulation.

be prohibitively expensive due to the problem of state space
explosion [9], [19].

Figure 7 illustrates sequential simulation with 3-bit signa-
tures. The flip-flops with outputs x and y are initialized to
000 in cycle 0, labeled T0. Then the combinational logic is
simulated. In T1, the input of x and y are transferred to the
output and the process continues. At the conclusion of the
simulation, the values for x and y at T3 are saved for sequential
error analysis which is explained in the next subsection.

Fig. 7. Illustration of bit-parallel sequential simulation.

Although we only considered aperiodic systems, we observe
that for a periodic system the SER would need to be analyzed
for the maximum period D, since the state distribution oscil-
lates over the period. If the FSM is periodic with period D,
we can average over the SER for over D simulation cycles.

B. Error Persistence and Sequential Observability
In order to assess the impact of soft faults on sequential

circuits, we consider several cycles through which faults
persist using time-frame expansion. This involves making n
copies of the circuit, C0, C1 . . . Cn−1, thereby converting a
sequential circuit into a pseudo-combinational circuit. In the
expanded circuit, flip-flops are treated as buffers. The outputs
for the flip-flops of the k-th frame are connected to the
primary inputs of frame k + 1 frame (as appropriate) for
0 < k < n− 1. Flip-flop outputs that feed into the 0-th frame
are treated as primary inputs and flip-flop inputs of frame n
are treated as primary outputs. Figure 8 shows a three-time-
frame circuit that corresponds to that of Figure 7. Here, the
primary inputs and outputs of each frame are marked by their
frame numbers. Further, new primary inputs and outputs are
created corresponding to the inputs from flip-flops for frame
0 and outputs of flip-flops for frame 3. Intermediate flip-flops
are represented by buffers (shaded).

Fig. 8. Illustration of time-frame expansion into three frames C0, C1, C2.

compute_seq_SER(Circuit C,int K,int n,int f)
{
for(i < n)
seq_simulate(C, K);

C′ = time_frame_expand(C, f)
copy_flipflop_inputs(C′, C)
compute_sigs(C′,K)
compute_odc_approx(C′,K)
for(all nodes g ∈ C0)
test0(g) = zeros(sig(g)&ODCmask(g))/K
test1(g) = ones(∼ sig(g)&ODCmask(g))/K
Perr(C′)+ = (Perr0(g)test1(g) + Perr1(g)test0(g))

return Perr(C′)
}

Fig. 9. The SER computation algorithm for TSA faults in sequential circuits.

Observability is analyzed by considering all n frames to-
gether as a single combinational circuit, thus allowing the
single-fault SER analysis described in the previous section to
be applied to sequential circuits. Other useful information such
as the average number of cycles during which faults persist
can also be determined using time-frame expansion.

After the multi-cycle sequential simulation described in the
previous section, we store the signatures of the flip-flops,
and use signatures to stimulate the newly created primary
inputs (corresponding to frame 0 flip-flops) in the time-frame
expanded circuit. For instance, the x0 and y0 inputs of the
circuit in Figure 8 are simulated with the corresponding
signatures marked T3 (the final signature after multi-cycle
simulation is finished) from Figure 7. Randomly generated
signatures are used for primary inputs not corresponding to
flip-flops (such as a0 and b0 in Figure 8).

After simulation, we perform ODC analysis starting from
the primary outputs and flip-flops inputs of the n-th frame
all the way to the inputs of the 0-th frame. In other words,
primary outputs and any flip-flops with errors after n cycles
are considered to be observable. Figure 9 gives our algorithm
for sequential SER computation. The value of n can be varied
until the SER stabilizes, i.e., does not change appreciably from
an n-frame analysis to an (n + 1)-frame analysis.

The n-frame ODC-analysis can lead to different gates being
seen as critical for SER. For instance, the designer can deem
errors that persist longer than n cycles as more critical than
errors that are quickly flushed at primary outputs. In this
case, the ODC analysis only considers the fan-in cones of the
primary outputs of Cn. The SER of the circuit with respect to
n cycles of sequential masking is the SER computed on the
C0 frame as follows:

Perr(C0) =
X

gi∈C0

P [test1(gi)]Perr0(gi) + P [test0(gi)]Perr1(gi)

(5)
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The SER algorithm in Figure 9 still runs in linear time
with respect to the size of the circuit, since each simulation is
linear and ODC analysis (even with an n-frame analysis) runs
in linear time as well. The SER values and run times of some
ISCAS-89 benchmark circuits are given later (Section VII).

VI. DESIGN FOR RELIABILITY

We now present methods for logic synthesis that leverage
the fast signature-based SER analysis method embodied in
AnSER to improve the resilience of a given circuit with
respect to soft errors. First, we discuss an SER-aware design
method, SiDeR, which involves utilizing redundancy within
the circuit identified using pre-computed signatures. This is
a global restructuring technique in that connections can be
made between nodes in any part of the circuit based on
their informational redundancy. The second method locally
restructures small portions of the circuit to improve area and
SER. As we show in Section VII, these techniques can be
combined or used individually.

A. Signature-based Design for Reliability
Our signature-based design for reliability (SiDeR) method

is aimed at increasing logic masking at high-impact nodes
by exploiting redundancy already present in the circuit. This
redundancy is identified using signatures. Pairs of signatures
are checked for functional relations, which when verified can
be used to increase reliability through the use of a single gate.
Compared to techniques such as partial TMR that replicate
vulnerable signals, SiDeR incurs a smaller area overhead since
it increases logic masking by adding gates one at a time.

In order to limit area overhead the functional relations that
we consider only covering relationships between nodes. We
say that g covers f , denoted f ⊆ g, if g is 1 for every input
vector that makes f = 1 (here we are equating nodes with
the Boolean functions they realize in the usual manner). In
the presence of observability don’t-cares, this relation can be
generalized using bitwise operations to the following.

f&ODCmask(g) ⊆ g&ODCmask(g) (6)

In other words, g covers f if and only if g is 1 or a don’t-care
wherever f is 1. We define node g to be an anti-cover of node
f when

g&ODCmask(g) ⊆ f&ODCmask(g) (7)

The covering relation can be extended naturally to signa-
tures and bit-parallel simulation. For instance, suppose x has
signature sig(x) = 11000 and sig(y) = 11001. By definition,
sig(x) ⊆ sig(y), therefore x can be replaced by AND(x, y).
In this case, all 0-to-1 flips of the third and fourth input vectors
will be masked, as long as they are not propagated through
both x and y. If y is replaced by OR(x, y), then all 1-to-0
flips of the first two bits will be masked.

For a node x, we find other nodes that it covers or anti-
covers. Given a candidate node y covered by x, we add
redundant logic by transforming node x into OR(x, y) because
y ⊆ x implies OR(x, y) = x. Similarly, if x is an anti-cover

of y, we transform node x into AND(x, y). To generalize, we
identify y such that x = f(x, y1, y2 . . . yn) and f denotes an
arbitrary Boolean function. Replacing x by f results in errors
being masked for cases where x does not have a controlling
value for f .

In the trivial case where x is chosen as a candidate cover for
itself, the redundant logic generated by x = f(x, x) will not
decrease SER. At the other extreme, if x and y have disjoint
fan-in cones and x = y, then all faults that cause x to flip from
0 to 1 will be masked when x is replaced by AND(x, y).
Similarly, all 1-to-0 faults will be masked by OR(x, y). In
the general case of x = f(x, y) where x and y are different
nodes, the impact of x and the portion of its fan-in cone that
is disjoint from y will be reduced as determined by f . This
occurs because sensitized paths in the fan-in cone that include
x but not y will benefit from the extra logic masking generated
by f(x, y).

Signatures provide an especially effective method for iden-
tifying partial redundancy in the form of covering relation-
ships. For instance, if OR(x, y) = x then it follows that
sig(x) > sig(y) lexicographically (otherwise sig(y) has a 1 in
a position where sig(x) does not). Therefore, sorting all of the
signatures can narrow the search for candidate signals y. Also,
sig(x) must have more ones than sig(y) so |sig(x)| > |sig(y)|
where |sig(x)| is the size of the signature. This means that we
can narrow the candidate set further by having a size-sorted
list of signatures and intersecting the candidates found using
the two lists. The search candidates can be pruned even more
by performing multiple lexicographical sorts and multiple size
sorts of signatures starting from different bit positions. For
instance, if we sort the signatures lexicographically from the
ith bit, sig(x) must still occur before sig(y) for the same
reason. As a result, signature-based redundancy identification
can be an efficient alternative to logic implication analysis
which is used in [3].

1) Node Impact Analysis: In order to quickly identify
candidates for resynthesis, we calculate a measure called
impact that describes the node’s influence on the overall circuit
SER. Intuitively, this influence should be proportional to the
probability that faults arrive at the node, and the probability
that those faults are observed as errors at the output. In other
words, a node has high impact if many errors “flow” through
it.

We propose a linear-time algorithm for computing impact,
as shown in Figure 10. It employs a notion of the observability
of one node g relative to another node f , embodied in the
following definition of

relODCmask(g, f) = ODCmask(g)&ODCmask(f) (8)

As computed in Figure 10, the impact measure is pre-
cise in cases where all gate error probabilities are equal.
The algorithm works by keeping a running signature called
impactsig(f) at each node f , which is an indication of the
faults propagated to f through paths from its fan-out cone.
In general, nodes closer to the primary outputs are more
observable than those closer to the primary inputs. However, a
node g in the fan-in cone F of node f may have observability
greater than f due to fan-out in F . For the circuit in Figure 3,
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compute_impact(Circuit C)
{
sort_topological(f ,C)
for(all gates f ∈ C)
for(all fanout stems g ∈ inputs(f))
impactsig(f)| = impactsig(g)&odc(f)

impactsig(f)| = relODCmask(g, f)
impact(f) = Perr ∗ ones(impactsig(f))/K

}

Fig. 10. The algorithm for computing impact.

relODCmask(g, h) = 01000100&01110110) = 01000100.
If Perr = p, then including faults on h itself, the impact of
h is 5p/8 + 2p/8 = 7p/8. In cases where some gates have
higher intrinsic error probabilities than others, an average value
of Perr can be used.

This impact measure does not have to be used used with
SiDeR, it can guide other techniques such as gate hardening,
which rely on finding error-critical parts of a circuit [22]. We
note however, that our measure does not take into account
second-order effects, i.e., changes to the signatures and OD-
Cmasks of other nodes, in cases where the additional logic
actually changes the functionality of other nodes (through the
use of ODCs).

Since AnSER maintains signatures and ODC information
for each node, we can quickly find covers for resynthesis.
Figure 11 illustrates replicated logic for node a derived by
utilizing don’t-care values stored with its signature. Signature-
based replication must be verified since signatures do not fully
capture Boolean functions. Also the use of SAT-based veri-
fication allows for the use of approximate ODC computation
(rather than exact) to identify candidates as well. We use a SAT
solver (MiniSAT) to check equivalence by constructing miters
along a cut in the fan-out cone of x between the original circuit
and the new circuit with cover f(x, y). For further details on
SAT-based verification of logic optimizations see [21], [29].

B. Guided Local Rewriting

In this section, we demonstrate the use of AnSER to
guide an external logic synthesis technique known as logic
rewriting. Rewriting is a general technique that optimizes
small subcircuits to obtain overall area improvements [17]. We
optimize circuits simultaneously for SER and area by using
AnSER to accept or reject rewrites.

The rewriting technique relies on the fact that different
irredundant topologies corresponding to the same Boolean
function can exhibit different SER characteristics. For in-
stance, the circuit AND(A, AND(B, C)) is more reliable than
the circuit AND(B, AND(A, C)) if P [A = 0] > P [B = 0]
since A will mask more errors than B in this case. Due to
the heavy dependence on signal probability, enumerating such
cases is difficult. This is precisely where AnSER’s speed can
aid in deciding between certain optimizations for a particular
subcircuit.

The implementation of rewriting reported in [1], [17] first
derives a 4-input cut for a selected node, defining a one-
output subcircuit. Functionally-equivalent replacement candi-
dates are found using look-up tables. To extend the algorithms

Fig. 11. (a) Rewriting a subcircuit to improve area. (b) Finding a candidate
cover for node a.

described in [1] to improve SER and area, we rewrite 4-
input subcircuits to improve their reliability. To ensure global
SER improvement, we re-simulate the circuit and update SER
estimates. Computational efficiency is achieved through fast
incremental updates by AnSER. Further, we quickly prune
candidate rewrites based on how they change the impact of
the rewritten subcircuit. By extending the notion of impact to
one-output subcircuits, we require only local computations.

Figure 11a illustrates two candidate rewrites. The original
subcircuit with three gates can be rewritten with two gates.
New nodal equivalences for the rewritten circuit can quickly
be identified using structural hashing to further reducing area.
In Figure 11a, we also observe that the contributions of the
two equivalent subcircuits to the SER are different. The larger
circuit, which has a redundant input a, allows for more logic
masking.

C. Remarks
Without proper extensions, our resynthesis techniques may

negatively affect delay and testability of a given circuit.
Since SiDeR decreases the testability of nodes, more test
patterns may be necessary for testing, or some nodes may
become untestable. Fortunately, AnSER maintains testability
and signature information for every node in the circuit. Indeed,
for a node g, the test0(g) and test1(g) measures are an
approximation of the random pattern testability of node g.
Therefore, we can output both the testability and test vectors
for any circuit node. Additionally, if we are given a set of test
vectors to preserve, we can avoid node mergers that render
a signal untestable by any of the given test vectors. Since
we re-evaluate signatures and ODCmasks after each change
in the circuit, the updated signatures and ODCmasks indicate
the new test vectors for a particular node. If these vectors
are not among the given test vectors then the change can be
rejected.

The precise analysis of circuit delay requires technology
mapping and interconnect lengths which are not available
during technology-independent logic synthesis. If critical path
information were available, the delay overhead could be de-
creased in SiDeR by prohibiting gate additions along those
paths. For our rewriting technique, we could modify the
objective function for selecting rewrites by requiring that mod-
ifications along critical paths to either maintain or decrease
delay.
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It is also possible to annotate SiDeR transformations on the
netlist, allowing a downstream physical synthesis tool to undo
optimizations when accurate timing analysis can be performed.
Since fewer than 10% of gates and wires are timing-critical
in heavily-optimized ICs, this “undo” functionality should be
able to meet original timing constraints while also preserving
the improvements in reliability achieved by SiDeR.

VII. EMPIRICAL VALIDATION

We now report empirical results for SER analysis using
AnSER and our two SER-aware synthesis techniques. The
experiments were conducted on a 2.4 GHz AMD Athlon
4000+ workstation with 2GB of RAM. The algorithms were
implemented in C++.

For validation purposes, we compare AnSER which com-
putes SER under the TSA fault model with complete test-
vector enumeration using the ATPG tool ATALANTA [15].
We provided ATALANTA with a list all of possible stuck-
at (SA) faults in the circuit to generate tests in “diagnostic
mode,” which generates all test vectors for each fault. We
used an intrinsic gate fault value of Gerr = 1 × 106 on all
faults. Since TSA faults are SA faults that last only for one
cycle, the probability of a TSA fault causing an output error
is equal to the number of test vectors for the corresponding
SA fault weighted by their frequency. Assuming uniform input
distribution, the fraction of vectors that detect a fault provides
an exact measure of its testability. Then, we computed the
SER by weighting the testability with a small gate fault
probability as in Equation 4. While the exact computation can
be performed only for small benchmarks, Table I suggests that
our algorithm is accurate to about 3% for 2, 048 simulation
vectors. More test vectors can be used if desired.

We isolate the effects of the two possible sources of
inaccuracy: 1) sampling inaccuracy, and 2) inaccuracy due to
approximate ODC computation. Sampling inaccuracy is due to
the incomplete enumeration of the input space. Approximate
ODCs computed using the algorithm from [21] incur inac-
curacy due to mutual masking. When a fault is propagated
through two reconvergent paths, they may cancel each other
out. However, results in Table I indicate that most of the
inaccuracy is due to sampling and not due to approximate
ODCs. The last two columns of Table I, corresponding to exact
ODC computation, show an average of 2.65% error. Therefore
only 0.41% of the error is due to the approximate ODC
computation. On the other hand, while enumerating the entire
input space is intractable, our use of bit-parallel computation
enables significantly more vectors to be sampled than other
techniques [2], [23], [28] given the same amount of time.

To obtain accurate gate characterization information for
the experiments, we adapted data from [23], where several
gate types are analyzed in a 130nm, 1.2VDD technology via
SPICE simulations. We use an average SER value of 8×10−5

for all gates. However, the SER analyzers from [23], [27],
[28] all report error rates that differ by orders of magnitude.
SERA tends to report error rates on the order of 10−3 for
180nm technology nodes, and FASER reports error rates on
the order of 10−5 for 100nm. Further, although our focus is
logic masking, we approximate electrical masking by scaling

Runtime (s)
Circuit No. gates AnSER SERD [23] FASER [27] [7]
c432 246 <0.01 10 22 —
c880 591 <0.01 10 — —
c1355 746 0.014 20 40 2.09
c1908 760 0.015 20 66 0.781
c3540 1951 <0.01 60 149 5m42s
c6280 4836 1.00 120 278 —

TABLE II
RUNTIME COMPARISONS WITH SER ANALYZERS FROM [7], [23], [27].

our fault probabilities at nodes by a small derating factor to
obtain trends similar to [23]. In Figure 12, we compare AnSER
and SERD when computing SER for inverter chains of varying
lengths. Since there is only one path in this circuit that is
always sensitized, it helps us estimate the derating factor.

Fig. 12. Comparison of SER trends on inverter chains produced by SERD
[23] and AnSER.

Table II compares AnSER with the prior art on ISCAS-
85 benchmarks, using similar or identical host CPUs. While
the runtimes in [7] include 50 runs, the runtimes in [23] are
reported per input vector. Thus we multiply data from [23] by
the number of vectors (2, 048) used there. Our runtimes appear
better by several orders of magnitude. We believe that our
faster run times are in large part due to the use of bit-parallel
functional simulation to determine logic masking, which has
a strong input-vector dependency. Most other works use fault
simulation or symbolic methods.

Table III shows SER and runtime results for IWLS bench-
marks that were evaluated when we implemented AnSER
within the OAGear package [11]. 1 Note that our algorithm
scales linearly in the size of the circuit, unlike the majority
of prior algorithms. We assume a uniform input distribution
in these experiments although AnSER is not limited to any
particular input distribution. An input distribution supplied by
a user, a sequential gate-level simulator, or a Verilog simulator
can be used directly, even if it includes repeated vectors. In
the latter case, all calculations based on signatures will remain
correct. SER and runtime results with exact and approximate
ODCs are shown on the ISCAS85 benchmarks in Table IV.
Again, results show that approximate ODCs are sufficient for
most benchmark circuits since the loss of accuracy due to
ODC approximation is negligible.

1AnSER will be included as part of the OAGear package in the next release.
OAGear can be downloaded from http://openedatools.si2.org/oagear/oa.html.
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Circuit No. gates ATALANTA AnSER % Error AnSER Exact-ODC % Error
c17 13 6.96E-7 6.96E-7 0.01 6.96E-7 0.01
majority 21 6.25E-6 6.63E-6 6.05 6.57E-6 4.87
decod 25 2.60E-5 2.62E-5 0.83 2.60E-5 0.83
b1 25 1.28E-5 1.31E-5 2.81 1.27E-5 0.78
pm1 68 2.86E-5 3.00E-5 4.70 2.97E-5 3.5
tcon 80 5.30E-5 5.39E-5 1.67 5.35E-5 0.94
x2 86 3.78E-5 3.87E-5 2.38 3.93E-5 3.97
z4ml 92 5.29E-5 5.37E-5 1.50 5.41 E-5 2.20
parity 111 7.60E-5 7.69E-5 1.24 7.71E-5 1.45
pcle 115 5.38E-5 5.34E-5 0.75 5.35E-5 0.56
pcler8 140 7.06E-5 7.24E-5 2.52 7.23E-5 2.41
mux 188 1.58E-5 1.38E-5 12.54 1.63E-5 3.16
Average 3.06 2.65

TABLE I
COMPARISON SER (FIT) DATA FOR ANSER AND ATALANTA.

No. SER Runtime
Circuit Gates (FIT) (s)
pci conf cyc addr dec 97 4.89E-3 0.23
steppermotordrive 226 8.00E-3 0.27
ss pcm 470 1.68E-2 0.3
usb phy 546 1.53E-2 0.28
sasc 549 2.10E-2 0.26
simple spi 821 2.50E-2 0.3
i2c 1142 2.7E-2 0.34
pci spoci ctrl 1267 0.029 0.342
des area 3132 0.019 0.782
spi 3227 0.118 0.68
systemcdes 3322 0.127 0.55
tv80 7161 0.104 0.91
systemcaes 7959 0.267 0.97
mem ctrl 11440 0.494 1.36
ac97 ctrl 11855 0.409 1.38
usb funct 12808 0.390 1.42
pci bridge32 16816 0.656 1.78
aes core 20795 0.550 2.1
wb conmax 29034 1.030 4.18
ethernet 46771 1.480 5.77
des perf 98341 3.620 9.34
vga lcd 124031 4.800 11.7

TABLE III
SER (IN FITS) AND RUNTIME FOR ANSER ON THE IWLS 2005

BENCHMARKS.

SER Runtime SER Runtime
Circuits No. gates (FIT) (s) (FIT) (s)
alu4 740 1.13E-2 0.227 1.19E-2 0.004
b9 14 4.67E-3 0.007 4.69E-3 0.005
b1 114 6.79E-3 0.050 6.69E-3 0.000
C1355 536 1.93E-2 2.010 1.93E-3 0.034
C3540 1055 3.06E-2 0.409 3.07E-2 0.080
C432 215 5.70E-3 0.056 5.71E-3 0.016
C499 432 1.75E-2 0.291 1.71E-2 0.260
C880 341 1.50E-2 0.54 1.51E-2 0.23
cordic 84 9.43E-2 0.007 9.43E-2 .004
dalu 1387 2.18E-2 0.535 2.17E-2 0.225
des 4252 2.04E-1 5.283 2.03E-1 4.87
frg2 1228 3.61E-1 0.217 3.65E-1 0.169
i10 2824 1.03E-1 1.063 1.04E-1 0.315
i9 952 5.07E-2 2.237 5.06E-2 2.044

TABLE IV
SER EVALUATION OF VARIOUS BENCHMARKS WITH EXACT AND

APPROXIMATE ODCS.

Runtime(s)
Circuit No. gates No. cycles MARS-S AnSER
s208 112 10 1000 1
s298 133 10 6900 0
s444 181 10 365 4
s526 214 5 551 11
s1196 547 5 68 8
s1238 526 4 70 8

TABLE V
COMPARISON OF MULTI-CYCLE SIMULATION RUNTIMES.

Table V compares the multi-cycle simulation runtimes of
of AnSER with this of MARS-S, the sequential circuit SER
analyzer from [19]. MARS-S employs symbolic simulations
using a BDD/ADD-based framework to compute steady-state
probability distributions while we use signature-based bit-
parallel functional simulations. The number of cycles needed
to reach steady state is also listed in the table. Table VI
shows the results of SER analysis on sequential circuits from
the ISCAS-89 benchmark suite under time-frame expansion.
The listed runtimes in Table VI are for processing signatures
and ODCs on 10 frames. These results indicate that the SER
obtained by considering only one time frame is 62% higher
than the 2-frame SER. After this point, increasing the number
of frames has little effect on the SER. This indicates that
most faults, if at all propagated, are usually observable at
primary outputs of the current cycle. This result is supported
by observations in [10]. In other words, flip-flops propagate
few errors to the outputs in later cycles due to sequential circuit
masking. The latched errors tend to quickly dissipate with the
number of cycles leaving the SER for multiple-cycle analysis
close to the error rate of the current cycle’s primary outputs.

Table VII shows improvements in SER and area overhead
obtained by SiDeR. The first set of results are for exact
covers, i.e., covers that do not consider ODCs. The second
set uses ODCs to increase the number of candidates as well
as to maintain testability. Since the use of ODCs results
in candidate-target pairs that are not identical, faults at the
output of either gate can still be propagated in most cases.
In both cases, AND/OR gates are used according to the
covering relationship. For exact covers, we see an average
of 29.1% SER improvement with only 5% area overhead.
The improvements for the ODC covers are 39.8% with area
overhead of 13.1%.

Table VIII illustrates the use of AnSER to guide the local
rewriting implementation in the ABC logic-synthesis package
[1]. AnSER calculates the global SER impact of each local
change to decide whether to accept this change. After checking
hundreds of circuit rewriting possibilities, those that improve
SER and have limited area overhead are retained. The data
indicate that, on average, SER decreases by 10.7%, while area
decreases by 2.3%. For instance, in the case of alu4, a circuit
with 740 gates, we achieve 29% lower SER, while reducing
area by 0.5%. Although area optimization is often thought to
hurt reliability, these results show that carefully guided logic
transformations can eliminate this problem.

Table IX shows the results of combining SiDeR and local
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SER for n time-frames
Circuit No. gates Runtime (s) n=0 n=1 n=2 n=3 n=4 n=5
s208 112 9 2.40E-3 2.34E-3 2.34E-3 2.33E-3 2.32E-3 2.33E-3
s298 133 9 2.97E-3 2.75E-3 2.69E-3 2.67E-3 2.65E-3 2.62E-3
s400 180 14 4.24E-3 3.00E-3 2.38E-3 2.23E-3 2.23E-3 2.05E-3
s444 181 14 4.69E-3 3.06E-3 2.43E-3 2.18E-3 2.02E-3 1.98E-3
s526 214 9 3.87E-3 2.97E-3 2.65E-3 2.52E-3 2.46E-3 2.44E-3
s1196 547 18 6.35E-3 3.87E-3 3.71E-3 3.68E-3 4.05E-3 3.89E-3
s1238 526 14 6.09E-3 3.54E-3 3.42E-3 3.47E-3 3.72E-3 3.62E-3
s1488 659 5 1.02E-1 1.11E-2 1.03E-2 1.06E-2 1.15E-2 1.07E-2
s1423 731 47 1.43E-2 8.48E-3 5.08E-3 3.47E-3 2.78E-3 2.54E-3
s9234 746 4 1.31E-2 1.24E-2 1.22E-2 1.18E-2 1.07E-2 9.78E-2
s13207 1090 15 3.07E-2 2.66E-2 3.14E-2 3.62E-2 3.61E-2 4.39E-2

TABLE VI
THE CHANGE IN SER FOR SEQUENTIAL CIRCUITS WITH INCREASING NUMBER OF TIME FRAMES.

With exact covers With approx covers
% SER % Area % SER % Area

Circuit improvement overhead improvement overhead
cordic 1.7 1.2 27.3 45.2
b9 18.1 14.9 30.7 31.6
C432 37.6 14.0 38.7 14.9
C880 9.6 0.9 13.1 2.3
C499 1.0 3.2 32.2 20.6
C1908 5.9 9.0 32.4 24.1
C1355 25.3 9.0 30.7 8.6
alu4 55.9 0.9 55.9 1.6
i9 65.4 6.6 65.4 6.6
C3540 31.1 2.2 49.4 3.6
dalu 74.3 1.2 74.3 1.2
i10 40.4 5.4 40.4 5.6
des 11.4 2.9 26.7 4.4
Avg 29.1 5.5 39.8 13.1

TABLE VII
IMPROVEMENTS IN SER OBTAINED BY SIDER.

No. % SER % Area Time
Circuits rewrites improvement improvement (s)
alu4 13 29.3 0.5 24.5
b1 0 0.0 0.0 0.2
b9 8 6.8 0.9 0.3
C1355 97 1.2 9.0 37.6
C3540 23 5.8 0.9 51.5
C432 68 5.5 1.4 12.1
C499 37 0.0 0.5 13.0
C880 7 0.2 0.0 5.4
cordic 5 1.2 1.2 0.5
dalu 58 24.0 3.2 35.0
des 282 11.2 0.1 12.3
frg2 96 27.9 2.0 8.9
i10 143 5.0 0.6 16.7
i9 83 31.4 11.7 35.3
Avg 13.7 2.3 18.1

TABLE VIII
IMPROVEMENTS IN SER AND AREA WITH LOCAL REWRITING.

Circuit % SER improvement % Area overhead
alu4 95.33 55.41
b1 8.08 14.29
b9 19.88 25.44
C1355 99.49 19.40
C3540 96.02 39.72
C432 96.81 22.79
C499 86.74 14.58
C880 59.58 24.93
cordic 58.34 33.33
dalu 92.68 41.17
des 40.41 -1.69
frg2 46.42 27.85
i10 80.67 2.16
i9 78.05 49.26
Average 68.46 26.33

TABLE IX
IMPROVEMENTS IN SER BY COMBINING OF REWRITING AND SIDER.

Technique % SER improvement % Area overhead
SEROnly [2] 14.9 8.2
JointOpt [2] 6.8 1.3
IndirImply [3] 9.4 6.7
BackJustify [3] 14.4 8.6
DirImply [3] 15.7 8.64
PartialMask [20] 82.7 107.4
DomValue [20] 77.3 81.1
SiDeR 29.1 5.5
SiDeR-ODC 39.8 13.1
Rewriting 13.7 -2.3
Combined 68.5 26.3

TABLE X
COMPARISON OF THE VARIOUS SER IMPROVEMENT TECHNIQUES.

rewriting. In this experiment, we first used SiDeR followed
by two passes of rewriting (in area-unconstrained and area-
constrained modes) to improve both area and SER. This
particular combination of the two techniques yields 68% im-
provement in SER with 26% area overhead. The improvements
seen are not necessarily additive as one optimization may
change the starting point and available options for the other.
Further, different interleavings of the two optimizations can
provide different results.

Table X compares various SER-aware logic synthesis opti-
mizations. The first two techniques are from [2], which uses
ATPG-based rewiring. SEROnly refers to optimizing only the
SER, while JointOpt refers to joint optimization for SER, area,
power and delay. The next three techniques are from [3]. Here,
logic implication analysis is used to identify redundant wires.
IndirImply, BackJustify and DirImply are techniques that in-
corporate indirect implications, backwards justification, and
direct implications respectively. The next two techniques from
[20] are variants of partial fault masking. Nodes identified
as susceptible are triplicated in the PartialMask technique,
while these nodes are only duplicated in DomValue. The final
four techniques are ours —the basic SiDeR technique, SiDeR
augmented with ODCs, guided local rewriting, and combined
SiDeR/rewriting.

Generally, these results show that guiding logic optimization
techniques such as those of [2], [3] incur less overhead than
explicit replication [20]. Further, our results indicate that
SiDeR is able to identify more inherent redundancy than
implication-based analysis [3]. A possible explanation for this
is that implication analysis is restricted to certain types of
implications and certain parts of the circuit. Further, it is
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difficult to incorporate ODCs and SDCs (satisfiability don’t
cares) in implication analysis. Our signature-based analysis on
the other hand, implicitly incorporates SDCs and we explicitly
compute ODCmasks to incorporate don’t cares in our synthesis
techniques.

VIII. CONCLUSIONS

We have presented an SER-aware design framework which
includes a logic-level fault model, SER evaluation algorithms,
and logic synthesis techniques. AnSER, our technology-
independent SER analyzer, accurately evaluates the logic
masking in combinational and sequential logic circuits. It
achieves very high speed (2-3 orders of magnitude faster
than previous methods) through the efficient use of node
signatures and ODC masks. We also proposed a new, SER-
aware resynthesis strategy, SiDeR, which manipulates node
signatures to find redundancies within the circuit. Then, with
the addition of a few fault-masking gates, SiDeR protects
the fan-in cones of vulnerable nodes. On average, SiDeR
decreases SER by 40% with only 13% area overhead. Finally,
we successfully applied AnSER to local rewriting, and showed
that this approach simultaneously improves area and SER.
Combining the two techniques gives a 68% SER improvement.
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