
1

Optimizing Non-Monotonic Interconnect using
Functional Simulation and Logic Restructuring

Stephen M. Plaza, Igor L. Markov, and Valeria M. Bertacco
The University of Michigan, Department of EECS
2260 Hayward Ave., Ann Arbor, MI 48109-2121
{splaza,imarkov,valeria}@umich.edu

Abstract— The relatively poor scaling of interconnect in mod-
ern digital circuits necessitates a number of design optimizations,
which must typically be iterated several times to meet the speci-
fied performance objectives. Such iterations are often due to the
difficulty of early delay estimation, especially before placement.
Therefore, effective logic restructuring to reduce interconnect
delay has been a major challenge in physical synthesis, a phase
during which more accurate delay estimates can be finally
gathered. In this work, we develop a new approach that en-
hances modern high-performance logic synthesis techniques with
flexibility and accuracy in the physical domain. This approach is
based on (1) a novel criterion based on path monotonicity, that
identifies those interconnects amenable to optimization through
logic restructuring and (2) a synthesis algorithm relying on logic
simulation and placement information to identify placed subcir-
cuits that hold promise for interconnect reduction. Experiments
indicate that our techniques find optimization opportunities and
improve interconnect delay by11.7% on average at less than2%
wirelength and area overhead.

I. I NTRODUCTION

As interconnect contributes an increasingly significant frac-
tion of overall circuit delay, the focus of design methodology is
shifting from logic optimization to interconnect optimization.
While this transition has been occurring for over a decade,
meeting performance objectives is becoming more and more
difficult. In recent years, a few successful methodologies
achieved timing closure by combining netlist level minimiza-
tion in logic synthesis with post-placement physical optimiza-
tions. This family of solutions is known as physical synthesis.
Related strategies, including interconnect buffering [21], gate
sizing [18], and relocation [1], successfully improved delay. In
[8], [11], [32], [17], post-placement resynthesis achieved delay
improvement with limited placement perturbation, but these
techniques are limited to simple signal substitution transfor-
mations. As the major portion of the critical delay is shifting
into interconnect [38], poor design choices during synthesis
cannot be easily corrected by limited scale post-placement
optimizations. Therefore, more accurate delay models have
been developed to guide logic synthesis.Wire-load models
that estimate delay by considering the capacitive load of each
net were effective until wire capacitance and resistance became
predominant. Further knowledge of the impact of placement on
wirelength was consequently needed by synthesis algorithms.

To meet the challenge of performance optimization at the
130nm technology node and beyond, the traditional design
flow transformed from several discrete optimization phases
(such as logic synthesis followed by place-and-route) intoa
more holistic strategy. In [14] wirelength estimation was incor-
porated in logic synthesis by constructing a highly placeable

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

netlist with the goal of reducing wire detours. In addition,
topographical information has been used to guide current
synthesis tools [40]. Due to the importance and inherent
difficulty of estimating the impact of placement and routing
on interconnect, researchers suggested the idea of maintaining
a companion placement estimate throughout the logic syn-
thesis process [10], [15], [26]. However, interconnect-aware
logic transformations are still limited by the accuracy of the
estimates available. Furthermore, guiding logic synthesis by
conservative delay estimates, as in [14], can lead to transfor-
mations that do not improve critical path delay but increase
area and power consumption.

While performing aggressive logic restructuring using
global information is desired to exploit better estimates later
in the design flow, such accounts have eluded published
literature. One particular complication is that the limited
amount of flexibility found in combinational circuits must be
combined with physical aspects of performance optimization.
In this paper, we introduce a post-placement solution that
enables aggressive optimization while minimizing changesto
the physical netlist. We consider a wide range of changes to the
circuit structure while also tracking their impact on physical
parameters of the circuit.

Our contributions are as follows:

1) A novel metric for efficiently identifyingnon-monotonic
paths in the circuit, that locates regions where restructur-
ing provides the greatest gains. This metric generalizes
the metric in [4] and considers longer paths.

2) A generic and powerful technique for discovering logic
transformations using functional simulation, which also
facilitates fast re-evaluation of physical parameters. Our
technique does not require local equivalence between
the optimized subcircuit and the original, but uses
simulation and satisfiability to ensure that the circuit’s
functionality is unmodified.

3) A suite of powerful algorithms that efficiently exploit a
circuit’s don’t-cares and avoid heavy-weight techniques
traditionally used in logic synthesis, while allowing
tighter integration with placement and a more realistic
delay calculation.

In our methodology, we first identify detoured wires that
lie on critical paths. The example in Figure 1 shows a
long critical path with several wire detours. As mentioned
in [4], many critical paths cannot be improved through cell
relocation and better timing-driven placement. Furthermore,
the inaccuracy of timing estimates before detailed placement
limits the effectiveness of techniques from [14] in eliminating
path non-monotonicity.We target these non-monotonic paths
for resynthesis by generating different logic topologies that

2

Fig. 1. An example from [8] of a non-monotone critical path after placement
for circuit DES.

improve circuit delay. To efficiently find these topologies,
we abstract away circuit complexity using logic simulation.
Through logic simulation, we partially characterize the be-
havior of each node in the subcircuit with asignature[8], [7],
[28]. We then use these signatures to determine whether a logic
transformation generating the desired topology is possible.

In the example of Figure 2, we show that by applying our
technique, a subcircuit with a long critical path can be trans-
formed to a functionally-equivalent subcircuit with smaller
critical path delay. Unlike most techniques from logic syn-
thesis, our circuit restructuring can work directly on mapped
circuits with complex standard cells. Another novel feature is
our extensive use of circuit flexibility due to signal masking
by downstream logic, also known as observability don’t-cares
(ODC). Additionally, our approach uses controllability don’t-
cares (CDC),i.e., circuit flexibility due to upstream logic.
Compared to work in [34], our approach exploits global don’t-
cares to enhance logic restructuring.In [17], redundancy ad-
dition and removal (RAR) are used to improve circuit timing.
However, these rewiring techniques consider only a subset of
our transformations, where we use redundancy and physical
information in conjunction to directly guide the resynthesis of
subcircuits containing multiple cells.

Fig. 2. The resynthesis of a non-monotone path can produce much shorter
critical paths and improve routability.

Our experiments indicate that large circuits often contain
many long critical paths that can be effectively targeted with
our restructuring. Improving these paths results in consis-
tent delay improvements of11.7% on average with minimal
degradation to other performance parameters.Furthermore, we
achieve almost twice the delay improvement of that achieved
by RAR-based timing optimizations.Our techniques are fast
and scale to large designs, whereas completely characterizing

node functionality with BDDs would require a prohibitive
memory footprint.

In Section II, we review the use of simulation to guide
logic optimization and summarize state-of-the-art synthesis
strategies. In Section III, we introduce our interconnect op-
timization strategy. In Section IV, we propose a metric for
finding circuit paths that require restructuring. Section V
introduces a novel physically-aware synthesis approach that
uses simulation. Empirical validation is presented in Section
VII, and we summarize our work in Section VIII.

II. BACKGROUND

This section describes how functional simulation can be
used to characterize the behavior of internal nodes in the
circuit and guide logic optimization. We then discuss a state-
of-the-art approach for logic synthesis, currently limited to
the logic domain that provides essential components for our
physical synthesis algorithms.

A. Simulation and Satisfiability

A nodeF in a Boolean network can be viewed as a function
of primary inputs. Such a node can be characterized by its
signature, SF , for K input vectorsX1 · · ·XK .

Definition 1: SF = {F (X1), . . . , F (XK)} whereF (Xi) =
{0, 1} indicates the output ofF for a given input vector.

A carefully-designed testbench or constrained-random sim-
ulator can be used to generate vectorsXi and derive signatures
for each node in a circuit. For a network withn nodes, the time
complexity of generating signatures for the whole network is
O(K ∗ n). The functional non-equivalence of two nodes can
be determined by the following:SF 6= SG ⇒ F 6= G.

Fig. 3. Optimization by merging equivalent nodes in the presence of don’t-
cares. 3-bit signatures are shown at the output of each gate.

Signatures can be efficiently created and manipulated by
taking advantage of bit-parallel operations. Therefore, equal
signatures can be used to efficiently identify potential node
equivalences in a circuit by deriving a hash index for each
signature [19]. SinceSF = SG does not imply thatF = G,
this potential equivalence must be verified,e.g., using a SAT
solver, as explained below.

The signature is apartial characterization of a node’s
functionality. Furthermore, the signature encodes all of the

3

node’s CDCs under the input vectors applied. The signature’s
partial characterization enables fast and aggressive optimiza-
tions without requiring a fully specified truth table. However,
unlike traditional, correct-by-construction optimizations, these
speculative transformations must be validated by a formal
proof mechanism. Hence, the efficiency of [19], [23] depends
on the underlying engines which formally verify the equiva-
lence of nodes with identical signatures.

Recent advances in SAT solvers,e.g., learning, non-
chronological backtracking, and watched literals [24], [30]
have made SAT a more scalable alternative to BDDs for
equivalence checking. The equivalence of two nodes,F and
G, in a network can be determined by constructing anXOR-
based miter [5] between them and asserting the output to1 as
shown in the following formula:

(F = G) ⇔ (∀i F (Xi) ⊕ G(Xi) 6= 1) (1)

where
⋃

i Xi is the set of all possible input vectors.
In [19], input vectors are generated dynamically from

counter-examples returned by SAT checks provingF 6= G.
The dynamic input vectors improve the quality of the signa-
tures by limiting situations whereSF = SG despiteF 6= G.

B. Logic Optimizations with Signatures

Simulation is an effective means for quickly identifying can-
didates for optimization. In [28], [37], signatures were used to
additionally encode ODCs to enable circuit simplification and
optimization by merging equivalent nodes. Consider the exam-
ple in Figure 3 which shows a circuit where logic simulation
produces the signatures shown. Notice that through efficient
don’t-care computation using a fast linear-time simulation [28]
of downstream nodes, don’t-care values can be determined for
some of the signature’s positions. In the example, these don’t-
cares suggest a potential circuit simplification by mergingtwo
nodes. The optimization will need to be verified by a formal
proof engine.

Despite these advantages, signature-based optimizationsare
limited, and general synthesis algorithms have not been de-
veloped. A key contribution of this work is the application
of signatures to enable logic restructuring while relying on
available don’t-care computation algorithms.

C. Logic Rewriting

Fig. 4. Two examples of AIG rewriting. With structural hashing, it is possible
in the second example to reuse external nodes and minimize the subgraph.

Performing scalable logic optimization requires efficient
netlist manipulation, typically involving only a small setof
gate primitives. Given a set of Boolean expressions that
describe a circuit, the goal of synthesis optimization is to
minimize the number of literals in the expressions along with

the number of logic levels. Several drawbacks of these tech-
niques are discussed in [22], including limited scalability. To
this end, the authors of [22] introduced an efficient synthesis
strategy calledrewriting. Logic rewriting is performed over a
netlist representation called an And-Inverter Graph (AIG)[19],
where each node represents an AND gate and complemented
(dotted) edges represent inverters. In logic rewriting, the qual-
ity of different functionally-equivalent implementations for a
small logic block in a circuit is assessed. In Figure 4, the
left transformation leads to a reduction in area. By using a
technique calledstructural hashing[19], nodes in other parts
of the circuit can be reused. In the right example, there is a
global reduction in area by reusing available gates. However,
structural hashing requires that the circuit be represented as
an AIG and is not viable on mapped circuits.

The increasing significance of wire delay is addressed by
providing more accurate delay models to logic synthesis, from
using wire-load models to maintaining companion placements
[10]. The delay model is used to modify the literal reduction
objective so that transformations or rewrites that improvethe
delay according to the model are favored. However, delay esti-
mation is becoming more inaccurate before detailed placement
and routing as the actual interconnect routes become more
important. This trend suggests that new synthesis algorithms
should be applied after placement and routing because specula-
tive optimizations can actually increase delay while negatively
impacting other performance metrics like area.

III. O UR APPROACH

In this paper, we introduce a new synthesis approach that
accounts for physical aspects of performance optimization.
We illustrate our approach in Figure 5. Starting from a
fully placed circuit, we identify critical paths using static
timing analysis. We then apply a novel metric introduced in
Section IV that finds subcircuits for which restructuring could
provide the greatest improvements. Next, we perform logic
simulation using an even distribution of input vectors and
generate signatures that encode don’t-cares to obtain a partial
characterization of the functional behavior of the circuit. Using
this functional information encoded in signatures along with
the physical constraints, we efficiently derive a topology that
is logically equivalent to the original subcircuit but exhibits
better performance. Finally, we legalize the altered placement
and update the timing information in the circuit. As a result,
we tailor our path-monotonicity metric to find portions of the
critical path resulting in the greatest delay improvements. In
addition, our techniques can target other objectives as well.

Using signatures for restructuring is advantageous because
logic simulation provides a more scalable functional represen-
tation than BDDs. Furthermore, signatures can characterize
internal nodes for netlists mapped to standard cells as well
as for technology-independent netlists. In contrast, the logic
rewriting strategy in [22] does not operate on technology-
mapped circuits and does not take physical information into
account. We also improve solution quality by considering
more don’t-cares while being directly guided by physical
constraints.

4

Fig. 5. Our approach to optimizing interconnect. First, we identify non-monotonic critical path interconnect, and then we restructure these paths to improve
delay. Such netlist transformations include gate cloning,but are substantially more general. They do not require thatthe subcircuits in question be equivalent.
Instead, they use simulation and satisfiability to ensure that the entire circuit remains equivalent to the original.

IV. I DENTIFYING NON-MONOTONE PATHS

To maximize the effectiveness of our post-placement opti-
mizations, we target timing critical parts of the design that
are amenable to restructuring. In this section, we introduce
our fast Dynamic Programming (DP) algorithm for finding
paths in logic that arenon-monotone, or paths that are not
optimally short. Unlike the work in [4], we consider paths of
arbitrary lengths and scale to many more segments in practice.
We propose two models for computing path monotonicity: (1)
wirelength-based and (2) delay-based. Non-monotonic paths
indicate regions where interconnect and/or delay may be
reduced by post-placement optimization.

A. Path Monotonicity

First, static timing analysis is performed to enable our delay-
based monotonicity calculation and identify critical and near-
critical paths. We use a timing analyzer whose interconnect
delay calculation is based on Steiner-tree topologies produced
by FLUTE [12]1 and the D2M delay metric [2] that is known
to be more accurate than Elmore delay. Before focusing
on critical paths, we will describe a general approach that
examines the monotonicity of every path. We define thenon-
monotone factor (NMF) for the path{x1, ..., xk} with respect
to a given cost metric (such as wirelength or delay) as follows:

NMF =
1

cideal(x1, xk)

k−1
∑

n=1

c(xn, xn+1) (2)

where c(a, b) defines the actualcost betweena and b and
cideal defines an optimal cost. WhenNMF = 1, the path is
monotone under the cost metric. We explore two definitions for
cost, one based on rectilinear distance and another on delay.

For the rectilinear case,c(a, b) is the rectilinear distance
between cella andb while cideal(a, b) is the optimal rectilinear
distance assuming a monotonic path. For the delay-based
definition,c(a, b) is theAT (b)−AT (a), whereAT is arrival
time. We definecideal as the delay of an optimally buffered
path betweena and b as described by [25] and given by the
following formula:

cideal(a, b) = dist(a, b)(RbufC+RCbuf +
√

2RbufCbufRC)
(3)

1Timing-driven Steiner trees can be easily used instead [3].

where R and C are the wire resistance and capacitance
respectively andRbuf andCbuf are the intrinsic resistance and
input capacitance of the buffers.dist(a, b) is the rectilinear
distance betweena and b. Unlike the distance calculation
where the ideal path length betweena and b can be equal
to the actual path length, the optimal buffered wire between
a and b has delay≤ AT (b) − AT (a). We only attempt to
optimize paths with large NMFs.

B. Calculating Non-monotone Factors

We now present our algorithm for calculating the NMF
of all k-hop paths in a circuit, for a givenk ≥ 2. Our
experiments indicate that the greatest NMFs are often observed
on relatively short paths, and optimizing such paths brings
greatest benefits.

inputs
Nodes nodes: netlist
Dist K: length of paths considered

output
NMF: NMF between each node

void gen NMF(Nodes nodes, Dist K){
levelize(nodes);
for each node1in nodes

for eachnode2in range(node1+1, node1+K)
c ideal array[node1,node2] = cideal(node1, node2);

for each node1in nodes
subtot[] = 0;
for eachnode2in range(node1succ, node1succ+K)

subtot[node1,node2] = max(subtot[node1,node2pred]
+ c(node2pred, node2));

factor = subtot / cideal array[node1,node2];
NMF[node1,node2] = factor;

}

Fig. 6. Generating non-monotone factors for ak-hop paths.

The non-monotone factor can be efficiently computed for
every path using aO(K ∗ n)-time algorithm for n nodes
in the circuit, as shown in Figure 6. First, the circuit is
levelized. Then,cideal is computed for node pairings with
a connecting path of≤ k hops, and the values are stored
in c ideal array. All pairs are traversed again, and the
subtot is generated by computing the maximum cost from
node1 to node2 through a recurrence relation. The NMF is
computed for the subpath,{node1, node2}, by dividing the

5

K=3 a

b

c

d e

g

hf

X

X

#

#

#

#

#

#

#

#

K

K

0

-

X

0

0

-

X

0

X

#

#

#

#

#

#

?

-

-

-

-

-

-

-

-

0

-

X

0

?

?

?

?

-

-

-

-

-

-

-

-

-

-

-

-

0

-

?

0

-

-

-

-

a b c d e f g h

h

g

f

e

d

c

b

a

Fig. 7. Calculating the non-monotone factor for path{d, h}. The matrix
shows computations performed while executing the algorithm in Figure 6.

total cost,subtot, by c ideal[node1,node2]. In Figure
7, we illustrate a subcircuit being traversed using thegen NMF
function wherek = 3 and the currentnode1 is d. The matrix
indicates the NMFs already computed with #, and nodes not
lying on the same path withX . Because we traverse the
graph in levelized order,a, b, c have already been examined.
Notice, that nodes that are farther thank hops away are not
examined (indicated byK in the matrix). For noded, the non-
monotone factor is computed for pathd, h by determining all
the incoming sub-paths toh first.

V. PHYSICALLY-AWARE LOGIC RESTRUCTURING

We optimize the subcircuits that are identified by the path
monotonicity metric as illustrated in Figure 8. We first select
a region of logic determined by the non-monotonic path
for resynthesis. We then use signatures to find an alterna-
tive implementation with a topology that improves physical
parameters and that is logically equivalent to the original
implementation (up to the signatures). This implementation is
then formally verified by performing SAT-based equivalence
checking between the original and new netlists.

Previous work on improving path monotonicity used logic
replication [16]. However, the technique is restricted to the
topology of the extracted subcircuit, and its optimizationare
independent of the subcircuit’s functionality. Furthermore, as
observed in [16], gate relocation sometimes cannot improve
path monotonicity. In the following, we introduce the theo-
retical framework to resynthesize a subcircuit given a set of
inputs and a target output by introducing a concept called
logical feasibility. We then introduce an algorithm for con-
structing subcircuits using signatures and physical constraints
to optimize the interconnect.

A. Determining Logical Feasibility with Signatures

We introduce a goal-driven synthesis strategy that efficiently
finds a logic implementation for a given physical topology.
The major thrust of previous efforts in post-placement logic
optimization involves the efficient encoding of logic function-
ality and, in particular, circuit don’t-cares. In [20], theauthors
proposed a technique to enumerate through the decompositions
of a particular node using BDDs. By encoding the ways

of decomposing a node with BDDs, the authors provide an
algorithm for resynthesizing logic that can work on mapped
netlists using different standard-cell libraries. No strategy is
considered for exploiting global circuit don’t-cares which
could be used to enhance the quality of the decompositions
considered. In [35],sets of pairs of functions to be distin-
guished (SPFDs) are introduced as a way of representing
a node’s functionality which can be used to exploit circuit
flexibility in logic optimization. In [31], the authors propose
a technique that uses SPFDs to find a logic implementation
given a topological constraint, but their resynthesis approach
does not incorporate physical parameters such as timing and
is limited to only a few neighboring levels of logic to reduce
the memory and computational requirements of SPFDs. In
an alternative strategy to reduce the memory requirements of
SPFDs, the authors in [36] choose a subset of SPFDs for a
node using simulation and compatibility don’t-cares in a logic
rewriting application.

In our work, we use logic signatures to expose circuit
functionality. Our approach is advantageous because the data
structures involved in our technique do not need to represent
an exponential amount of information. This is generally the
case regardless of the underlying functionality. Through logic
simulation we can encode global circuit don’t-cares which are
not limited by levels of logic or required to be compatible.
Furthermore, our approach encodes the distinguishing bitsin
a compact data structure with logic signatures so that these
operations can be performed with bitwise parallelism. This
is particularly beneficial in our development of a novel goal-
driven synthesis technique where fast evaluation of topological
constraints while exploiting don’t-cares is essential to tightly
couple physical optimization and logic synthesis.

Given an extracted subcircuit withχ inputs,{a1, a2, ..., aχ}
and outputF to resynthesize, we express a candidate re-
structuring as a directed graphTF with χ incoming edges,
one outgoing edgeF , andn internal vertices. We would like
to determine whether there is a labeling,G∗, of n vertices
with gatesg ∈ G such thatF is logically equivalent to the
subcircuitTF c that implementsTF with respect to the outputs
of the circuit. We define thelogical feasibility of TF as:

Definition 2: TF is logically feasible iff
∃G∗onset(TF c) = onset(F)

whereonset represents where the subcircuit produces1 for
an input combination. This definition can be relaxed by
considering its relation within the care-set which could be
considerably smaller than2χ due to circuit don’t-cares.

Definition 3: TF is logically feasible up to circuit don’t-
cares iff∃G∗onset(TF c) ∪ dc(F) = onset(F) ∪ dc(F)
wheredc is the don’t-care set.

A naive algorithm for determining the logical feasibility of
TF requires that every possible labelingG∗ is tried. Forn
vertices, this requires checking|G|n mappings. If the set of
2-input logic functions is considered, there are5n mappings.2

Furthermore, performing equivalence checking betweenTF c

and F is an NP-complete problem. Below, we discuss how

2Although there are16 different two-input Boolean functions, the tautology
and two one variable transfer functions along with the negated form of each
function do not need to be explicitly considered

6

Fig. 8. Our flow for restructuring non-monotonic interconnect. We extract a subcircuit determined by our non-monotonicmetric and find topologies that are
logically equivalent using simulation. This new implementation is then verified by equivalence checking with an incremental SAT solver.

signatures can be used to determine a set of inputs that
implements a given function and how to quickly determine
logical feasibility up to the signature approximation.

Pairs of bits to be distinguished:A function F is said to
be dependent on an inputai if and only if:

Fai=0 ⊕ Fai=1 6= 0 (4)

A similar relationship between a signatureSf and input
signaturesS1, ..., Sχ can be established. In [7], it was observed
that a set of input signatures can implement a target signature,
if and only if, every pair of different bits inSf is distinguished
by at least oneSχ.

Definition 4: A pair of bits to be distinguished (PBD) is a
pair {i, j} such thatSf (i) 6= Sf (j).

Definition 5: A candidate signature,Sχ distinguishes a
PBD in Sf if Sx(i) 6= Sx(j) where{i, j} ∈ SPBD

f where
SPBD

f is f ’s set of PBDs.

Example 1. Assume a target signalSf = {0, 0, 1, 1} and
candidatesS1 = {0, 0, 0, 1}, S2 = {0, 1, 0, 1}, and S3 =
{0, 1, 1, 1}. The PBDs ofSf are {0, 2}, {0, 3}, {1, 2}, {1, 3}
that need to be distinguished. Note thatS1 and S2 together
cannot implementSf because they do not distinguish{0, 2}.
However, if allSχ are used, there exists a function that gives
Sf . In this exampleSf = S3 · (S1⊕̄S2). 2

Essential PBDs:Input signtures form an irredundant cover
of Sf ’s PBDs when 1) every PBD is covered by at least one
Si and 2) removing oneSi results in at least one uncovered
PBD. The resultingSis form the support of the function to
be resynthesized. We define a PBD that is distinguished by
only one Si as anessentialPBD for Si. According to the
definition of an irredundantcover and PBDs, eachSi must
have at least one essential PBD (or else that input can be
discarded). Because there is at least one essential PBD for
each input,Sf is dependent onSi independent of the specific
implementation, if the following condition holds:

Sf(Si=0) ⊕ Sf(Si=1) = 1 (5)

In the case of the resynthesis of a functionF (a1, ..., aχ), we
note that the cardinality of theirredundantcover can be less
thanχ becauseF may be independent of anai up to don’t-
cares and the signature abstraction might not expose enough
essential PBDs. Furthermore, severalirredundantcovers are

possible. In this paper, we greedily determine irredundant
covers by first selecting signatures that cover the most PBDs
and continuing until all PBDs are covered.

Determining logical feasibility with essential PBDs:We
now describe how the logical feasibility of a given topology
can be determined using signatures. Later, we explain how to
create such topologies and how to verify the signature-based
abstraction. Our strategy considers the set of available gatesG

as implementing all the 2-input logic functions, so that each
noden has exactly two input edges. In general, we do not
restrict our topologies to befanout-freetrees, where a topology
is fanout-free if each noden in TF has only one outgoing edge.

However, fanout-free topologies(where we make the addi-
tional constraint that each primary input has only one outgoing
edge) form a critical aspect of our goal-driven synthesis
strategy because, under a couple of assumptions, they produce
circuits with optimal area and timingif such a fanout-free
circuit exists. First, we assume that the area associated with
each node/gate in the topology is equal (since the implemen-
tation of the topology is unknown). Second, the delay through
the subcircuit is determined by its path length through the
topology, where we assume that each wire corresponding to an
edge is optimally buffered. Therefore, fanout-free topologies
have smaller area than their non-fanout free counterparts
when implementing a single-output functionbecause they have
fewer internal nodes (χ − 1 nodes). Furthermore, fanout-
free topologies have the same or smaller delay as non-fanout
free trees. The proof of this is straightforward because if a
reconvergent topology has optimal delay based on path length,
converting this topology to a fanout-free tree by removing
edges and nodes will not increase path length.

In the next few paragraphs, we introduce an algorithm for
determining logical feasibility on fanout-free circuits where
each primary input has only one outgoing edgeF , which
can be performed with aO(|SPBD

F | ∗χ)-time algorithm using
signatures. Because logical feasibility is not always possible
for a fanout-free tree that optimizes a particular performance
criterion, we extend our synthesis techniques to handle arbi-
trary non-tree topologies.

First, we associate a signature to each inputχ of TF .
These signatures implicitly handle controllability don’t-cares
as impossible input combinations which will never occur in
the signatures. By simulating downstream nodes as in [28],

7

observability don’t-cares are derived andSf is reduced to
include only care values. If we assume that eachSi under
simulation distinguishes at least one essential PBD, we note
the following for each2-input gate in a fanout-free topology:

Theorem 1:For input signaturesS1 andS2 and the2-input
function, Φ, the signatureS1,2 = Φ(S1, S2) hasS1 and S2

essential PBDs.
Proof. Any cut throughTF gives a set of inputs that im-
plementsF . Therefore, theSPBD

F must be distinguished by
each cut inT c

F for a feasible topology. Since in a fanout-
free topology,S1 andS2 do not reoccur in the topology, the
output of the node combiningS1 and S2, S12, must contain
their essential PBDs to distinguishSF . 2

As a direct consequence, each2-input transformation pre-
serves at least two essential PBDs. Furthermore, PBDs that
only occur in bothS1 andS2 must also be preserved to uphold
the invariant that every cut through the topology forms an
input support.In a similar manner, the work in [31] upholds
this invariant in constructing a subcircuit but considers SPFDs
instead.We note the following:

Theorem 2:There are at most two2-input Boolean func-
tions (ignoring negated version of these functions) that can
preserve all the essential PBDs of the input signatures.
Proof. A 2-input Boolean function has4 row truth table with
output0 or 1. One essential PBD adds the following constraint:

[Φ(a, b) = z] ∧ [Φ(a′, b) = z′] (6)

wherea, b, and z are variables with value0 or 1. In other
words, two different rows of the truth table must have different
values. For a givena and b where an essential PBD is
defined, there are only2 such assignments toz that satisfy
this constraint. The remaining2 rows in the truth table can
have any of4 possible output combinations. Therefore, there
is a total of8 different functions that satisfy this constraint.
We ignore negated versions of the Boolean function since
that negation can be propagated to the inputs of later gates.
Given this, there are4 distinct functions that can preserve one
essential PBD. However, since two essential PBDs must be
preserved, the following constraint needs to be satisfied:

[Φ(a, b) = z]∧ [Φ(a′, b) = z′]∧ [Φ(d, e) = y]∧ [Φ(d, e′) = y′]
(7)

If {(a, b), (a′, b)} is disjoint from {(d, e), (d, e′)} , there are
only 4 possible output combinations ofz andy that satisfy the
constraints, where2 of them are the negated form. This is also
the case if{(a, b), (a′, b)} is not disjoint from{(d, e), (d, e′)}
(it is impossible for two different functions to have essential
PBDs on the same two rows). Therefore, there are at most only
2 distinct Boolean functions that can preserve the essential
PBDs of its inputs.2

If the fanout-free tree is traversed in topological order, a
choice between two different 2-input gates is available foreach
node. In the worst case, all possible combinations must be tried
to preserve all the essential PBDs givingO(|SPBD

F |2χ)-time
complexity (there areχ − 1 nodes). For the typically small
topologies that are considered for resynthesizing portions of
the critical paths, this results in significant practical runtime

improvement over trying all possible gate combinations with-
out considering PBDs. However, we note that in many cases
the runtime complexity is linear.

Theorem 3:The logical feasibility of anχ-input fanout-
free TF can be determined inO(SPBD

F ∗ χ) time whenK

simulation vectors completely specify the functionality of F .
Proof. A fanout-free topology specifies a disjoint partition
of the inputs. If an implementation exists with a disjoint
partitioning of inputs, each internal node corresponds to a
function that is specified independently of the rest of the
implementation. Therefore, when the signatures completely
specify F (a complete truth table), each internal node is
also completely specified. Because of this, each two-input
operation must preserve at least3 essential PBDs (the minimal
number of distinguishing bits a2-input function can have)
and therefore only one function satisfies this relation. Because
there is only one such candidate function, the complexity of
finding an implementation isO(SPBD

F ∗ χ). 2

Although we often resynthesize functions with small sup-
ports and therefore small truth tables, a logic signature does
not always completely specify a function’s behavior resulting
in a reduction in the number of bits that need to be distin-
guished. Also, the ability of simulation to quickly identify
circuit don’t-cares further reduces the number of bits that
need to be distinguished. By not having a completely specified
function, we facilitate multiple feasible implementations. De-
spite the advantages of this flexibility in determining a feasible
implementation, an internal2-input operation may only need to
preserve2 essential PBDs rather than3, which can increase the
runtime of finding an implementation. However, in practice,
this runtime penalty is minor because the topologies are
typically small. Also, in many cases logical feasibility can
still be determined inO(SPBD

F ∗χ) time depending on which
bits need to be distinguished.

Although in this paper we use a functionally complete set
of 2-input gates, our approach extends to other standard-cell
libraries. We now explain how to accomodate larger cells.
First, we allow topologies where each node can have more
than two incoming edges. Then, each node with more than
two incoming edges is decomposed into nodes that represent
2-input gates. Finally, this implementation is mapped to a set
of library cells using structural matching.

In some cases, a topology optimizing a certain performance
objective may be logically infeasible. Furthermore, some func-
tions,e.g., z = a′b+ac (a multiplexor), cannot be implemented
using a fanout-free topology. Therefore, a viable technique
must handle a broader family of topologies. In the case of
the multiplexor, notice that only signala has fanout, whileb
andc only occur once. We now describe how essential PBDs
can be used to guide synthesis for non-tree topologies where
each operation preserves at least one of its inputs’ essential
PBDs. This facilitates reconvergence and the implementation
of useful functions including multiplexors, as shown below.

Theorem 4:The logical feasibility of ann-node topology
TF can be determined inO(|SF |

PBD ∗ 3χ) time for K

simulation vectors under the following conditions:
1) At least one input to each node does not fanout to

another node at the same or greater logic level

8

2) Only implementations are considered where the sig-
natures along each cut through the topology forman
irredundantcover.3

The logic level of a node is determined by the path from the
node to the primary inputs with the greatest number of edges.
Proof. By traversing the graph in topological order, note
that at least one essential PBD is transferred to the output.
Also, when those implementations are considered where the
signatures along each cut of the topology forman irredundant
cover, each signature along the cut has at least one essential
PBD. The constraints in Equation 6 suggest that there are4
distinct 2-input functions that preserve one essential PBD.
However, one of these functions will correspond to the1
input identity function,i.e., a buffer (or inverter in the negated
case). Ignoring this case, there are3 distinct functions can be
tried at each node, which requires no more than3n total gate
combinations to determine logic feasibility.2

Handling arbitrary topologies with no implementation con-
straints requires more computation where5n gate combina-
tions are examined. However, in practice, our approach is
faster than the naive enumeration described at the beginning
of the section because the operations are performed on the
signatures, not over the whole truth table. Also, essentialPBDs
can still significantly prune the search space. Each cut still
must cover all of the PBDs. If an edge from internal node
or primary input does not appear past a certain logic level in
the topology, its signature’s essential PBDs must be preserved
across that level.

B. Sub-circuit Extraction

Fig. 9. Extracting a subcircuit for resynthesis from a non-monotonic path.

After identifying the most non-monotonic path, we extract
a subcircuit as shown in Figure 9, where the inputs of the
subcircuit are the incoming edges to the path and the output
has outgoing edges from the end of the path. The inputs
and fanout of the subcircuit are treated as fixed cells, which
form the physical constraints. As shown in the figure, if
there are outgoing edges at intermediate nodes in the path,
this logic is duplicated. In practice, we experience minimal
cell area increase because few cells are duplicated, and the
resynthesized circuit is sometimes smaller than the original.

3In general, a topology may have an implementation withredundantcovers.
However, we focus on implementations that do not use this redundancy to
improve the efficiency of our approach.

C. Physically-guided Topology Construction

In addition to efficientlydeterminingthe logical feasibility
of various topologies, we propose an algorithm that uses
PBDs and physical constraints to efficientlyconstructlogically
feasible topologies. In this paper, we guide our approach using
delay and physical proximity. In the example shown in Figure
10, we try to find an optimal restructuring to implement the
target functionF with the inputsa, b, andc, using signatures.
The functionality of the original circuit is represented by
signatures, and a table is associated with each signal showing
the PBDs that are distinguished. The non-essential PBDs for
each input signature have light-gray background.

Fig. 10. Signatures and topology constraints guide logic restructuring to
improve critical path delay. The figure shows the signaturesfor the inputs of
the topology to be derived along with the output. Each table represents the
PBDs of the outputF that are distinguished. The topology that appliesa and
b is infeasible because it does not preserve essential PBDs ofa and b. A
feasible topology usesb andc, followed by a.

The example shows that the arrival time forc is the
greatest, followed bya, then b. Therefore, we first consider
a topology wherec’s value is required later. We also consider
the proximity of the signals and therefore examine a topology
where an operation betweena andb is performed. Notice that
if all possible2-input operations are tried, the essential PBDs
are not preserved and hence this is not a feasible topology. We
then consider another topology wherea can be consumed later
because no topology exists wherec is consumed last.For this
topology, we see that anXOR-gate will preserve the essential
PBDs. We then easily determine that anOR gate is needed
to implementF .

Algorithm: We introduce the pseudo-code of our
algorithm for restructuring non-monotonic interconnect
in Figure 11. After identifying the non-monotonic paths,
Optimize Interconnect restructures a portion of
the critical path. We first simplify the signatures by

9

simplify signatures by noting that the size of the
signature |SF | can be reduced to the number of different
input combinations that occur across{S1, ...Si}. Thus, only a
subset of the signature is needed for restructuring becausethe
small subcircuits considered have a maximum of2i possible
different input combinations, smaller than the number of
simulation vectors applied.4

void Optimize circuit() {
genNMF();
num tries = X;
while(worst nmf > 1)

if (nckt == OptimizeInterconnect(worstnmf))
if (!checkequiv(nckt))

refinesignatures();
continue;

updatenetlist();
legalizeplacement();
updateNMF();

}
Subckt* Optimize Interconnect(Subckt F){

simplify signatures(F);
Constraints constrs;
while(find opt topology(constrs))

if (nckt == checklogical feasibility())
(*nckt).opt place();
return nckt;

constrs.add(nckt);
}

Fig. 11. Restructuring non-monotonic interconnect.

We then add any timing or physical constraints, such as
locations of the inputs and outputs of the subcircuit being
restructured. Infind opt topology, we find a topology
that satisfies all the physical constraints and optimizes delay.
The topology is created by a greedy algorithm which derives a
fanout-free topology from the current input wires. We examine
each pair of wires, apply an arbitrary cell, and estimate the
delay to the output of the subcircuit. The topology is then
greedily constructed so that wire pairs that produce earlier
arrival times are consumed farther from the output of the
topology. We will later discuss how to construct arbitrary
non-tree topologies. From this topology, we can get an upper-
bound for the best implementation possible that contains the
examined combination. If a topology can’t be found that
satisfies the constraints, the function returns.

We then check the logical feasibility using PBDs and signa-
tures incheck logical feasibility. If the topology is
feasible, we associate the appropriate gate with each vertex and
place the subcircuit. Our placement routine considers onlythe
legality of the subcircuit (we call a placement legalizer later for
the entire design). In our approach, we determine a locationfor
each gate by placing it at the center of gravity of its inputs and
outputs and then sifting the gate to different nearby locations.
This sifting is done over all the gates over several passes until
a locally optimal solution is achieved, which results in no
overlaps. For the typically small subcircuits considered,this
requires little computational effort.

If the topology is not logically feasible, we add afunctional
constraint that will prevent the construction of similar topolo-

4In our experiments, we apply2048 input vectors and restructure subcir-
cuits with < 10 inputs.

gies. The constraint states which wire pairs should not be
combined again. For instance, for the multiplexor,z = a′b+ac,
there is no implementation for a fanout-free topology with
inputs {a, b, c}. If a and b form a wire pair, we see that
no implementation preserves its essential PBDs. However, we
can exploit Theorem 4 and consider implementations that can
eliminate one of the inputs. In this case, if the implementation
a′b is tried, the wireb does not need to reappear in the
topology. Therefore, a constraint is added so that the inputs to
the topology are now{a′b, a, c}. With these inputs, a fanout-
free tree does exist which is logically feasible.

If Optimize Interconnect returns a subcircuit, we
check the equivalence of the entire circuit using a SAT engine.
In the case where our candidate produces a functionally
different circuit (which is rare as shown in Section VII),
we use the counter-example generated by SAT to refine our
simulation hence improving the signatures’ quality. If the
resulting subcircuit passes verification, we update the netlist
and legalize the placement. We update the timing information
and the NMFs if a new critical path is found, in which case
we select with the next highest NMF and restructure it.

D. Efficient Subcircuit Verification

Because we use signatures to limit verification of optimiza-
tion candidates that are most likely correct, equivalence check-
ing typically confirms the transformation. As in [9], we refine
simulation using counterexamples found by failed equivalence
checks, so as to reduces additional failed checks. We also
minimize the verification time due to equivalence checking by
considering only the portions of logic that contributes to the
don’t-cares used in the transformation. As explained in [28],
several don’t-cares can exist within a few levels of logic. We
invoke a SAT engine so that it considers only these necessary
levels of downstream logic. Additionally, we could restrict the
equivalence checking to a window around the optimization
location to further reduce verification time while still utilizing
CDCs and ODCs in the circuit.

However, in practice, we observe that the SAT-based equiv-
alence checking requires a small percentage of runtime com-
pared to constructing optimal topologies even for our larger
circuit examples.This small runtime can be attributed to the
locality of most of our structural transformations. Because the
structure of the original and modified circuits are similar,the
SAT instance can be greatly reduced in size and complexity.
This limits the complexity of our approach, which tends not
to grow with the size of the overall circuit.

VI. ENHANCING RESYNTHESIS THROUGHGLOBAL

SIGNATURE MATCHING

Our resynthesis strategy considers the inputs to a non-
monotonic path for resynthesis. This strategy is convenient
because 1) the set of inputs can always implement the target
output and 2) the inputs tend to be physically close to the target
output. However, local manipulations can be enhanced by
incorporating global information, as in logic rewriting which
uses structural hashing [22]. In this section, we explain how

10

to exploit the same advantages as structural hashing, by per-
forming matching up to the signature abstraction. Furthermore,
our approach is more powerful than logic rewriting because
the signatures are matched up to global don’t-cares, and
our initial physically-guided local rewriting over signatures
already exploits don’t-cares. We observe that our enhancement
is no worse than the algorithm from [27] but appears more
robust and predictable.

Algorithm: We now outline how signature matching is used
in the resynthesis of non-monotonic paths:

1) Find a set of candidate wires within a certain distance
of the output wire to be resynthesized.

2) Check whether any of these wires’ signatures is equal
to the output signature up to don’t-cares. If a match is
found and the timing improves, replace the output wire
with the corresponding candidate wire.

3) While checking logic feasibility in topological order,
check whether any of the internal wires of the topol-
ogy can be reimplemented by a candidate wire with a
matching signature so that the timing is improved.

The candidate wires are chosen by proximity to the output
wire being resynthesized as determined by its HPWL. Any
wire that has arrival time after the current output wire’s
arrival time is not considered. Unlike the resynthesis algorithm
that uses a simplified signature, for signature matching, we
consider the whole signature except for the don’t-cares. In
this case, a single comparison between signatures can be
performed quickly and is more efficient than finding a common
set of inputs to both wires and then reducing the signatures to
the number of simulated different input combinations. Notice
our algorithm enhances the previous resynthesis strategy and
improves the timing of animplementation, whereas topology
construction only considers the inputs to the subcircuit.

VII. E XPERIMENTS

We implemented and tested our algorithms with circuits
from the IWLS 2005 benchmark suite [39], with design
utilization set to 70% to match recent practices in the industry.
Our wire and gate characterizations are based on a 0.18µm
technology library. We perform static timing analysis using
the D2M delay metric [2] on Rectilinear Steiner Minimal
Trees (RSMTs) produced by FLUTE [12]; here FLUTE can
be easily replaced by a timing-driven subroutine, but we do
not expect the overall trends in our experiments to change
significantly. Our netlist transformations are verified using a
modified version of MiniSAT [13] and placed using Capo 10
[6]. We have considered several different initial placements
for each circuit by varying a random seed in Capo and
report results as averages over these placements. Our netlist
transformations are legalized using the legalizer provided by
GSRC Bookshelf [41].

Our delay improvements are achieved by executing the
algorithm in Figure 11. We applied2048 random simulation
patterns initially to generate the signatures. We considered
paths of less than or equal to4 hops (5 nodes) using our delay-
based metric which allowed us to find many non-monotonic

paths while minimizing the size of the transformations consid-
ered. We conducted several optimization passes until no more
gains were achieved.

A. Prevalence of Non-monotonic Interconnect

Fig. 12. The above graph shows the percentage of paths whose NMF is below
a given value on the x-axis. Notice that longer paths tend to be non-monotonic
and at least 1% of paths are> 5 times the ideal minimal length.

Our experiments indicate that circuits often contain many
non-monotonic paths. In Figure 12, we illustrate a cumulative
distribution of the percentage of paths whose NMFs is below
the corresponding value on the x-axis. We generated these
averages over all the circuits in Table I. Each line represents
a different path-length examined, where we considered paths
from 2 hops to 6 using the wirelength-based NMF metric.
We also show the cumulative distribution for the 4-hop delay-
based NMF calculation used to guide our delay-based restruc-
turing. Of particular interest is the percentage of monotonic
paths,i.e., paths with NMF = 1.

Notice that smaller paths of 2-hops are mostly mono-
tone, whereas the percentage of monotone paths decreases
to 23% when paths with more logic levels are considered
(6-hop paths). This indicates that focusing optimizations on
small paths only, as in [4], can miss several optimization
opportunities. It is also interesting to note that there are
paths with considerably worse monotonicity having NMFs
> 5, indicating regions where interconnect optimizations are
needed. We observe similar trends using our delay-based
metric. The inclusion of gate delay on these paths results in
greater non-monotonicity when compared to the wirelength-
metric. Although not shown, each individual circuit exhibits
similar trends.

B. Physically-aware Restructuring

We show the effectiveness of our delay-based optimization
by reporting the delay improvements achieved over several
circuits. In Table I, we provide the number of cells and nets
for each benchmark. In thePerformance columns, we give
the percentage delay improvement, the runtime in seconds, and
the percentage of equivalence-checking calls where candidate
subcircuits preserved the functionality of the whole circuit.

11

Circuit Cell Net Performance Overhead
count count %delay time %equi %wire %cells

impr (s)
sasc 563 568 14.1 41 100 2.35 3.13
spi 3227 3277 10.9 949 82 4.53 0.73
desarea 4881 5122 12.3 503 93 1.09 0.31
tv80 7161 7179 9.1 1075 71 2.50 0.17
s35932 7273 7599 27.5 476 100 2.14 0.19
systemcaes 7959 8220 13.9 748 95 0.89 -0.07
s38417 8278 8309 11.7 481 84 0.68 -0.21
memctrl 11440 11560 9.2 678 37 0.05 -0.02
ac97 11855 11948 6.3 245 100 0.44 0.02
usb 12808 12968 12.2 605 80 0.30 0.06
DMA 19118 19809 14.5 845 65 0.16 0.08
aes 20795 21055 6.4 603 100 0.13 0.01
ethernet 46771 46891 3.7 142 100 0.08 0.06

average 11.7% 85.1% 1.20% 0.34%

TABLE I

SIGNIFICANT DELAY IMPROVEMENT IS TYPICALLY ACCOMPANIED BY A

SMALL WIRELENGTH INCREASE.

We also report the overhead of our techniques in terms of
increased wirelength and area (cell count).

Considering8 independently generated initial placements
for each circuit, our techniques improve delay by11.7% on
average. For some circuits, such ass35932, several don’t-care
enhanced optimizations enabled even greater delay improve-
ments. We observe the following:

1) By optimizing only one output of a given subcircuit, we
greatly reduce the arrival time of that output, while only
slightly degrading performance of less critical outputs.

2) Through our efficient use of don’t-cares, severalχ-input
subcircuits could be restructured to require fewer than
χ inputs.

3) As a special case of the previous point, sometimes an
input to the subcircuit was functionally equivalent to the
output of the subcircuit when don’t-cares were consid-
ered, enabling delay reduction along with removal of
unnecessary logic. Signatures are efficient in exploiting
these opportunities.

4) The decomposition of large gates into smaller gate prim-
itives through our restructuring algorithm often produces
better topologies because we more precisely construct a
topology to meet the physical constraints.

5) We also expect gains due to the duplication and reloca-
tion of some cells.

We believe that further gains would be enabled by combining
buffering, relocation, and gate sizing strategies betweenour re-
structuring optimizations. The runtime of our algorithm scales
well for large circuits due to the use of logic simulation as the
main optimization engine. Furthermore, the high percentage
of equivalence checking calls that verified the equivalenceof
our transformations(as shown by column%equi in Table
I) indicates that signatures are effective at finding functionally
equivalent candidates. The wirelength and cell-count overhead
are minimal because only a few restructurings are needed and
the optimizations can simplify portions of logic. In some cases
the number of cells is reduced.

To check if our techniques provide comparable improve-
ment when the initial placement is optimized for timing, we
performed the following experiment. We first produced64

Fig. 13. The graph above illustrates that the largestactual delay improve-
ments occur at portions of the critical path with the largestestimatedgain
using our metric. The data points are accumulated gains achieved by400

different resynthesis attempts when optimizing the circuits in Table I.

independent initial placements optimized for total wirelength.
Compared to these64 wirelength-optimized placements, the
best placements achieve17.0% smaller delay on average
and serve as proxies for timing-optimized placements in our
experiments. Starting with the best placements, our logic
restructuring further decreased delay by6.5%.

Circuit %delay
Ours RAR

sasc 13.8 12.1
spi 15.0 12.6
desarea 15.4 11.1
tv80 12.7 3.1
s35932 23.1 21.8
systemcaes 10.1 4.0
s38417 26.3 2.9
memctrl 12.9 8.2
ac97 5.3 3.1
usb 10.8 0.0
DMA 10.7 0.0
aes 5.3 4.7

average 13.5% 7.0%

TABLE II

EFFECTIVENESS OF OUR APPROACH COMPARED TORAR.

In Figure 13, we demonstrate that our delay-based NMF
metric is effective at guiding optimization. Each data point
represents a different resynthesis try considering all of the
circuits in Table I. The x-axis shows the predicted percent-
age delay gain possible (determined by the optimal-buffered
delay). The y-axis indicates the actual gain. Data points
that lie on the x-axis indicate resynthesis tries that did not
improve delay (a better topology could not be found). The
50% threshold line divides the graph so that the number of
resynthesis attempts are equal on both sides. The diagonal line
indicates an upper-bound prediction for delay gain.Because
some of the optimizations reduce the support of the original
subcircuit, we can improve the delay beyond the estimate
which considers all of the subcircuit’s inputs. Therefore,some
of the data points are above the upper-bound line. On the
other hand, a resynthesis try produces a smaller than estimated
improvement when the ideal topology is not logically feasible
or when removing cell overlap degrades the quality of the
initial placement.Although the NMF and gain calculations do

12

not directly incorporate circuit functionality,74% of all delay
gains are found on the right half of the graph. The correlation
to our metric could be further improved by incorporating the
percentage of gain possible with respect to near-critical paths.

C. Comparison with Redundancy Addition and Removal

We compare our technique with timing optimizations using
RAR. We implement redundancy removal using signatures
[28] to identify equivalent nodes up to don’t-cares. In the
context of path-based resynthesis, the inputs to the subcircuit,
along with signals that have earlier arrival time and are within
a bounding box determined by the HPWL of the output, are
considered as candidates for rewiring. If one of these signals
is equivalent to the output up to don’t-cares in the circuit,
rewiring is performed and the timing improved.

In Table II, we show the delay improvement of our resyn-
thesis strategy which uses global signature matching to redun-
dancy addition and removal. For this experiment, we report
results on a random slice of initial placements from our suite.
First, note that our technique is almost twice as effective at
improving delay. Furthermore, our results are more consistent
than RAR over all the circuits and are never worse.

VIII. C ONCLUSIONS

Interconnect delay is becoming a major obstacle for achiev-
ing timing closure, typically requiring numerous expensive de-
sign iterations. Current logic synthesis strategies oftensacrifice
other performance metrics to improve delay, requiring com-
putationally expensive algorithms and companion placements.
Despite these efforts, extensive post-placement optimizations
are still needed, especially since buffers will represent alarge
fraction of standard cells in future technologies [29].

We propose a solution that improves the quality of delay
optimization without sacrificing other performance metrics.
To this end, we introduce a novel simulation-guided synthesis
strategy that is more comprehensive than current restructuring
techniques. We develop a path-monotonicity metric to focus
our efforts on the most important parts of a design. Our
optimizations lead to11.7% delay improvement on average
over several different initial placements, while our delay-based
monotonicity metric indicated that65% of the paths analyzed
were non-monotonic. We further observe delay improvements
on placements initially optimized for delay, which are con-
sistent with our reported average improvement. We believe
that our approach offers an effective bridge between current
topological-based synthesis and lower-level physical synthesis
approaches. It enables less conservative estimates early in the
design flow to improve other performance metrics and reduce
the amount of buffering required by shortening critical paths.
Future work will explore the benefits of using our technique
with other physical synthesis strategies such as buffering.

REFERENCES

[1] A. Ajami and M. Pedram, “Post-layout timing-driven cellplacement using an
accurate net length model with movable steiner points”,DAC ’01, pp. 595-600.

[2] C. Alpert, A. Devgan, and C. Kashyap, “RC delay metric forperformance
optimization”, TCAD ’01, pp. 571-582.

[3] C. Alpert, A. Kahng, C. Sze, and Q. Wang, “Timing-driven steiner trees are
(practically) free”,DAC ’06, pp. 389-392.

[4] G. Beraudo and J. Lillis, “Timing optimization of FPGA placements by logic
replication”, DAC ’03, pp. 541-548.

[5] D. Brand, “Verification of large synthesized designs”,ICCAD ’93, pp. 534-537.
[6] A. Caldwell, A. Kahng, and I. Markov, “Can recursive bisection alone produce

routable placements?”,DAC’00, pp. 693-698.
[7] K.-H. Chang, I. Markov, and V. Bertacco, “Fixing design errors with counterex-

amples and resynthesis”,ASP-DAC ’07. pp. 944-949.
[8] K.-H. Chang, I. Markov, and V. Bertacco, “Safe delay optimization for physical

synthesis”,ASP-DAC ’07. pp. 628-633.
[9] K.-H Chang, D. Papa, I. Markov, and V. Bertacco, “InVerS:an incremental

verification system with circuit similarity metrics and error visualization”,ISQED
’07. pp. 487-494.

[10] S. Chatterjee and R. Brayton, “A new incremental placement algorithm and its
application to congestion-aware divisor extraction”,ICCAD ’04, pp. 541-548.

[11] C.-W Chang, C.-K Cheng, P. Suaris, and M. Marek-Sadowska, “Fast post-
placement rewiring using easily detectable functional symmetries”,DAC ’00, pp.
286-289.

[12] C. Chu and Y.-C. Wong, “Fast and accurate rectilinear steiner minimal tree
algorithm for VLSI design”,ISPD’05, pp. 28-35.
(http://class.ee.iastate.edu/cnchu/flute.html)

[13] N. Een and N. Sorensson, “An extensible SAT-solver”,SAT ’03,
(http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/).

[14] W. Gosti, A. Narayan, R. Brayton, and A. Sangiovanni-Vincentelli, “Wireplanning
in logic synthesis”,ICCAD ’98, pp. 26-33.

[15] W. Gosti, S. Khatri, and A. Sangiovanni-Vincentelli, “Addressing the timing
closure problem by integrating logic optimization and placement”, ICCAD ’01,
pp. 224-231.

[16] M. Hrkic, J. Lillis, and G. Beraudo, “An approach to placement-coupled logic
replication”, DAC ’04.

[17] Y.-Min. Jiang, A Krstic, K.-Ting Cheng, M. Marek-Sadowska, “Post-layout Logic
Restructuring For Performance Optimization”,DAC ’97, pp. 662-665.

[18] L. Kannan, P. Suaris, and H. Fang, “A methodology and algorithms for post-
placement delay optimization”,DAC’94, pp. 327-332.

[19] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean reasoning
for equivalence checking and functional property verification”, TCAD ’02, pp.
1377-1394.

[20] V. Kravets and K. Sakallah, “Resynthesis of multi-level circuits under tight
constraints using symbolic optimization”,ICCAD ’02, pp. 687–693.

[21] C. Li, C-K. Koh, and P. Madden, “Floorplan management: incremental placement
for gate sizing and buffer insertion”,ASP-DAC’05, pp. 349-354.

[22] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewriting: a fresh
look at combinational logic synthesis”,DAC ’06, pp. 532-536.

[23] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton,“FRAIGs: A unifying
representation for logic synthesis and verification”,ERL Technical Report ’05,
Berkeley. (http://www.eecs.berkeley.edu/∼alanmi/publications/).

[24] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: engineering
an efficient SAT solver”,DAC ’01, pp. 530-535.

[25] R. Otten and R. Brayton. “Planning for performance”,DAC ’98, pp. 122-127.
[26] M. Pedram and N. Bhat. “Layout driven logic restructuring/decomposition”,

ICCAD ’91, pp. 134-137.
[27] S. Plaza, I. Markov, and V. Bertacco, “Optimizing non-monotonic interconnect

using functional simulation and logic restructuring”,ISPD ’08, pp. 95-102.
[28] S. Plaza, K.-H Chang, I. Markov, and V. Bertacco, “Node mergers in the presence

of don’t cares”,ASP-DAC ’06, pp. 414-419.
[29] P. Saxena, N. Menezes, P. Cocchini, and D. Kirkpatrick,“Repeater scaling and its

impact on CAD”,TCAD ’04, pp. 451-463.
[30] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for propositional

satisfiability”, IEEE Trans. Comp ’99, pp. 506-521.
[31] S. Sinha, A. Mishchenko, and R. Brayton, “Topologically constrained logic

synthesis”,ICCAD ’02, pp. 679-686.
[32] G. Stenz, B. Riess, B. Rohfleisch, and F. Johannes, “Timing driven placement in

interaction with netlist transformations”,ISPD ’97, pp. 36-41.
[33] L.P.P.P van Ginneken, “Buffer placement in distributed RC-tree networks for

minimal Elmore delay”,ISCAS ’90, pp. 865-868.
[34] J. Werber, D. Rautenbach, and C. Szegedy, “Timing optimization by restructuring

long combinatorial paths”,ICCAD ’07, pp. 536-543.
[35] S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A New Method to Express

Functional Flexibility”, TCAD ’00, pp. 840-849.
[36] Y.-S. Yang, S. Sinha, A. Veneris, and R. Brayton, “Automating logic rectification

by approximate SPFDs”,ASP-DAC ’07, pp. 402–407.
[37] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “SAT

sweeping with local observability don’t cares”,DAC ’06, pp. 229-234.
[38] The International Technology Roadmap for Semiconductors, 2005 Edition, ITRS.
[39] http://iwls.org/iwls2005/benchmarks.html.
[40] Synopsys DesignCompiler.http://www.synopsys.com.
[41] UMICH Physical Design Tools,

http://vlsicad.eecs.umich.edu/BK/PDtools/

