
1

Fixing Design Errors
with Counterexamples and Resynthesis

Kai-hui Chang, Igor L. Markov and Valeria Bertacco
University of Michigan at Ann Arbor

Abstract— In this work we propose a resynthesis framework,
called CoRé, that automatically corrects errors in digital designs.
The framework is based on a simulation-based abstraction
technique and performs error correction through two innovative
circuit resynthesis solutions: Distinguishing-Power Search (DPS)
and Goal-Directed Search (GDS), which modify the functionality
of a circuit’s internal nodes to match the correct behavior.
In addition, we propose a compact encoding of resynthesis
information, called Pairs of Bits to be Distinguished (PBDs),
which is a key enabler for our resynthesis techniques. Compared
with previous solutions, CoRé is more powerful in that: (1) it
can fix a broader range of error types because it is not bounded
by specific error models; (2) it derives the correct functionality
from simulation vectors, without requiring golden netlists; and
(3) it can be applied with a broad range of verification flows,
including formal and simulation-based.

Index Terms— Error correction, error diagnosis, logic synthesis
I. INTRODUCTION

Due to the dramatic increase in design complexity of
modern electronics, digital systems are often released with
many latent errors, some of which have the potential of
triggering expensive damage or replacement costs. While
recent improvements in verification enable engineers to more
efficiently expose a larger fraction of design errors, little effort
has been devoted to automatically fixing such errors. As a
result, existing techniques in this domain have very limited
power and scalability.

The process of repairing functional design bugs involves
two steps: error diagnosis and error correction. Error diagnosis
identifies the portion of the design responsible for the error,
while error correction is responsible for locally modifying the
functionality of the identified portion through a specialized
synthesis process, called resynthesis. Recent work by Smith
et al. [6] and Ali et al. [1] greatly improved the scalability
and efficiency of error diagnosis. However, fixing errors via
resynthesis remains challenging because existing techniques
lack the scalability to handle the global implications of the
logic modifications imposed by error correction. As a result,
state-of-art techniques often limit the types of errors that can
be corrected [8] or operate only on small circuits [7], [10].

In this work we present an innovative framework, called
COunterexample-guided REsynthesis (CoRé), which can over-
come the limitations discussed above, while also admitting a
simple and particularly efficient implementation. It addresses
automatic error correction for a broad range of design er-
rors and on larger scale designs, both combinational and
sequential. CoRé is based on a simulation-driven abstraction
technique and requires only input stimuli and correct output
responses (no simulation values at internal nodes) to perform
its analysis and suggest a design fix. Because of these simple
requirements, it can be applied to a variety of verification
methodologies, including formal and simulation-based flows.

Copyright (c) 2007 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
This work was partially funded by the NSF under Award 0448189.

The CoRé framework is composed of two main engines to per-
form resynthesis, called Distinguishing-Power Search (DPS)
and Goal-Directed Search (GDS). In addition, the internal
analysis of CoRé relies on a compact encoding of resynthesis
information, called Pairs of Bits to be Distinguished (PBDs),
which is based on signatures and enables efficient computation
of Don’t-Cares (DCs). PBDs are pivotal to the scalability
of CoRé and allow CoRé to generate a broad variety of
resynthesis solutions.

The rest of this paper is organized as follows: Section II
introduces background and related work. In Section III we
describe our CoRé framework in detail. Section IV discusses
our resynthesis techniques. Experimental results are given in
Section V, and Section VI concludes this paper.

II. BACKGROUND
In this work we assume that an input design, with one or

more bugs, is provided as a Boolean network. We strive to
correct its erroneous behavior by regenerating the functional-
ity of incorrect nodes. This section starts by defining some
terminology and then overviews relevant previous work.
A. Signatures and Distinguishing Power

Definition 1: Given a node t in a Boolean network, whose
function is f , and input vectors x1, x2 ... xk, we define the
signature of node t, st , as (f (x1), ..., f (xk)), where f (xi) ∈
{0,1} represents the output of f given an input vector xi.

Our goal is to modify the functions of the nodes responsible
for the erroneous behavior of a circuit via resynthesis. In
this context, we call a node to be resynthesized the target
node, and we call the nodes that we can use as inputs to the
newly synthesized node (function) the candidate nodes. Their
corresponding signatures are called the target signature and
the candidate signatures, respectively.

Given a target signature st and a collection of input
candidate signatures sc1 , sc2 ,...,scn , we say that st can be
resynthesized by sc1 , sc2 ,...,scn if st can be expressed as st =
f (sc1 ,sc2 , ...,scn), where f (sc1 ,sc2 , ...,scn) is a vector Boolean
function called the resynthesis function. We also call a netlist
that implements the resynthesis function the resynthesis netlist.

In this paper, we use s[i] to denote the i-th bit of signature
s. The proposition below states that a sufficient and necessary
condition for a resynthesis function to exist is that, whenever
two bits in the target signature are distinct, then such bits need
to be distinct in at least one of the candidate signatures.1

Proposition 1: Consider a collection of candidate signa-
tures, sc1 , sc2 ,...,scn , and a target signature, st . Then a resynthe-
sis function f , where st = f (sc1 , sc2 ,...,scn), exists if and only if
no bit pair {i, j} exists such that st [i] 6= st [j] but sck [i] = sck [j]
for all 1 ≤ k ≤ n.

In this work we call a pair of bits {i, j} in st , where st [i] 6=
st [j], a Pair of Bits to be Distinguished (PBD). Based on Prop.
1, we say that the PBD {i, j} can be distinguished by signature
sck if sck [i] 6= sck [j]. We define the Required Distinguishing
Power (RDP) of the target signature st , RDP(st), as the set
of PBDs that need to be distinguished. We also define the

1This proposition is a special case of Theorem 4.1 in [11], where the
minterms appearing in signatures represent the care-terms and all other
minterms are DCs.

2

Distinguishing Power (DP) of a candidate signature sck with
respect to the target signature st , DP(sck ,st), as the set of PBDs
in st that can be distinguished by sck . With this definition, Prop.
1 can be restated as “a resynthesis function, f , exists if and
only if RDP(st) ⊆ ∪n

k=1DP(sck ,st)”.
B. Don’t-Cares

When considering a sub-network within a large Boolean
network, Don’t-Cares (DCs) are exploited by many synthe-
sis techniques because they provide additional freedom for
optimizations. Satisfiability Don’t-Cares (SDCs) occur when
certain combinations of input values do not occur for the sub-
network, while Observability Don’t-Cares (ODCs) occur when
the output values of the sub-network do not affect any primary
output. As we show in Section III-A, our CoRé framework is
able to utilize both SDCs and ODCs.
C. Related Work

Existing error repair techniques often partition the problem
into error diagnosis and error correction. A comparison of
error diagnosis and correction techniques can be found in
Table I of our preliminary work [2], which was limited to
the analysis of combinational circuits.

The error-diagnosis portion of the CoRé framework is based
on the work by Smith et al. [6]. The diagnosis technique
considers a Boolean network, a set of input test vectors and a
set of correct output responses. For each input test vector, it
will return a set of nodes (called error sites) found to compute
incorrect values along with the corresponding correct values.
The correction portion of the CoRé framework then corrects
design errors by resynthesizing the error sites with functions
that generate the proper correct values for each input vector.

III. ERROR-CORRECTION FRAMEWORK
For the discussion in Sections III-A and III-B we restrict

our analysis to combinational designs. In this context, the
correctness of a circuit is simply determined by the output
responses under all possible input vectors. We will show in
Section III-C how to extend the solution to sequential designs.

CoRé, our error-correction framework, relies on simulation
to generate signatures, which constitute our abstract model of
the design and are the starting point for the error diagnosis
and resynthesis algorithms. After the netlist is repaired, it is
checked by a verification engine. If verification fails, possibly
due to new errors introduced by the correction process, new
counterexamples are generated and used to further refine
the abstraction. Although in our implementation we adopted
Smith’s error diagnosis technique [6] due to its scalability,
alternative diagnosis techniques can be used as well.
A. The CoRé Framework

In CoRé, an input test vector is called a functionality-
preserving vector if its output responses comply with the
specification, and the vector is called an error-sensitizing
vector if its output responses differ. Error-sensitizing vectors
are often called counterexamples.

The algorithmic flow of CoRé is outlined in Figure 1.
The inputs to the framework are the original buggy netlist
(CKTerr), the initial functionality-preserving vectors (vectorsp)
and the initial error-sensitizing vectors (vectorse). The output
is the rectified netlist CKTnew. The framework first performs

error diagnosis to identify error locations and the correct
values that should be generated for those locations so that
the error-sensitizing vectors could produce the correct output
responses. Those error locations constitute the target nodes
for resynthesis. The bits in the target nodes’ signatures that
correspond to the error-sensitizing vectors must be corrected
according to the diagnosis results, while the bits that cor-
respond to the functionality-preserving vectors must remain
unchanged. If we could somehow create new combinational
netlist blocks that generate the required signatures at the target
nodes using other nodes in the Boolean network, we would be
able to correct the circuit’s errors, at least those that have been
exposed by the error-sensitizing vectors. Let us assume for
now that we can create such netlists (techniques to this end will
be discussed in the next section), producing the new circuit
CKTnew (line 4). CKTnew is checked at line 5 using the veri-
fication engine. When verification fails, new error-sensitizing
vectors for CKTnew will be returned in counterexample. If no
such vector exists, the circuit has been successfully corrected
and CKTnew is returned. Otherwise, CKTnew is abandoned,
while counterexample is classified either as error-sensitizing
or functionality-preserving with respect to the original design
(CKTerr). If counterexample is error-sensitizing, it will be
added to vectorse and used to rediagnose the design. CKTerr’s
signatures are then updated using counterexample. By ac-
cumulating both functionality-preserving and error-sensitizing
vectors, CoRé will avoid reproposing the same wrong cor-
rection; hence guaranteeing that the algorithm will eventually
complete. Figure 2 illustrates a possible execution scenario
with the flow just described.

CoRé(CKTerr,vectorsp,vectorse,CKTnew)
1 compute signatures(CKTerr,vectorsp,vectorse);
2 f ixes= diagnose(CKTerr ,vectorse);
3 foreach f ix ∈ f ixes
4 CKTnew= resynthesize(CKTerr, f ix);
5 counterexample=veri f y(CKTnew);
6 if (counterexample is empty) return CKTnew;
7 else if (counterexample is error-sensitizing for CKTerr)
8 vectorse = vectorse ∪ counterexample;
9 f ixes= rediagnose(CKTerr,vectorse);

10 update signatures(CKTerr,counterexample);
Fig. 1. The algorithmic flow of CoRé.

(1) (2) (3)
Fig. 2. Execution example of CoRé. Signatures are shown above the wires,
where underlined bits correspond to error-sensitizing vectors. (1) The gate
was meant to be AND but is erroneously an OR. Error diagnosis finds that
the output of the 2nd pattern should be 0 instead of 1; (2) the first resynthesis
netlist fixes the 2nd pattern, but fails further verification (the output of the 3rd
pattern should be 1); (3) the counterexample from step 2 refines the signatures,
and a resynthesized netlist that fixes all the test patterns is found.

SDCs are exploited in CoRé by construction because sim-
ulation can only produce legal signatures. To utilize ODCs,
we simulate the complement signature of the target node and
mark the bit positions whose changes do not propagate to any
primary output as ODCs: those positions are not considered
during resynthesis. Note that if a diagnosis contains multiple
error sites, the sites that are closer to primary outputs should
be resynthesized first so that the downstream logic of a node
is always known when ODCs are calculated.

3

B. Analysis of the Framework
CoRé is more effective than many previous solutions be-

cause it supports the use of SDCs and ODCs, including
external DCs. External SDCs can be exploited by providing
only legal input patterns when generating signatures, while
external ODCs are utilized by marking uninterested output
vectors don’t-cares.

To achieve the required scalability to support the global
implications of error correction, CoRé uses an abstraction-
refinement scheme: signatures provide an abstraction of the
Boolean network for resynthesis because they are the nodes’
partial truth tables (all unseen input vectors are considered
as DCs), and the abstraction is refined by means of the
counterexamples that fail verification. The following proposi-
tion shows that CoRé can eventually always produce a netlist
which passes verification. However, as it is the case for most
techniques based on abstraction and refinement, the framework
may time-out before a valid correction is found. The use of
high-quality test vectors [8] is effective in alleviating this
potential problem.

Proposition 2: Given a buggy combinational design and a
specification that defines the output responses of each input
vector, the CoRé algorithm can always generate a netlist that
produces the correct output responses.

Proof: Given a set of required ”fixes”, the resynthesis
functions of CoRé can always generate a correct set of
signatures, which in turn produce correct responses at primary
outputs. Observe that each signature represents a fragment
of a signal’s truth table. Therefore, when all possible input
patterns are applied to our CoRé framework, the signatures
essentially become complete truth tables, and hence define all
the terms required to generate correct output responses for any
possible input stimulus. In CoRé, all the counterexamples that
fail verification are used to expand and enhance the set of
signatures. Each correction step of CoRé guarantees that the
output responses of the input patterns seen so far are correct,
thus any counterexample must be new. However, since the
number of distinct input patterns is finite, eventually no new
vector can be generated, guaranteeing that the algorithm will
complete in a finite number of iterations. In practice, we find
that a correct design can often be found in a few iterations.
C. Sequential Circuits

The discussion so far has addressed only combinational
circuits. CoRé is easily adaptable to correct sequential circuits,
too, as described in this section. First of all, when operating
on sequential circuits the user will provide CoRé with input
traces, instead of input patterns. A trace is a sequence of input
patterns, where a new pattern is applied to the design’s inputs
at each simulation cycle, and the trace can be either error-
sensitizing or functionality-preserving. To address sequential
circuits, we adopt the diagnosis techniques from Ali et al. [1]
relating to sequential circuits. The idea is to first unroll the
circuit by connecting the outputs of the state registers to the
inputs of the registers in the previous cycle, and then use the
test vectors to constrain the unrolled circuit. Given an initial
state and a set of test vectors with corresponding correct output
responses, Ali’s error-diagnosis technique is able to produce a

collection of error sites, along with their correct values, that
rectify the incorrect output responses.

To correct sequential designs we apply the same algorithm
described in Section III-A with two changes: the diagnosis
procedure should be as described in [1], and the signature
generation function is modified so that it can be used in a
sequential design. Specifically, the new sequential signature
generation procedure should record one bit of signature for
each cycle of each sequential trace that we simulate. For
instance, if we have two traces available, a 4-cycle trace
and a 3-cycle trace, we will obtain a 7-bit signature at each
internal circuit node. An example of the modified signature
is shown in Figure 3. In our current implementation, we
only use combinational ODCs. In other words, we still treat
inputs of state registers as primary outputs when calculating
ODCs. Although it is possible to exploit sequential ODCs for
resynthesis, we do not pursue this optimization, yet.

Trace1 Trace2
Cycle 1 2 3 4 1 2 3
Signature 0 1 1 0 1 0 1

Fig. 3. Sequential signature construction example. The signature of a node
is built by concatenating the simulated values of each cycle for all the bug
traces. In this example, trace1 is 4 cycles and trace2 is 3 cycles long. The
final signature is then 0110101.

IV. RESYNTHESIS TECHNIQUES
The basis for CoRé’s resynthesis solution is the signature

available at each internal circuit node. The resynthesis problem
is formulated as follows: given a target signature, find a
resynthesis netlist that generates the target signature using the
signatures of other nodes in the Boolean network as inputs. In
this section, we first define the absolute distinguishing power
|DP(s)| of a signature s, and then we propose a Distinguishing-
Power Search (DPS) technique that uses |DP| to select candi-
date signatures and generates the required resynthesis netlist.
Next, we propose a Goal-Directed Search (GDS) technique
that can find a resynthesis netlist with the smallest possible
logic depth. The ability to generate a minimum-depth netlist
is important if circuit timing is a concern. Finally, we briefly
compare our approach to other techniques.
A. Absolute Distinguishing Power of a Signature

In this subsection we define the concept of absolute distin-
guishing power, which provides search guiding and pruning
criteria for our resynthesis techniques. To simplify bookkeep-
ing, we reorder bits in every signature so that in the target
signature all the bits with value 0 precede the ones with value
1, as in “00...0011...11”.

Definition 2: Assume a target signature st is composed
of x 0s followed by y 1s, we define the absolute required
distinguishing power of st as |RDP(st)| = xy, which is the
number of PBDs in st . Moreover, if a candidate signature
sc has p 0s and q 1s in its first x bit positions, and r
0s and s 1s in the remaining y positions, then we define
the absolute distinguish power of sc with respect to st as
|DP(sc,st)|= ps+qr, which is the number of PBDs in st that
can be distinguished by sc.

The following corollary states a necessary but not sufficient
condition to determine whether the target signature can be
generated from a collection of candidate signatures.

4

Corollary 1: Consider a target signature st and a collection
of candidate signatures sc1 ...scn . If st can be generated by
sc1 ...scn , then |RDP(st)| ≤ ∑n

i=1 |DP(sci ,st)|.

B. Distinguishing-Power Search
Distinguishing-Power Search (DPS) is based on Prop. 1,

which states that a resynthesis function can be generated when
a collection of candidate signatures covers all the PBDs in
the target signature. However, the number of collections sat-
isfying this criterion may be exponential. To identify possible
candidate signatures effectively, we first select signatures that
cover the least-covered PBDs, second those that have high
|DP| (i.e., signatures that cover the most number of PBDs),
and third those that cover any remaining uncovered PBD. For
efficiency, we limit the search pool to the 200 nodes which
are topologically closest to the target node; however, we may
go past this limit when those are not sufficient to cover all
the PBDs in the target signature. Finally, we exclude from the
pool those nodes that are in the fanout cone of the target node,
so that we avoid creating a combinational loop inadvertently.

After the candidate signatures are selected, a truth table for
the resynthesis function is built from the signatures (detailed
steps can be found in [2, Section III-C]). The truth table can
be synthesized and optimized using existing software, such
as Espresso [4] or MVSIS [12]. Note that our resynthesis
technique does not require that the support of the target
function is known a priori, since the correct support will
be automatically selected when DPS searches for a set of
candidate signatures that distinguishes all the PBDs. This is
in contrast with other previous solutions which require that
the support of the target node be known before attempting to
synthesize the function.

C. Goal-Directed Search
GDS performs an exhaustive search for resynthesis netlists.

To reduce the search space, we propose two pruning tech-
niques: the |DP| test and the compatibility test. Currently,
BUFFERs, INVERTERs, and 2-input AND, OR and XOR
gates are supported.

The |DP| test relies on Corollary 1 to reject resynthesis
opportunities when the selected candidate signatures do not
have sufficient |DP|. In other words, a collection of candidate
signatures whose total |DP| is less than the |RDP| of the target
signature is not considered for resynthesis.

The compatibility test is based on the controlling values of
logic gates. To utilize this feature, we propose three rules,
called compatibility constraints, to prune the selection of
inputs according to the output constraint and the gate being
tried. Each constraint is accompanied with a signature. In
particular, an identity constraint requires the input signature
to be identical to the constraint’s signature; and a need-one
constraint requires that specific bits in the input signatures
must be 1 whenever the corresponding bits in the constraint’s
signature are 1. Identity constraints are used to encode the
constraints imposed by BUFFERs and INVERTERs, while
need-one constraints are used by AND gates. Similarly, need-
zero constraints are used by OR gates. For example, if the
target signature is 0011, and the gate being tried is AND,

then the need-one constraint will be used. This constraint will
reject signature 0000 as the gate’s input because its last two
bits are not 1, but it will accept 0111 because its last two bits
are 1. These constraints, which propagate from the outputs of
gates to their inputs during resynthesis, need to be recalculated
for each gate being tried. For example, an identity constraint
will become a need-one constraint when it propagates through
an AND gate, and it will become a need-zero constraint when
it propagates through an OR gate. The rules for calculating
the constraints are shown in Figure 4.

Identity Need-one Need-zero
INVERTER S.C. S.C.+Need-zero S.C.+Need-one

BUFFER Constraint unchanged
AND Need-one Need-one None
OR Need-zero None Need-zero

Fig. 4. Given a constraint imposed on a gate’s output and the gate type, this
table calculates the constraint of the gate’s inputs. The output constraints are
given in the first row, the gate types are given in the first column, and their
intersection is the input constraint. “S.C.” means “signature complemented.”

The GDS algorithm is given in Figure 5. In the algo-
rithm, level is the level of logic being explored, constr is
the constraint, and C returns a set of candidate resynthesis
netlists. Initially, level is set to 1, and constr is identity
constraint with signature equal to the target signature st .
Function update constr is used to update constraints.

Function GDS(level,constr,C)
1 if (level == max level)
2 C= candidate nodes whose signatures comply with constr;
3 return;
4 foreach gate ∈ library
5 constrn= update constr(gate,constr);
6 GDS(level +1,constrn,Cn);
7 foreach c1,c2 ∈Cn
8 if (level > 1 or |DP(c1,st)|+|DP(c2,st)|≥|RDP(st)|)
9 sn = calculate signature(gate,c1 ,c2);

10 if (sn complies with constr)
11 C = C∪gate(c1,c2);

Fig. 5. The GDS algorithm.

GDS can be used to find a resynthesis netlist with minimal
logic depth. This is achieved by calling GDS iteratively, with
an increasing value of the level parameter, until a resynthesis
netlist is found. However, the pruning constraints weaken with
each additional level of logic in GDS. Therefore, the maximum
logic depth for GDS is typically small, and we rely on DPS
to find more complex resynthesis functions.

D. Discussion
Our use of PBDs is related to the SPFD technique used

by several groups previously [5], [9], [10], where SPFD is
a representation of Boolean functions that allows the use of
DCs during synthesis. In particular, the approximate-SPFD
technique proposed recently by Yang et al. [10] is somewhat
similar to our approach because PBDs compactly encode a
subset of the bipartite SPFD graph. However, based on the
data in [10] and our experiments on ISCAS’85 benchmarks,
we conservatively estimate that our techniques are at least
twice as fast as those in [10] (details not reported here due to
page limitations). In addition, PBDs should be more memory-
efficient because they are calculated using signatures.

Several existing techniques, such as [8], also use simula-
tion to identify potential error-correction options and rely on

5

TABLE I
ERROR-REPAIR RESULTS FOR SEQUENTIAL CIRCUITS. DPS IS USED IN THIS EXPERIMENT. THE ERROR DIAGNOSIS TECHNIQUE IS BASED ON [1]
Benchmark Description #Cells Bug description Err. diag. time (sec) #Fixes Resynthesis netlist DPS

1st Total #Supports #Gates time (sec)
(min/max) (min/max)

Pre norm Part of FPU 1877 8-bit reduced OR → AND 29.4 50.8 1 19/19 83/83 0.4
MD5 MD5 full chip 13111 Incorrect state transition 5294 5670 2 33/64 58/126 28.2
DLX 5-stage pipeline 14725 JAL inst. leads to incorrect 25674 78834 54 1/21 1/944 1745

MIPS-Lite CPU bypass from MEM stage
Incorrect inst. forwarding 29436 30213 6 1/2 1/2 85

further simulation to prune unpromising candidates. Compared
with these techniques, our framework is more flexible because
it performs abstraction and refinement on the design itself. As
a result, this framework can easily adopt new error diagnosis
or correction techniques. For example, our error-correction
engine can be easily replaced by any synthesis tool that
can handle truth tables or cubes. Most existing techniques,
however, do not have this flexibility.

V. EXPERIMENTAL RESULTS

In [2] we have shown that CoRé can effectively correct
errors in combinational circuits. In this work we apply CoRé to
repair errors in sequential circuits using techniques described
in Section III-C. Due to space limitations, we only report the
results using DPS. Note that diagnosing errors in sequential
circuits is much more difficult than that in combinational
circuits because circuit unrolling is used. For example, the
bug trace for the last benchmark has 77 cycles, and it produces
an unrolled circuit containing more than one million standard
cells. The characteristics of the benchmarks and their results
are summarized in Table I. For each benchmark, 32 traces
were provided, and the goal was to repair the circuit so
that it produces the correct output responses for those traces.
Since our algorithm processes all the traces simultaneously,
only one iteration will be required. For the computation of
more representative runtimes only, we deliberately processed
the traces one by one and failed all verification so that all
the benchmarks underwent 32 iterations. All the bugs were
injected at the RTL, and the designs were synthesized using
Cadence RTL compiler 4.10. In the table, “Err. Diag. time”
is the time spent on error diagnosis, “#Fixes” is the number
of valid fixes returned by CoRé, and “DPS time” is the
runtime of DPS. The minimum/maximum numbers of support
variables and gates used in the returned fixes are shown under
“Resynthesis netlist”. Note that implementing any valid fix is
sufficient to correct the circuit’s behavior, and we rank the
fixes based on the logic depth from primary inputs: fixes
closer to primary inputs are preferred. Under “Err. diag.
time”, “1st” is the runtime for diagnosing the first bug trace,
while “Total” is the runtime for diagnosing all 32 traces. The
comparison between the first and total diagnosis time shows
that diagnosing the first trace takes more than 30% of the
total diagnosis time in all the benchmarks. The reason is that
the first diagnosis can often localize errors to a small number
of sites, which reduces the search space of further diagnoses
significantly. Since CoRé relies on iterative diagnosis to refine
the abstraction of signatures, this phenomenon ensures that
CoRé is efficient after the first iteration. As Table I shows,
error diagnosis is still the bottleneck of the CoRé framework.

We also observe that fixing some bugs requires a large number
of gates and support variables in their resynthesis netlists
because the bugs are complex functional errors at the RTL.

VI. CONCLUSIONS

In this paper we propose a framework, called CoRé, to
correct functional errors in digital circuits relying only on
error traces. This framework exploits both satisfiability and
observability don’t-cares, and it uses an abstraction-refinement
scheme to achieve better scalability. To support the resynthesis
task required in the framework, we propose an encoding
of resynthesis information, called PBDs, and use it in our
innovative resynthesis techniques. Because CoRé does not
rely on specific error models, it offers more error-correction
capabilities than many previous solutions. The experimental
results show that CoRé can produce a modified netlist which
eliminates erroneous responses while maintaining correct re-
sponses. In addition, CoRé supports both combinational and
sequential error repair, and it can be easily adopted in most
verification flows.

REFERENCES

[1] M. F. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith
and M. Abadir, “Debugging Sequential Circuits Using Boolean
Satisfiability”, ICCAD’04, pp. 44-49.

[2] K.-H. Chang, I. L. Markov and V. Bertacco, “Fixing Design
Errors with Counterexamples & Resynthesis”, ASPDAC’07, pp.
944-949.

[3] N. Eén, N. Sörensson, “An Extensible SAT-solver”, Theory and
Applications of Satisfiability Testing, SAT, 2003, pp. 502-518.

[4] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-Valued
Minimization for PLA Optimization”, IEEE TCAD, Sep. 1987,
pp. 727-750.

[5] S. Sinha, “SPFDs: A New Approach to Flexibility in Logic
Synthesis,” Ph.D. Thesis, University of California, Berkeley,
May 2002.

[6] A. Smith, A. Veneris and A. Viglas, “Design Diagnosis Using
Boolean Satisfiability”, ASPDAC’04, pp. 218-223.

[7] S. Staber, B. Jobstmann, R. Bloem, “Finding and Fixing Faults”,
CHARME’05, Springer-Verlag LNCS 3725, pp. 35-49.

[8] A. Veneris and I. N. Hajj, “Design Error Diagnosis and Correc-
tion via Test Vector Simulation”, IEEE TCAD, Dec. 1999, pp.
1803-1816.

[9] S. Yamashita, H. Sawada and A. Nagoya, “SPFD: A new method
to express functional flexibility”, IEEE TCAD, Aug. 2000, pp.
840-849.

[10] Y.-S. Yang, S. Sinha, A. Veneris and R. E. Brayton, “Automating
Logic Rectification by Approximate SPFDs”, ASPDAC’07, pp.
402-407.

[11] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton and M.
Chrzanowska-Jeske, “Simulation and Satisfiability in Logic Syn-
thesis”, IWLS ’05, pp. 161-168.

[12] MVSIS, http://embedded.eecs.berkeley.edu/
Respep/Research/mvsis/

[13] http://www.openedatools.org/projects/oagear/

