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Abstract

Over the last five years the VLSI Placement community achieved great strides in the understanding of placement prob-

lems, developed new high-performance algorithms, and achieved impressive empirical results. These advances have been

supported by non-trivial benchmarking infrastructure, and future achievements are set to draw on benchmarking as well.

In this paper we review motivations for benchmarking, especially for commercial EDA, analyze available benchmarks, and

point out major pitfalls in benchmarking. Our empirical data offers perhaps the first comprehensive evaluation of several

leading large-scale placers on multiple benchmark families. We outline major outstanding problems and discuss the future of

placement benchmarking. Furthermore, we attempt to extrapolate our experience to circuit layout tasks beyond placement.

1 Introduction

Progress in VLSI placement research over the last five years has been tremendous. High-performance free placement tools

such as KraftWerk [28], Capo [13], Dragon [61] and Feng Shui [65] are now widely available [16] and used. They

have been successfully tested on ever-increasing circuits and, according to comparisons made at Intel, IBM and Cadence,

are on par with industrial tools in terms of minimizing the half-perimeter wirelength (HPWL) and other simple placement

objectives. Independent implementations of the KraftWerk algorithm [28] are used in industrial placers in at least three

publicly-traded companies, including a major VLSI design house, a major FPGA vendor and a major EDA tool vendor. The

Capo program [13] is being commercialized by at least two EDA start-ups and is also a part of the Amplify-ASIC tool from
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Synplicity, Inc. To this end, optimizing simple objectives well can be viewed as a necessary, but not sufficient requirement

for a successful placement algorithm.

More importantly, we now have a much better understanding of such important issues as a priori interconnect prediction

[58], routing congestion [53, 62] and timing [36, 63, 41]. Given that VLSI placement is largely an empirical field, much

of this progress would have been impossible without the public availability of large circuit benchmarks [16], such as the

18 ISPD-98 circuits released by IBM [7] and their derivatives [61, 63]. The availability of open-source placers and public

placement benchmarks leads to new synergies by allowing researchers to modify the tools and the benchmarks, analyze tool

performance in depth and combine tools to solve new design problems [1]. Many open problems in placement remain, and

benchmarking issues, such as independent replication of reported results, are integral to further progress.

The ability to accurately measure the impact of any technique is crucial to scientific advancement. Recently, the physics

community had a surprising revelation: a number of papers from a well known researcher were based on fraudulent data

[9, 43]. Apparently driven by the desire to publish, experimental results were fabricated, with theory being passed off as

fact. Had it not been for the failure of other research groups to replicate experiments, the fraud might have gone undetected.

Incorrect published results are damaging to subsequent research; while there is no indication in the Physical Design com-

munity of intentional misrepresentation of results, reported results often cannot be reproduced [46]. Even the most basic

metrics are freely interpreted by different authors, and it is nearly impossible to determine the best approach for a given

problem from published results. Research in algorithm development has additional pitfalls. In some cases, algorithms with

attractive asymptotic worst-case complexity are not useful in practice, or vice versa. In other cases, proposed algorithms

are much more complicated than existing algorithms and offer only marginal improvement. Therefore, algorithm designers

must make an effort to show the utility of their proposed algorithms. To this end, open benchmarking allows one to reuse

efforts of many researchers to perform comprehensive testing.

As circuits become larger and more complex, the need to improve design automation tools becomes more urgent. Ac-

cording to recent literature, existing tools may produce layouts several times worse than what is achievable. This has been

independently shown (i) by comparing manually designed circuits to those laid out by commercial tools [25], and (ii) by

placing specially designed circuits with known good layouts [31, 18]. Thus, much room for improvement remains in circuit

layout, and even the slowdown of Moore’s law would emphasize possible improvements due to EDA tools. Yet, if we cannot

reliably compare EDA tools and relevant research results, significant progress is unlikely.

This paper reviews basic motivations for placement benchmarking in Section 2. Major available tools and benchmarks

are analyzed in Section 3. Routability is discussed in Section 4 and timing in Section 5. We attempt to extrapolate the lessons

learned to layout tasks beyond placement in Section 6.

2 Layout Sophistication Motivates Open Benchmarking for EDA

As VLSI chips grow in size and complexity, large-scale placement is becoming integral to achieving multiple design ob-

jectives. Some of the most important goals are the minimization of wirelength, routing congestion, cycle-time and power

dissipation. These objectives may correlate, e.g., wirelength and power, but in some cases conflict with each other. For
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Figure 1: Placements of the 12.5K-cell benchmark PEKO01 produced by placers KraftWerk, Capo, Dragon, FengShui,
and mPL. The KraftWerk placement has many cell overlaps and must be further legalized with Domino, which costs 20%
wirelength. Capo and KraftWerk tend to distribute whitespace uniformly across the fixed die to generically improve routability,
but variable-die placers pack cells in rows to the left to minimize wirelength. In congestion-driven mode, Dragon behaves like a
fixed-die placer and allocates whitespace according to an internal congestion map. Wirelengths in Table 2 may differ slightly for
randomized placers such as Capo and Dragon.

example, to avoid routing congestion in certain areas of ASIC designs, one may need to spread out collections of cells.

This reduces wiring density, but increases wirelength.1 Similarly, techniques that minimize timing in many cases increase

wirelength and congestion. While experiences with specific optimization techniques provide only circumstantial evidence

of conflicting objectives, for practical purposes this evidence is strong.

The multiplicity of conflicting objectives makes large-scale VLSI placement extremely complex. Additional complex-

ity is due to design constraints, e.g., signal integrity guidelines, chip die and floorplan constraints, pre-designed on-chip

intellectual property, etc.

Modern ASIC designs are laid out in the fixed-die context, where the layout area, routing tracks and power lines are fixed

before placement starts [13]. Typical minimization objectives are congestion and timing.2 Fixed-die layout is relevant for

processes with over-the-cell routing on three or more metal layers and often applied to design blocks rather than whole chips.

Placement density is a new concern implied by the fixed-die context. We define placement density in a region as the

ratio of (i) total area of movable cells in that region to (ii) the area available for placement of movable cells in the region.

Another related term is whitespace%= 100% – density%. Similarly, the average density, also known as row utilization, is

1In principle, there may be congestion minimization techniques that do not increase wirelength. These should be considered too.
2Fixed-die placement is a departure from textbook physical design where routing tracks and chip area are determined during placement and routing. As

such, it invalidates older benchmarks because area is not minimized anymore.
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Circuit Optimal KraftWerk +Domino Capo 8.6 Dragon 2.20 FengShui 2.0 mPL 2.0
WL WL WL WL WL WL WL
e6 e6 e6 e6 e6 e6 e6

Peko01 0.81 1.39 1.74 1.29 1.46 1.24 1.10
Peko02 1.26 1.98 2.61 2.03 2.43 2.20 1.76
Peko03 1.50 3.02 3.78 2.66 2.93 2.77 2.05
Peko04 1.75 3.25 4.25 3.12 3.87 2.84 2.31
Peko05 1.91 3.92 4.79 3.16 3.79 3.03 2.57
Peko06 2.06 4.07 5.38 3.57 4.35 3.28 2.78
Peko07 2.88 5.73 7.56 5.07 6.24 4.82 3.95
Peko08 3.14 5.87 8.17 5.57 6.79 5.05 4.99
Peko09 3.64 8.52 10.74 6.47 7.72 5.80 4.76
Peko10 3.73 8.9 12.03 8.0 8.49 8.10 6.59

Avg 2.26 4.66 6.10 4.09 4.80 3.91 3.28

Table 1: HPWL on 10 out of 18 PEKO benchmarks in suite 1. KraftWerk placements are legalized by Domino.
Best results are shown in bold. Kraftwerk and Capo8.6 are fixed-die placers. FengShui 2.0, mPL 2.0
and detail placer Domino are variable-die placers and pack cells to the left of the die area. Dragon 2.20 is
also run in the variable-die mode.

defined as the ratio of the total area of all movable cells to the total amount of area available for placement of movable

cells. It cannot be changed by a fixed-die placer. If all movable cells are uniformly spread throughout the layout area, the

average density will be achieved at all locations. To improve yield, placers may be required to limit density in any given

region (uniform distribution of whitespace is one of many ways to satisfy such a constraint). Observe that maximum density

values (per region) below the average density are not feasible, and if the maximum density per region equals the average

density, then whitespace must be distributed equally. However, placers are often allowed to allocate significant “free space”

rather than distribute cells uniformly. Depending on the type of design, this may be an important part of the overall problem.

Figure 1 shows how several academic placers handle 15% whitespace in the PEKO01 benchmark [18]. Observe that Feng

Shui, mPL and the default version of Dragon pack cells to the left, leaving large empty areas on the right. Compared

to the fixed-die (-fd) version of Dragon that distributes whitespace to alleviate congestion, the default version improves

wirelength by around 6% for 15% of whitespace (by more when more whitespace is available). However, this significantly

worsens routability [62]. Because of this, listing wirelengths achieved by fixed-die and variable-die placers, in the same

table, may create a false impression of a two-sided comparison. To this end, if a variable-die placer produces similar or

higher wirelength, then it is probably not a very good placer. Otherwise, one has to compare relevant design objectives, such

as congestion.

Industrial placement instances, e.g., at IBM, can be classified into ASICs, SOCs, and Microprocessor RLMs (random

logic macro). Each of these categories presents unique difficulties. ASIC chips generally contain a large number of fixed

I/O ports that may be perimeter-restricted or pervasive throughout the core area of the chip (area-array I/O). ASIC chips

frequently contain a handful (1-20) of pre-placed large macros that are fixed, a moderate number (100s) of movable large

multi-row cells, and many small movable cells — up to several million and increasing. ASIC chips come in a variety of

average densities typically ranging from 40% to 80%.

SOC designs are similar to ASIC designs, but with many more large macros fixed in the placement area. In extreme

cases the bulk of the design is concentrated in standard pre-designed library cores, RAMs, etc, with only a small fraction
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Circuit #Nodes #Nets WS % Optimal Dragon2.23 Plato FengShui2.0 mPL2.0 Capo8.5 Capo8.6
HPWL HPWL HPWL HPWL HPWL % overlap HPWL HPWL

10x10 100 184 0 184 293 202 247 168 22 267 184
95x95 9025 17864 5 17884 39687 18302 31304 37735 1.89 21828 22764

100x100 10000 19804 0 19804 46066 20519 33397 40219 2.02 38352 21314
190x190 36100 71824 5 71864 175623 75384 155779 151134 0.94 90665 89814
200x200 40000 79604 0 79604 198182 82335 137841 160700 1.00 193167 100041

Avg 37856 91970 39348 71713 77991 - 68855 46823

Table 2: Wirelength achieved by several placers on regular grids of varying size and with varying whitespace. Plato is the original
implementation of KraftWerk by Eisenmann and Johannes. While Plato produces small wirelength on n×n grids, it often fails
to converge to a solution on random-logic netlists with embedded grids. FengShui 2.0, mPL 2.0 and Capo 8.5 frequently
produce suboptimal solutions. However, Capo 8.6 does reasonably well. Since mPL 2.0 frequently produces overlaps, we also
report the overlap as a % of the layout area.

of movable logic providing minor control functions. Such placement instances tend to have extremely low densities on the

order of 20%, and in some cases less than 5%. Placement algorithms developed for nearly-full designs often do not handle

such extremes well. Therefore one seeks algorithms specifically developed for this context and tested on low-density designs

[4].

Microprocessor designs are generally laid out hierarchically, and this approach often leads to many small partitions.

Some of these partitions are small standard-cell placement instances with very few fixed cells, a large number of fixed I/O

ports, and a small number of movable cells (< 10000). Because densities tend to be high, averaging 80% and reaching 98%,

specialized techniques are needed to produce good placements that are also legal [64, 15]. Also, due to the small number of

movable objects and the large number of fixed ports [8], multi-level partitioning [6, 37] is no better during placement than

simpler “flat” FM partitioning [29]. Related results have been reported in [11, 8].

Given the complexity and the variety of VLSI placement problems, one should not expect a single closed-form algorithm

or even a commercial tool to work well in all circumstances. Comprehensive evaluation of algorithms and tools is non-

trivial, and so is testing the applicability to each of the relevant domains. Often, algorithms that perform well in the case of

an RLM do not perform well for an ASIC (e.g., recursive bisection with “flat” FM partitioning). Likewise, algorithms such

as recursive bisection with multi-level partitioning that show significant promise on very large netlists may provide little or

no value for small structured components of a microprocessor chip. Some algorithms may perform well on dense designs

while others perform well on sparse designs. Other differentiating factors include the diversity of cell sizes and the presence

of fixed and movable macros, — these are increasingly important in modern designs.

The sophistication and variety of layout problems, as well as the multitude of performance factors, make the case for

public benchmarking in Physical Design. Indeed, we observe a similar situation in computer architecture, where different

design decisions may favor different applications, and the variety of microprocessors feeds the need for comprehensive

comparisons. To this end, industry-standard evaluation of desktop and server hardware performance across a variety of tasks

is based on SPECmark benchmarks [57]. Originally, the Standard Performance Evaluation Corporation (SPEC) published

a suite of 10 benchmarks that test a computer’s integer and floating point computation. The suite includes slightly hacked

versions of well-known FORTRAN and C codes. The performance measure of one SPECmark is comparable to that of a

VAX-11/780. Additional SPECmark suites have been published in recent years.

Similarly, an appropriate set of placement benchmarks could become a standard for measuring and categorizing the

behavior of placement algorithms. Understanding how algorithms behave across the entire problem space is important for

5



Plato HPWL= 256 Capo HPWL= 267 Capo HPWL= 184 Dragon   HPWL= 270 FengShui HPWL= 247 mPL2 HPWL= 168

KraftWerk Capo 8.5 Capo 8.6 Dragon 2.23 Feng Shui 2.0 mPL 2.0

Figure 2: Placements of a 10x10 grid-graph produced by academic placers. All pictures are produced using a utility that ships
with Capo and gnuplot. mPL 2.0 places cells with many overlaps, and Capo 8.5 produces one overlap. mPL 1.2b (not shown)
and Capo 8.6 both find the unique optimal placement. KraftWerk produces good placements, but the block of movable cells
has a wrong orientation relative to fixed pads. For larger grids, none of the placers produce optimal wirelength. The smallest
wirelength is achieved by KraftWerk, then Capo 8.6, closely followed by mPL 2.0. All three are generally within 25% from
optimal HPWL. Dragon 2.20 and Capo 8.5 double wirelength.

selecting and developing the best techniques, and such an effort seems beyond any single industrial or academic placement

group. The industry needs placement benchmarking to improve internal tool development, to measure potential vendor tool

offerings, and to communicate important issue to academic researchers. Such benchmarks can greatly enhance the efficiency

of communication between all parties involved, especially when studying new design features.

Some design features may depend on technology generations, therefore we would not like to confine placement bench-

marking to a rigid testing protocol. In fact, we hope that the detailed placer comparisons on existing benchmarks in this

paper will encourage researchers to work on new, more up-to-date layout benchmarks and optimization objectives. Indeed,

besides total wirelength and congestion, layout tools must optimize timing and ensure signal integrity. Such design objec-

tives and constraints must be reflected in public placement benchmarks so that one can compare layout tools in a variety of

placement contexts. In particular, one would like to see trustworthy empirical data for academic placers that lend themselves

to timing closure flows and produce good timing results while maintaining routability and signal integrity. Such community

benchmarks are relevant for users of commercial EDA tools, and an investment into producing them is justified in the long

term. An attempt at such benchmarks is being made at CMU [55].

3 Available Open Benchmarks and Placement Tools

As noted in [46], published results for wirelength-driven placement of MCNC benchmarks differ wildly due to creative

but poorly explained interpretation of input files by authors. Similarly, we show in Section 5 that more recent published

results on timing-driven placement exhibit alarming contradictions. Less drastic differences may go unnoticed, or even be

falsely advertised as algorithmic improvements, especially when reported implementations are not available for independent

evaluation. For example, some works on placement and floorplanning claim good wirelength, but their placements have many

cell overlaps. Another source of discrepancies in published results is poorly specified benchmarks that require pre-processing

and additional information, e.g., timing-driven placement benchmarks from [22] published only in Verilog. Limited parsers

also cause difficulties, e.g., as of February 2003, the second suite of IBM-Dragon benchmarks in LEF/DEF has two variants

— one for Dragon and one for Capo. To this end, we advocate using common, recent benchmarks and standard parsers,
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Feature KraftWerk Capo 8.6 Dragon 2.23 FengShui 2.0 mPL 2.0

Fixed Terminals + + + + +
Macros ± ± - - -
Terminals of + + - + ±

arbitrary size
Cells of + + + + ±

arbitrary size
Subrows - + ± ± -
Orientation
constraints - + - - -
LEF/DEF - + ± ± -
Whitespace ± ± ± - -
Management
Detail - ± + ± ±

Placement
Timing-driven + ± + - -
Placement

Table 3: Features supported by different academic placers. We categorize support for various features as supported(+), absent(-)
and partially supported(±). KraftWerk and Capo support fixed macros, but often fail to remove overlaps of movable macros [1].
Being a global placer Capo comes with a very simple detail placer. CapoT, a timing-driven version of Capo is not open-source at
the moment.

Circuit #Nodes #Nets KraftWerk +Domino Capo8.6 Dragon2.23 FengShui1.1 FengShui2.0 mPL1.2b mPL2.0
Time(min) Time(min) Time(min) Time(min) Time(min) Time(min) Time(min) Time(min)

ibm10 67692 64227 22 a 11 99 15 164 14 74
ibm17 183102 180684 104 a 55 360 79 729 53 607
ibm18 210323 200565 73 a 50 340 74 a 121 818

Table 4: Time taken by various placers on the three IBM Dragon v1 benchmarks. mPL1.2b and mPL 2.0 are run on a 750
MHz Sun Blade-1000 workstation running Solaris. All other placers are run on 2 GHz Pentium/Linux system. The Pentium/Linux
systems are generally 2X faster than the Sun Blade-1000 workstation. mPL2.0 and Dragon take long times placing these netlists.
FengShui 2.0 is also very slow, and the bottleneck is apparently in detailed placement.

e.g., Cadence’s open-source LEF/DEF parsers downloadable for free from http://www.openeda.org. Appendix A

surveys existing families of placement benchmarks, and Appendix B describes downloadable placers. We typically cite the

publication where a given contribution was first described, but download links for software and circuits can be found in

the GSRC Bookshelf [16], specifically in the Wirelength-Driven Placement and Circuit Design Examples slots. Based on

empirical data for various pairings of benchmarks and placers, we observe interesting trends.

Table 4 reports average placer runtimes. Dragon, mPL2.0 and Feng Shui 2.0 appear to be the slowest placers.

Note that since some of the placers are randomized, running them several times and taking the best solution out of N allows

one to trade off runtime for improved solution quality. Figure 3 illustrates this trade-off for Capo. It shows that the second

independent start improves the HPWL by one percent on average, and additional starts are typically not worth the runtime.

Table 3 is a check-list for common features found in placers. Dragon and Capo tend to support more features than

other placers. We categorize support for various features as supported(+), absent(-) and partially supported(±). Some of the

features we took into consideration are discussed below.

• Macros: Kraftwerk is claimed to be a generic placement tool, capable of handling large macros during the place-

ment process. However, for constrained designs it often produces layouts with large amounts of overlap. Capo only
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supports fixed macros. Other placers do not have any support for macros.

• Subrows: Subrows are often created in the layout because of obstacles like pre-placed macros, power strips etc. Capo

has support for subrows. However, most of other placers do not have adequate support for subrows. Kraftwerk

does not attempt to put the standard-cells into rows. It uses the detail placer Domino to pack cells into rows.

• Orientation Constraints: Standard-cell rows often have constraints on the orientation of the cells placed in them.

• LEFDEF: Capo contains two pairs of LEF/DEF parsers, of which one is the code released by Cadence in public

domain. For any particular input file, either parser can be selected. Dragon and Feng Shui support fairly limited

subsets of LEF/DEF.

• Whitespace Management: Capo and KraftWerk tend to distribute cells uniformly [15]. Dragon, Feng Shui

and mPL in default modes pack cells to the left. Dragon in the fixed-die mode distributes whitespace to improve

congestion [62].

• Detail Placement: Capo and Feng Shui implement naive detailed placers based on optimal re-placement of small

groups of adjacent cells [14, 34]. mPL2.0 also replaces small groups of cells, but those cells do not have to be

adjacent. Dragon contains a detailed placer based on simulated annealing.

Empirical Analyses. Figure 1 plots the outputs of six placers on the PEKO01 benchmark [18] and suggests that Dragon

in congestion-driven mode, KraftWerk and Capo behave like fixed-die placers. The other three simply pack cells in rows

to the left, which is typical of variable-die placers. Even when this produces good wirelength (e.g., in mPL), such placements

may be unroutable. On the other hand, Dragon’s congestion-driven mode doubles wirelength for PEKO01 and seems

wastefull as well. Additional empirical data for PEKO benchmarks are given in Table 1 and can be compared to results

on benchmarks from the proprietary Cadence-Capo suite [13] shown in Table 5. Dragon and Feng Shui apparently

mishandle multiple sub-rows in a row split by a vertical power stripe. Results for different placers on the IBM-Dragon

benchmarks [61, 62] are presented in Tables 7 and 8.

For the IBM-Dragon v1 netlists, the anaytical placer KraftWerk does not do very well in terms of HPWL. IBM-Dragon

v1 benchmarks are constructed from the partitioning netlists released by IBM [7] and all large cells are removed. Because of
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Figure 3: Pareto front for the randomized min-cut placer Capo, based on 100 independent starts on ibm10
benchmark from the ibm-v1 suite. We plot the expected best-of-N-starts wirelength as the function of the
number of starts N. The average-best-of-1-start is calibrated to 100% on the y-axis.
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Test Dragon 2.23 KraftWerk Capo 8.6
Placement Placement Placement

# +ECO +ECO +ECO
[13] WL WL Time Route WL WL Time Route WL WL Time Route

e8 e8 sec Success e8 e8 sec Success e8 e8 sec Success

1 2.66 3.86 383 No 2.85 2.95 25 No 2.64 2.64 73 Yes
2 I I I I 4.01 6.38 185 No 3.08 3.22 268 Yes
3 oc oc oc oc 5.9 6.01 149 No 5.55 5.56 158 Yes
4 oc oc oc oc 10.5 11.4 95 No 10.5 10.7 163 Yes
5 6.02 6.07 2002 Yes t-o t-o t-o t-o 5.68 5.72 326 No
6 a a a a t-o t-o t-o t-o 155 155 251 Yes

Table 5: HPWL results and runtimes of academic placers on Cadence-Capo benchmarks (2.0GHz Pentium4-Xeon). To legalize
placements, we apply Cadence QPlace (SEDSM ver. 5.3) in the -ECO mode and report wirelength before and after. If a placement
is legal, no cells are moved. QPlace -ECO moves almost every cell after KraftWerk, but the wirelength increase is modest. “I”
stands for failure to read the input, “a” denotes failure to produce a placement, “oc” reflects numerous cells outside the core region,
“t-o” stands for 24-hour time-outs. Dragon aborts in fixed-die mode on one testcases (complaining about the lack of whitespace)
and finishes only in variable-die mode on two (test1 and test5). test5 has 33.9K cells and 29.4% whitespace, test6 has 35.5K cells
and 0.1% of whitespace.

Benchmark Dragon KraftWerk Capo 8.6 mPL 2.0 FengShui 2.0
suites [62] [28] [13] [18] [65]

Grids 9.19e4 (Poor) 3.93e4 (Good) 4.68e4 (Good) 7.79e4 (Med) 7.17e4 (Med)
PEKO[18] 4.80e6 (Poor) 4.66e6 (Poor) 4.09e6 (Med) 3.28e6 (Good) 3.91e6 (Med)

IBM v1[61] 25.50e6 (Good) 29.40e6 (Med) 27.80e6 (Med) 28.90e6 (Med) 27.40e6 (Med)
IBM v2[62] 40.10e7 (Good) 50.8e7 (Poor) 40.50e7 (Good) 45.40e7 (Med) 37.40e7 (Good)

IBM v2[62](Route) Good Poor Med Poor Poor
Cadence-Capo [13] Med Med Good N/A Poor

Table 6: Average half-perimeter wirelengths achieved by major academic placers on five benchmark suites. We classify perfor-
mance as Good, Medium or Poor. For IBM-Dragon v2 and Cadence-Capo benchmarks we also compare placers on routability.
N/A means that no placements were produced due to input problems, crashes or unsupported features.

that, the resulting netlists contain disconnected fixed-terminals. We contacted the authors of KraftWerk and they speculate

that the disconnected fixed-terminals might be the reason for the bad performance. Since the global optimum (in terms of

a quadratic cost function) depends on the location of the fixed cells, Kraftwerk uses the location of the fixed cells to

compute the start solution by default. If there are no fixed cells available (or they have some ”pathologic” distribution)

one would use a different start solution. KraftWerk also does very poorly on the IBM-Dragon v2 netlists and produces

placements with large amounts of overlaps. We believe this is also because the IBM-Dragon v2 netlists do not have any

fixed terminals. mPL2.0 also does not do very well on the IBM-Dragon v2 netlists which have cells of non-uniform sizes.

The authors of mPL2.0 admit that mPL2.0 has problems in processing cells of varying sizes. Grid placements in Figure

2 suggest that (i) it may be difficult for an annealer (in Dragon) to place regular structures, (ii) despite good performance,

KraftWerk seems to ignore connections to fixed terminals. enough, by studying the behavior of Capo 8.5 grids we were

able to improve its performance. A comparison of placer run-times on IBM Dragon v1 benchmarks is presented in Table 4.

As seen, Capo 8.6, Feng Shui 1.1 and mPL 1.2b are reasonably fast. Dragon 2.23, which combines min-cut

with annealing algorithms is fairly slow. The latest release of mPL, mPL 2.0 improves wirelength over mPL 1.2b but is

very slow for the larger benchmarks. A summary comparison of existing placers using data from multiple benchmark suites
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Circuit KraftWerk +Domino Capo8.6 Dragon2.23 FengShui2.0 mPL2.0
[61] WL WL WL WL WL WL

e6 e6 e6 e6 e6 e6

ibm01 6.54 5.85 5.03 4.60 4.94 5.30
ibm02 20.8 17.8 16.0 13.7 14.4 14.9
ibm03 16.2 14.7 13.4 12.7 12.9 14.8
ibm04 19.2 18.1 17.9 16.1 16.8 18.9
ibm05 40.2 37.8 44.0 39.0 37.4 42.7
ibm06 24.7 a 21.9 19.5 20.0 23.3
ibm07 38.1 34.4 36.9 30.9 30.6 34.5
ibm08 40.4 37.0 38.3 32.5 36.7 36.0
ibm09 31.7 29.2 30.1 28.4 29.4 31.4
ibm10 66.6 a 60.1 57.2 57.6 67.6

Avg 29.4 - 27.8 25.5 27.4 28.9

Table 7: HPWL on 10 out of 18 IBM-Dragon v1 benchmarks. KraftWerk placements are legalized by Domino.
Domino aborts on ibm 06 and ibm10. Best results are shown in bold.

Circuit KraftWerk +Domino Capo8.6 Dragon2.23 FengShui2.0 mPL2.0
[62] WL Overlap WL WL WL WL WL

e7 % e7 e7 e7 e7 e7

ibm01 7.03 32 6.37 5.49 5.82 5.24 6.40
ibm02 21.5 49 t-o 15.9 15.8 14.7 16.1
ibm07 51.2 93 t-o 37.0 35.9 33.0 40.7
ibm08 46.6 95 t-o 38.4 38.2 36.6 42.5
ibm09 42.6 93 t-o 32.2 32.0 30.1 38.1
ibm10 76.1 76 a 61.5 60.2 56.7 66.1
ibm11 58.0 112 a 48.5 47.2 45.9 59.6
ibm12 104.1 27 a 85.8 85.8 77.5 94.4

Avg 50.8 - - 40.5 40.1 37.4 45.4

Table 8: HPWL on IBM-Dragon v2 benchmarks (easy suite). The benchmarks have no terminals. KraftWerk placements are
legalized by Domino. KraftWerk produces placements with large amounts of overlaps. So, we report the overlaps as a per-
centage of the layout region area. Domino aborts or time-outs(24 hours limit) for most benchmarks. In terms of routability,
only Dragon2.23 produces consistently routable placements on all benchmarks. Capo8.6 produces unroutable placements
for ibm01 and ibm02. KraftWerk uniformly distributes whitespace and produces unroutable placements for all benchmarks.
mPL2.0, Feng Shui2.0 and KraftWerk+Domino pack all cells to the left and produce unroutable placements for all bench-
marks.

is given in Table 6. For all reported results in this paper, the half-perimeter wirelength (HPWL) is measured independently

by the wirelength evaluator posted on GSRC bookshelf [16]. These results suggest that Dragon is tuned to IBM-Dragon

benchmarks, while Capo is tuned to Cadence-Capo benchmarks. The original version of Feng Shui was tuned to the

somewhat outdated MCNC benchmarks. Additionally, observe that the mPL placer outperforms all other placers only on

PEKO benchmarks, most likely thanks to its clustering algorithm.

4 Benchmarking for Routability

In the 1980s and early 1990s, works on circuit layout often considered both placement and routing [56, 59]. However, as

those tasks became more complex, they were often considered separately in the late 1990s. Such a separation of concerns
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makes evaluation easier and decreases benchmarking runtime, however, the results may be inconclusive and misleading.

Even when placement results are evaluated by running a commercial router [13], this is far from explicit routability improve-

ment during placement [53, 62].

The narrow focus on placement, together with attempts at wirelength prediction, lead to the popularity of wirelength-

based metrics that roughly model routability, are easy to calculate, and can be integrated into an optimization engine. Errors

in such metrics can sometimes be tolerated. Indeed, in variable-die designs using channel-based routing model (common

when very few metal layers were available), even a poor placement could be routed, although at potentially high cost. Modern

fixed-die designs with high utilization, many metal layers and over-the-cell routing model lead to the new phenomenon of

unroutable placements. The fact that low-wirelength placements are not necessarily routable motivated recent studies of the

routability of different placement methods.

In [13], the Capo placement tool was used in a set of experiments on proprietary commercial circuits, for most of which

Capo placements could be routed using a commercial tool without a great deal of difficulty. While one might conclude that

Capo placements are generally routable, a different conclusion could be drawn from recently published empirical results.

In [62], the Capo and Dragon placement tools were compared using ISPD-98 circuits from IBM [7] that were originally

published as hypergraph partitioning benchmarks. The authors of [62] removed large macros, mapped the circuits using an

academic 0.18µm cell library from Artisan and added artificial routing grids. The resulting benchmarks are publicly available

at [16], and when they are placed with Capo the same commercial global router used in [13] frequently fails. We were able

to reproduce those experiments with Capo 8.0 (Capo 8.6 tends to produce better-routable placements, but not as good

as Dragon). Additional data are given in Table 5, where six out of seven Cadence-Capo benchmarks are placed by Capo,

KraftWerk, FengShui and Dragon.

It should not be surprising that optimization of wirelength alone does not guarantee success in routing. Local wiring

demand and design characteristics play a significant role. This can have serious repercussions for commercial design teams:

the routability of a placement approach may be unknown until actual routing. As for improving placement algorithms, the

success or failure gives little insight into what was right or wrong with a placement, or how it may be improved. There is a

need metrics that are good at predicting routability, especially at the early stages of placement.

Before suggesting routability metrics for placement, we note that benchmarking of routing itself is problematic. No con-

sensus exists on global routing objectives, and there are no large, widely used public benchmarks. Despite the availability of

many well-known placement benchmarks (MCNC, IBM-Dragon and PEKO) in [16] there is nothing comparable for routing.

Most papers on global routing use proprietary benchmarks, or test cases that were generated by the authors themselves.

Comparisons are frequently made with naı̈ve implementations, or with unnamed commercial tools.

We do not believe that one can easily re-target a layout tool from wirelength-driven metrics to timing and/or power

minimization after successful global and detail routing. Therefore we describe an evolutionary transition through a series of

simpler metrics that can be incorporated into current work, and provide greater insight into the routability of a placement.3

METRIC 1: Simple Congestion Metrics. We explain the reported variations in routability via a detailed examination of

results produced by two bisection-based placers, Capo[13] and Feng Shui [65], and the annealing based placer Dragon

3More sophisticated models for achievable routing were proposed and validated [35], but the community has yet to produce consistent and independently
verifiable results even for simple metrics.
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[61]. Table 9 shows half-perimeter wirelengths for the three placers on the IBM-derived placement benchmarks [16]. Besides

total wirelength, we decompose the wiring into horizontal and vertical components. While total wirelengths may only differ

by 5% or 10% per benchmark, horizontal and vertical demand may differ by a large margin.

Bench- Capo 8.6 Feng Shui 2.0 Dragon 2.23
mark WL % H % V WL % H % V WL % H % V

(e6) (e6) (e6)
ibm01 4.97 60 40 4.87 43 57 4.42 53 47
ibm02 15.23 64 36 14.38 49 51 13.57 51 49
ibm03 14.06 59 41 12.84 51 49 12.33 54 46
ibm04 18.13 62 38 16.69 45 55 15.41 51 49
ibm05 44.73 62 38 37.30 53 47 36.38 53 47
ibm06 21.96 59 41 20.27 44 56 20.38 54 46
ibm07 36.06 68 32 31.50 56 44 29.97 55 45
ibm08 37.86 68 32 34.14 59 41 32.20 56 44
ibm09 30.28 62 38 29.86 54 46 28.10 55 45
ibm10 61.25 66 34 57.99 59 41 57.20 62 38
ibm11 46.45 57 43 43.28 46 54 40.77 50 50
ibm12 81.55 62 38 75.91 55 45 71.03 53 47
ibm13 56.47 60 40 54.09 52 48 50.57 53 47
ibm14 128.51 63 37 123.05 55 45 119.80 53 47
ibm15 144.51 65 35 142.90 55 45 134.24 53 47
ibm16 186.04 63 37 185.26 52 48 170.08 54 46
ibm17 278.71 65 35 267.65 54 46 250.56 56 44
ibm18 199.98 65 35 197.85 50 50 188.26 58 42
Avg 63 37 52 48 54 46

Table 9: Half-perimeter wirelengths for placements by Feng Shui, Capo, and Dragon on IBM-Dragon v1 benchmarks. The
distribution into horizontal and vertical components reveals large differences – Capo produces placements that use significantly
more horizontal wiring than vertical; earlier versions of Feng Shui also exhibited this behavior. The use of routing resources on
metal layers is a key routing-related concern.

ASIC routing is normally performed using “preferred direction” wiring; clearly, Capo targets significantly higher hor-

izontal demand and significantly lower vertical demand. Early versions of Feng Shui also had heavily biased routing

demands. A bias of this type may sometimes be beneficial: industrial benchmarks often have more horizontal routing re-

sources than vertical. If routing fails for Capo, but not for Dragon or Feng Shui, the router likely cannot find a location

where a wire can travel horizontally. If routing fails for Dragon or Feng Shui, but not for Capo, it is likely that the

router cannot find a location where a wire can travel vertically.4 The difference in routing demand also suggests how to deal

with interconnect layers. If the number of metal layers is odd or differences in routing pitches bias routing supply in one

direction, the placer should bias the routing demand accordingly.

Evaluating vertical and horizontal wirelength is easy and helps explain apparently contradictory results. Commercial

tools report the two numbers and their sum. Academic tools should do the same.

Extending the simple separation between horizontal and vertical components is a metric similar to channel density.

Sweeping through the layout either vertically or horizontally, one can track horizontal and vertical routing demand. “Best-

case” and “worst-case” congestion levels for the H and V routing layers can be found. When horizontal and vertical place-

ment densities are compared for Feng Shui, Capo, and Dragon, the overall results are similar to those in Table 9.

Our final suggestion for “simple” congestion metrics are those based on “probabilistic” routing models [53, 44, 38] as

follows.

4If routing succeeds, it may take an unusually long time, indicating layout problems. To avoid congestion, a route may need to detour. Such detours
increase path lengths, substantially slowing down maze search in modern routers.
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• The core area is decomposed into a regular grid of routing tiles.

• Each signal net is decomposed into steiner or spanning trees.

• The “probability” that a given tree edge uses a given tile is computed based on fast combinatorial enumeration of

shortest paths.

An open-source implementation of probabilistic congestion maps from [44] is distributed with the Capo placer in [16]

and can produce picture files as well as scripts for Matlab and gnuplot — see Figure 4. This estimation method is reasonably

fast, can obtain results that are close to those of global routing tools [53, 38]. These estimates should be used with caution,

however: good global routing tools may introduce slight routing detours to eliminate congestion problems. Probabilistic

models might be considered pessimistic; if the estimates are used to influence the placement process, we may be addressing

problems which do not actually exist, and suffer unnecessary wirelength increases.

METRIC 2: Global (and Detail) Routing. Presently, relatively few routers are available publicly. Global routers Labyrinth

[39] and the Force-Directed Router [47] are both downloadable from [16] in source code (in C++ and Java respec-

tively), but their behavior on large circuits may not be representative of commercial routers. Some research groups use

commercial tools [13, 62], most frequently Cadence WarpRoute. However, commercial tools are impossible to tweak

and difficult to integrate with. In particular, commercial tools typically do not save global routing results (which would be

convenient for evaluating global placement) but rather offer a monolithic global+detail routing optimization. Furthermore,

commercial routers may obscure results by performing sophisticated optimizations. To summarize, we believe that an open

infrastructure for global routing should be developed by academic researchers and populated with open-source routers of

reasonable quality, tested against commercial tools (similarly to how major academic global placers have been tested). A

fast global router can be then embedded into a placer [52] as an estimator.

5 Toward Open Benchmarking for Timing-driven Placement

The development of scalable, powerful and robust algorithms for circuit delay minimization during placement is a key

challenge in Circuit Layout. It is mentioned regularly in the requests from industry and government funding agencies, but

few replicable results have been reported in the literature. While we discuss timing, parallels can be made with power

minimization. Barriers to research in timing-driven placement can be summarized as follows.

• Lack of non-trivial placement benchmarks with enough information to perform accurate timing analysis. The

MCNC benchmarks which have signal direction information use an extremely simple and outdated timing model.

Meanwhile, benchmarks derived from academic work are viewed by industrial groups as small and meaningless.

“Synthetic” benchmarks are criticized for not accurately modeling “real” circuits.

• Accurate circuit-level timing analysis is non-trivial, and accurate device-level timing analysis is computationally

expensive.

• Actual design parameters are closely guarded industrial secrets, and profoundly influence interconnect delay.
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Figure 4: Probabilistic congestion maps for Cadence-Capo test3 (20.5K cells). The Capo placement (A) has higher peak conges-
tion, but lower average congestion than KraftWork (B). Cadence WarpRoute succeeded in both cases: 6 violations for Capo and
123 for KraftWerk. For Capo placements the horizontal congestion (C) is higher than the vertical congestion (D) The plotter
program is available in the GSRC Bookshelf under Placement Utilities.

For the available benchmarks, differences in interpretation that have plagued wirelength-based placers [46] are more

problematic in the context of timing optimization. The timing-driven annealing-based placer from [59] reports the longest

path delay 798ns for the MCNC benchmark avqsmall. In [28], the longest path was improved to only 80ns. A quadrisec-

tion driven placer [33] reported a result of 71ns, and most recently, a result of 59.6ns was reported [51]. The improvement in

delay for the same circuit by more than a factor of 10 seems beyond belief, especially considering that the approach of [59]

was by no means naı̈ve and their placer implementation has been validated independently. Also note that the avqsmall

circuit was released in 1989, and clock frequencies of 16.6MHz were not realistic for standard-cell ASICs at that time. At

this time, while interconnect delay was important, it by no means dominated system delay. Even if all interconnect delay

was eliminated, it is unlikely that the delay of the longest path could be affected to this extent. Further investigation revealed

that some path delays reported in [51] are smaller than the sum-of-gate-delays reported in [32] — for the testcase fract

[51] computes a path delay 11.91ns, while [32] produces a lower bound of 18.5ns by entirely ignoring interconnect delays.

Compounding the different interpretations of the benchmarks is the issue of what would be an appropriate timing-driven

objective. One could suggest that the setup-slack (the difference between path arrival time and path required time) reported

by a static-timing-analysis (STA) engine should be the final arbiter of the “goodness” of a TDP. Indeed, among recent TDP

papers [51, 32, 22, 36, 63, 41] one half [22, 36, 63] do just that. However, some groups may find it difficult to obtaining valid
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timing constraints, gate models (delay library) and an appropriate technology-file to correctly compute the setup-slack. To

overcome the obstacles in using an industrial STA engine, authors frequently report “path-delays” through some gate-delay

computation coupled with internally developed STA engines. Such timing analyzers can be simplified by ignoring path-

exceptions, multiple-clock domains, delays on primary I/O, and gate-delay modeling and net modeling details. The impact

of slope (signal-transition time) on gate-delay is typically ignored, likely making path-delay results erroneous as shorter

paths with long nets appear more critical than paths with more stages of logic.

At the heart of TDP lies an inherent compromise between optimization and simulation. Ideally each decision made by

the placement engine must be guided by exact setup-slack. However, even one pass of an accurate STA may be prohibitively

slow in some cases.

While various design considerations make it extremely difficult to evaluate timing accurately, academic works typically

address geometric and graph-theoretic aspects that are also challenging for commercial tools. Indeed, signal paths that

detour a lot typically have greater delay than “straight” paths. A simple but non-trivial objective function is given by the total

geometric path length (gate delays can be added easily to such formulations). To this end, algorithms that directly attempt

to “straighten” critical paths by optimizing geometric path lengths have been proposed [36] and extended to more realistic

delay objectives. During such optimization they must ensure that sub-critical paths do not overtake currently-critical paths.

These algorithms need only the infrastructure to evaluate the criticality of paths and are accessible to academic groups.

Physical synthesis is a synergistic attempt at design closure via simultaneous placement and logical transforms [27, 48,

45]. While interesting work on Physical Synthesis, with empirical results, already appeared at conferences [42], no repli-

cable timing results are given. In Physical Synthesis, concerns about ignoring transition time are alleviated by interleaving

placement transforms with calls to netlist buffering [27]. However, this raises two additional concerns: the netlist or gate

sizes may change from one iteration to the next, and regions of the chip may become over utilized, thus requiring powerful

legalization methods. An alternative method is to perform the placement optimization within a ”virtual buffering” mode

[48]. This allows the placement engine to operate on a constant netlist (buffers are not inserted) with a timing analysis mode

that minimizes excessive slope effects and correctly accounts for buffer delays. In a gain-based synthesis environment [45]

this problem is converted into the task of maintaining the gain on each cell. While the netlist does not change, the sizes of the

cells may change (to maintain gain), leading to the need for strong legalization techniques. In either case, transition-time ef-

fects may lead to 5-10% larger gate area and further challenges for the TDP engine. Timing optimizations during placement

must also look at the effects of physical synthesis on the design. Results in Table 10 show that physical synthesis transforms

after placement significantly affects the timing of a design.

It may be unrealistic to develop a Physical Synthesis environment in academia in the near future. Moving beyond the

simple task of timing-driven placement is challenging, much of the basic infrastructure needed to support academic research

(i.e., static timing analysis and high quality benchmarks) is not currently available. However, we do envision a set of

benchmarks with valid timing constraints, multiple clock-domains and of representative size. This requires access to gate-

delay libraries (.lib) and technology files (LEF). Finally, there needs to be a way to independently verify the timing results

of the placements. Some necessary infrastructure may be provided by recent efforts at Si2 that resulted in downloadable

software such as OLA [50] and OpenAccess [49], but path-based STA is still missing. The descriptions below are adapted
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Design # Nodes Slack (ns)
Initial(Total -ve) Sized(Total -ve) Buffered(Total -ve)

D1 22253 -2.75(-508) -2.17(-512) -0.72(-21)
D2 89689 -5.87(-10223) -5.08(-9955) -3.14(-5497)
D3 99652 -6.35(-8086) -5.26(-5287) -4.68(-2370)
D4 147955 -7.06(-7126) -5.16(-1568) -4.14(-1266)
D5 687946 -8.95(-4049) -8.80(-3930) -6.40(-3684)

Table 10: Effect of physical synthesis on timing. Designs are proprietary benchmarks as no public infrastructure currently exists
for physical synthesis. In the context of sizing and buffering optimizations after placement, we report the worst slack and the sum
of negative slack along all critical paths, before and after sizing and buffering. We do not intend to show competitive results for
these benchmarks, but rather emphasize that physical synthesis significantly affects timing evaluation.

from [50, 49].

OLA is an Application Procedural Interface (API) that can be used by EDA tools for the determination of cell and inter-

connect characteristics of very deep submicron ICs. OLA is an extension to the Standard for Delay and Power Calculation

System, the IEEE 1481-1999 standard. Target applications include timing-driven placement and routing, and OLA attempts

to eliminate inconsistent timing data between different EDA tools by using the library vendor’s ”golden” delay calculator in

all OLA compliant tools.

The OpenAccess API is a C++ program interface to IC design data. The associated reference database is a technology

donation from Cadence Design Systems, who is also a member of the OpenAccess Coalition. The API and the reference

implementation provide a high performance, high capacity electronic design database with architecture designed for inte-

gration and fast application development. Access to the reference database source code is provided to allow companies

and academic institutions to contribute to future database enhancements and add proprietary extensions. Cadence Design

Systems is planning to migrate all of its tools to the OpenAccess database by the end of 2003. Bridges to proprietary design

databases used at Synopsys and IBM are currently under development by those companies and third-party vendors.

6 Conclusions

To seriously address the huge sub-optimality of existing placement tools [31, 25, 18], one needs to ascertain improvements

on industrial circuits. However, published empirical data show that even when two research groups use the same source data,

there are often differences of interpretation, resulting in incompatible numbers and no useful conclusions made from the

data. For example, timing-driven placement benchmarks posted in Verilog [22] prevent reliable comparisons to published

numbers, e.g., in [63]. To remedy such incomplete benchmarks, the Vertical Benchmarking project at CMU [55] offers

multiple representations of the same design. However their benchmarks still do not have sufficient timing data. On the

positive side, recent placement benchmarks better agree in terms of row spacing, pin positions, etc and researchers are more

conscientious about such design aspects [46].

New technology generations and prevailing design methodologies may influence various layout features, potentially

affecting comparisons between optimization algorithms. Thus, experimental protocols should reflect the nature of layouts

(e.g., routability is more important in fixed-die layout) and algorithms (e.g., the results of a randomized algorithm can be
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averaged). To this end, a number of lessons from placement benchmarking are summarized below:

1. Evaluation methods must be explicit to leave minimum room for misinterpretation. Simple open-source evaluation

tools should be used to verify the accuracy and correctness of any published result. For example, open-source plotters

of placement and congestion, as well as evaluators of wirelength and congestion are distributed with the Capo placer

in the GSRC Bookshelf [16]. Linux and Solaris binaries are posted in the Placement Utilities slot. Benchmarks should

be explicit too, and no preprocessing by user should be assumed. The same input files should be used for all tools

compared. When conversion cannot be avoided, standard publicly available converters should be used — we posted

such converters in the Placement Utilities slot of the GSRC Bookshelf.

2. Raw experimental results are very useful and should be posted on-line. This simplifies the verification of results, and

may lead to insights into what a tool did “right” or “wrong” on various problems. In the same vein, the version of

each tool should be reported (it’s easy!) or at least the time when each tool was downloaded and the source. This can

resolve potential confusion about outdated versions of public EDA tools.

3. Visualizations, especially on small benchmarks, help identifying and diagnosing problems. In the course of our work,

the performance of Capo, Feng Shui and mPL was improved through step-by-step analysis of placement process

on grid benchmarks. A bug in Dragon 2.20 fixed in Dragon 2.23 is illustrated in Figure 1. We recommend

placement results be sanity-checked by plotting (are all cells in the core area, do macros overlap?).

4. Regressions are common when bugs are fixed. Last-minute placer bugfixes sent to us by developers occasionally

produced worse results than prior versions. For example, mPL 1.2b placed the PEKO01 benchmark with wirelength

1.17e6 versus 1.09e6 achieved by mPL 1.2. We suspect that this deterministic implementation uses a randomized

algorithm with a fixed seed, making the results somewhat chaotic. One could expose randomization, as in Capo and

Dragon, to stabilize evaluation via averaging [10].

5. Open-source tools are very valuable as they enable interesting experiments via slight modifications. For example, ter-

minal propagation is not described adequately in placement literature, and the best way to learn successful approaches

to it is to look at open-source codes [16]. The same applies to many implementation details of high-performance

min-cut partitioning algorithms [12]. Open source also lowers barriers to entry and leads to more meaningful research

work. Instead of implementing new parsers and basic algorithms, researchers should focus on key aspects of EDA

tools. To accelerate this culture change, we suggest that conference program committees and reviewers favor submis-

sions accompanied by open-source implementations, or at least publicly available binaries. However, making this a

requirement seems too harsh.

6. Researchers should use (and be encouraged to use) open benchmarks whenever possible. This allows others to repli-

cate, confirm and study published results in detail, and may also facilitate the publication of negative results, which

still remains a challenge. Independent evaluation may also point out biases in experimental protocols, and can im-

prove the overall quality of research output in our field. However, it is likely that no open benchmarks are available

for experiments with emergent design aspects. To this end, results for proprietary netlists may still be useful, as their

publication suggests an opportunity for new public benchmarks.
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7. Despite the overall preference for real design benchmarks, artificial testcases with known optimal solutions [31, 18] are

becoming popular. Instead of known optimal solutions, bounds on optimal costs will do. Such benchmarks (BEKU)

are proposed in [23] for min-cut hypergraph partitioning.

As we focus on more difficult problems, the community must support open benchmarking and tool availability, otherwise

we cannot expect much progress.

Benchmarking For Routing Tools.

With variable-die channel-based standard-cell designs, comparing global routing tools was relatively easy. Channel

density can be computed directly, and channel routing tools can often achieve the lower-bound target. Feed-throughs are

inserted in cell rows; given the length of the longest row and the total channel density, we can obtain a very accurate estimate

of chip area after detail routing.

Fixed-die, multilayer over-the-cell global routing is more difficult to evaluate because detail routing is non-trivial and

must be de-coupled. Technology-specific constraints, e.g., antenna rules, make it impossible to predict successful routing

for dense designs [54].

Reasonable metrics for global routers were proposed in [53, 39]:

• Each edge of the global routing graph has a fixed maximum capacity; this is a hard physical constraint, and any routing

which exceeds this is infeasible.

• When routing demand is below capacity, successful detail routing is more likely. In [53], 70-80% was proposed as a

good objective. If a routing solution exceeds this level for a given edge, the edge is “over capacity”. Reducing the total

amount by which all edges exceed the target capacity is a reasonable goal.

• If capacity constraints are met, reduce the total wirelength.

A number of global routing benchmarks were made available in [16] by the authors of [39]. As the community moves

toward wider usage of benchmarks, these can be suggested as a reasonable next step. For detail routing, very little is

available for benchmarking. Only a few research groups are actively working on detail routing tools, and the problem

is made extremely complex due to differing design rules, numbers of routing layers, and performance objectives such as

crosstalk, delay, and even lithography related issues.

Delay, Power and Temperature.

Incompatible data published for the MCNC benchmarks fract and avqsmall suggest wide-ranging interpretations

and modeling of signal delay, rise and fall times, etc. Given a placement and routing solution, two researchers may come

up with “delay” or “power” numbers that are off by an order of magnitude. If the community is to actively pursue timing-,

power- and temperature-driven layout, common frameworks are required to evaluate these objectives. We hope that [49, 50]

may provide such frameworks. As for public benchmarks with enough information to evaluate signal delay, we are currently

negotiating with our colleagues in the industry and hope to post new benchmarks in the GSRC Bookshelf [16]. However,

detailed comparisons including delay will require much more effort and finesse than the comparisons presented in this paper.

Wider Benchmarking Context.
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When we consider layout problems identified in “research needs” documents from funding agencies, many areas appear

in need of benchmarks, even to reliably verify results of one’s research by experiment. We feel that aside from identifying

important problems the community must developed evaluation methods and agree upon them. To be specific, we mention

several sample areas where benchmarking could help. Mixed digital-analog design for SOC and 3-dim integration raise

new layout issues. The X-routing architecture with 45-degree wiring may affect basic placement and routing algorithms.

Multiple-voltage systems are now being developed to reduce power consumption without sacrificing performance. Public

benchmarks are lacking for such non-traditional designs despite their relevance to next-generation circuitry. Also physical

verification, reliability and yield issues are becoming more important every year.

In summary, we propose that the physical design community adopt standards for empirical evaluation and best practices

similar to those in the placement community. This could improve the quality of on-going work on circuit layout as well as

the interaction among researchers, practitioners and funding agencies.
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Appendix A: Available Benchmarks

Artificially-generated netlists may be useful for regression-testing and sanity-checking, but placement algorithms are typi-

cally validated and compared using netlists derived from real designs. Material in Section 2 explains why.

MCNC benchmarks date back to late 1980s; they are small and outdated [7]. The multitude of their interpretations makes

any reported numbers meaningless. Placement variants of MCNC benchmarks converted to the GSRC Bookshelf format are

still available in [16] and are sometimes referred to as GSRC-MCNC benchmarks. The GSRC-MCNC benchmarks have

fixed terminals.

In 1998 IBM released 18 netlists with 10K-220K modules as benchmarks for hypergraph partitioning [7]. Despite all

design information being sanitized, two out of twenty original netlists were not cleared for public release. However, the

remaining 18 benchmarks were soon adapted to placement.

IBM-Dragon [61, 62] benchmarks come with the Dragon placer discussed below and are referred to as IBM-Place by

their authors. Several suites of these benchmarks are available on-line. The first suite (v1) released in 2000 sizes cells based

on the node area in the IBM circuits, and removes all large cells. Because of that, the resulting netlists contain disconnected

fixed-terminals. The second suite (v2) maps cells to an Artisan library and adds enough routing information to run Cadence

WarpRoute on a given placement. IBM-Dragon v2 benchmarks have fixed terminals, but they are all placed at the location

(0,0) and are not connected to anything. These benchmarks come in separate versions (i) the bookshelf format, (ii) LEFDEF

for Dragon and (iii) LEFDEF for Capo. While the authors explain the difference between (ii) and (iii) by problems with

LEFDEF parsers, we suggest that it is better to run multiple placers on the same input files to avoid introducing hidden

discrepancies in results. A suite of timing-driven placement benchmarks recently posted by the authors of Dragon is not

related to their previous benchmarks, but rather derived from the ISPD 01 suite [22] discussed below. No timing constraints

are given (February 03), and other important information is missing.

IBM-Floorplacement [1] benchmarks are also derived from the IBM netlists, but include all original macros. They

are available in LEF/DEF and in the GSRC format. These benchmarks have connected fixed terminals corresponding to

the original partitioning netlists released by IBM. The fixed terminals are placed randomly on the edges of the core region.

Improved wirelengths have been reported recently [19]. Several known placers produce many cell overlaps on these bench-

marks and cannot fit all macros inside the layout areas. Therefore we recommend visualizing placements and checking for

overlaps before reporting wirelength.

PEKO [18] benchmarks reflect the net-degree distribution of the 18 IBM netlists, but are otherwise generated artificially,

with randomization, offering astronomically large irregular netlists to test the scalability of placers [31]. PEKO stands for

Placement Examples with Known Optimal wirelength. In particular, in optimal placements each net independently achieves

the smallest possible wirelength, making all wires local. The authors conclude that existing placers are 40-100% away from

optimal solutions. However, there is a lingering concern that PEKO benchmarks are not representative of industry circuits.

PEKO benchmarks have 15% whitespace and come in two suites. The PEKO benchmarks have no fixed terminals and all

the standard-cells are of the same size.

PEKU [23] benchmarks are Placement Examples with Known Upper bounds for optimal solutions. Unlike in PEKO

benchmarks, not all nets are short in known good placements. In fact, all nets are long, which makes these netlists unre-
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altistc. However, a hybrid of PEKO and PEKU constructions allows one to achieve a prescribed percent of short nets. The

experiments in [23] suggest that the relative performance of known placers depends on that paramater.

Grids with four fixed vertices and n2 1x1 movables, such as the one in Figure 2, are used in our work to test the behavior

of placers on datapath-like circuits, on which many commercial layout tools perform poorly [25]. A simple induction

argument shows that there is only one optimal placement for each such “netlist,” where each of 2n2
−2n+4 nets has length

1 (cf. PEKO benchmarks). More importantly, sub-optimalities can be visualized to drive debugging efforts. The benchmarks

are on-line at [16].

Vertical benchmarks [55] created at CMU attempt to remedy the lack of design information in public circuit bench-

marks. They provide multiple representations of real circuits at different stages of design process, including have non-trivial

layout features, such as fixed macros. However, most of those circuits have under 50K cells. As of February 2003, details

are missing to evaluate signal delay and there are no definitions of timing constraints, clocks or acceptable transition times.

The netlists are mapped to a 0.35µm-library, thereby making interconnect effect negligible.

Non-benchmarks. The ISPD 01 suite from [22] is available in a hierarchical (not flattened) gate-level Verilog format.

There are no timing constraints or gate libraries available. There are multiple top-level signals with prefix “CLK”, and it is

not clear how clock nets are represented. The authors suggest that a series of proprietary tools be applied to their benchmarks

before and after timing-driven placement. However, because of differences in tools (versions, options, cell libraries etc) such

pre-processing may lead to different numbers even if the same timing-driven placer is used.

Appendix B: Placers

We describe large-scale standard-cell placers available to multiple research groups; the order reflects when the tools were

developed and reported in publications. All placers we use except for KraftWerk directly support the GSRC Bookshelf

[16] placement format that is considerably simpler than LEF/DEF.5 Some of them also support subsets of Cadence LEF/DEF,

but input problems are common with industrial circuits.6

KraftWerk [28] is a force-directed placer. Yet, rather than moving one cell a time, it solves the Poisson equation (a

PDE from mathematical physics). This analytical algorithm often leaves cell overlaps and requires a separate follow-up

legalization step. However, overlaps are typically well distributed over the core area and can be removed by a simple built-in

legalization algorithm, perhaps at a cost of increased wirelength. This simple legalization may fail and the user is advised to

call the variable-die Domino [26] detail placer shipped with KraftWerk. Domino is based on network-flow algorithms.

Both tools target fixed-die layout and tend to distribute whitespace fairly uniformly. KraftWerk is deterministic.

Not having access to source codes of KraftWerk or Domino, we obtained Linux executables in November 20002

directly from the authors, who mentioned that so far KraftWerk has not improved wirelength minimization beyond the

original 1998 version. The binary for KraftWerk is called Plato.

Capo [13, 14] is a global fixed-die placer based on recursive min-cut bisection. It uses a built-in multi-level Fiduccia-

Mattheyses partitioner [11] written from scratch for this application. All source codes are available in [16]. Capo has a

5In our experiments, Feng Shui 1.2 misinterpreted row information in PEKO01 benchmarks. Newer versions fix that problem.
6Capo is now shipped with Cadence’s official LEF/DEF parser, and the users can switch to it from the default native parser.

24



built-in LEF/DEF interface and has been tuned on proprietary benchmarks from Cadence, with successful routing in mind

(using WarpRoute or any other tool). Capo uniformizes whitespace to generically improve routability, but may produce

unroutable placements for challenging circuits.

Most of the results we report are for Capo 8.6 which somewhat outperforms Capo 8.0 from 2000 [13] but may run

slower.7 A small number of overlaps is possible after Capo 8.0, therefore the authors of [13] run a commercial placer in a

fast ECO mode to fix overlaps before routing. Later versions have a fast greedy built-in overlap remover and a simple detail

placer based on optimal placement of small groups of cells [14]. Capo does not use Simulated Annealing at any point, but

it is randomized. The best of five independent runs is often significantly better than the average [10]. The executable used

for benchmarking was called MetaPlacerTest0.exe.

Dragon [61, 62, 63] performs recursive min-cut partitioning using hMetis libraries [37] and periodically improves

global wirelength using Simulated Annealing. In our experiments Dragon sometimes achieves better wirelength than

Capo, but may be an order or magnitude slower. In default mode, Dragon packs cells in rows left to right, which prac-

tically makes it a variable-die placer. In 2002, Dragon was extended with a congestion-driven mode [62] that distributes

whitespace unevenly to mitigate congestion at the price of larger wirelength. Dragon has been tested and tuned on IBM-

Place benchmarks in the same tool flow that was used to evaluate Capo 8.0 [13]. Figure 1 shows that congestion-driven

mode of Dragon increases wirelength compared to the normal mode. Dragon supports a subset of LEF/DEF. Since the

source code is not available, we downloaded Dragon 2.20 binaries in the Fall 2002. The latest version 2.23 is primarily a

bug-fix release. Most recently, timing-driven Dragon has been released [63].

FengShui 2.0 [65, 3] uses hMetis libraries [37] for recursive min-cut partitioning and attempts to further improve

wirelength by using a native multi-way partitioner. FengShui is a variable-die placer and always packs cells in rows to

the left. No data were published for Feng Shui describing routability with respect to major commercial routers. Feng

Shui 1.2 reported at [65] is available in source code, and Feng Shui 2.0 is available in executable form (May 2003).

We use version 2.0 unless indicated otherwise.

mPL 2.0 [24, 20] is a new multi-level placer that, at the top level, uses a fairly expensive analytical optimization [17]

that directly handles non-overlapping constraints. At lower levels mPL uses slot assignment and enumerates permutations

of small subsets of cells [30]. At the end, cells are packed to the left by sorting their locations (this is typical of a variable-

die placer). mPL 2.0 also integrates detail placement. Unlike in this paper, mPL wirelength is sometimes reported after

the external detailed placer Domino [26] is applied. We noticed that those versions of mPL are deterministic and always

produce the same placement if input is unchanged. mPL 1.2 and, later, mPL 1.2b, mPL 2.0 binaries for Sun/Solaris

were provided to us by the authors. We ran them on an 750MHz Sparc Ultra-III processor, whereas all other placers were

ran on a 2GHz Pentium4-Xeon running Linux.

7Capo can be ran in faster modes [13] via command-line parameters. However, we only report results for the default configuration.
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