
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 1

Hierarchical Whitespace Allocation in
Top-Down Placement

Andrew E. Caldwell, Member, IEEE,
Andrew B. Kahng, Senior Member, IEEE, and

Igor L. Markov, Member, IEEE

Abstract—Increased transistor density in modern commercial ICs
typically originates in new manufacturing and defect prevention technolo-
gies [15], [16]. Additionally, better utilization of such low-level transistor
density may result from improved software that makes fewer assumptions
about physical layout in order to reliably automate the design process.
In particular, recent layouts tend to have large amounts of whitespace,
which is not handled properly by older tools. We observe that a major
computational difficulty arises in partitioning-driven top-down placement
when regions of a chip lack whitespace. This tightens balance constraints
for min-cut partitioning and hampers move-based local-search heuristics
such as Fiduccia–Mattheyses. However, the local lack of whitespace is often
caused by very unbalanced distribution of whitespace during previous
partitioning, and this concern is emphasized in chips with large overall
whitespace.

This paper focuses on accurate computation of tolerances to ensure
smooth operation of common move-based iterative partitioners, while
avoiding cell overlaps. We propose a mathematical model of hierarchical
whitespace allocation in placement, which results in a simple computation
of partitioning tolerance purely from relative whitespace in the block and
the number of rows in the block. Partitioning tolerance slowly increases as
the placer descends to lower levels, and relative whitespace in all blocks
is limited from below (unless partitioners return “illegal” solutions), thus
preventing cell overlaps. This facilitates good use of whitespace when it is
scarce and prevents very dense regions when large amounts of whitespace
are available.

Our approach improves the use of the available whitespace during global
placement, thus leading to smaller whitespace requirements. Existing tech-
niques, particularly those based on simulated annealing [21], [10], can be
applied after global placement to bias whitespace with respect to particular
concerns, such as routing congestion, heat dissipation, crosstalk noise and
DSM yield improvement.

Index Terms—Algorithms, design automation, integrated circuit layout.

I. INTRODUCTION

T THE progression of Moore’s law [18], [15] for commercial ICs
has been so far maintained by steady increases in device densi-

ties as a result of innovations in manufacturing and defect prevention
technologies [16]. At the same time, device density for a given process
generation is also limited by the capabilities of EDA software and the
assumptions made by software developers.

Historically, utilization rates increased (i.e., whitespace decreased)
steadily with the introduction of three-layer, four-layer, and even
five-layer metal technologies. In contrast with the preceding two-layer

Manuscript received July 15, 2002; revised January 13, 2003.
A. E. Caldwell was with the University of California, Los Angeles, CA 90095

USA. He is now with Everychip Inc., Mountain View, CA 94041 USA (e-mail:
andy@everychip.com).

A. B. Kahng was with the University of California, Los Angeles, CA 90095
USA. He is now with the Departments of Computer Science and Engineering
and Electrical and Computer Engineering, University of California, San Diego,
La Jolla, CA 92093-0114 USA (e-mail: abk@ucsd.edu).

I. L. Markov was with the University of California, Los Angeles, CA
90095 USA. He is now with the Department of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: imarkov@umich.edu).

Digital Object Identifier 10.1109/TCAD.2003.818375

metal regime, three or more layers of metal brought the following
changes: 1) the need for routing channels disappeared; 2) double-back
(shared power and ground rail) standard-cell styles removed all
whitespace between cell rows; and 3) built-in cell library porosity
became the proxy for previous techniques such as explicit feedthrough
insertion. By the late 1990s, standard-cell place-and-route (P&R)
blocks exhibited a clear trend of decreasing whitespace, and instances
with single-digit percentages of whitespace were not uncommon. On
the other hand, as CMOS technology moved below quarter-micrometer
feature sizes, utilization rates started to decrease (i.e., whitespace has
increased) in 180- and 130-nm designs. One obvious reason for the
increase in whitespace is the increasingly interconnect-limited nature
of designs.

Interconnect limits arise due to pad-limited designs, and also due
to conflicting goals (power and clock distribution, reliability, signal
density, etc.) for the UDSM interconnect architecture. (For example,
there is little point in pushing transistor density to its limits if the re-
sulting cell library has inadequate porosity, or if power/ground distri-
bution then uses up too much of the local routing resources.) Another
reason for increased whitespace stems from the growing number of
macro blocks in system-on-a-chip (SoC) designs which, even when
floorplanned well, leave large layout areas in which to place the re-
maining standard-cell logic (e.g., “block limited” designs). However,
increased whitespace is also a consequence of limitations in P&R tools.
Guardbanding for these limitations—in particular, the ability to deal
with routing congestion—in order to minimize the number of passes
through the back-end tool flow is a major contributor to whitespace at
the 180- and 130-nm nodes. Recent anecdotal evidence indicates that
whitespace today varies considerably (from 20+% to around 70+%)
with methodology and allowed design time.

Global top-down partitioning-based placers can be sensitive to the
amount of whitespace, which contributes to tool limitations. As thepar-
titioning tolerancedecreases in the partitioning instance, the results of
modern hypergraph partitioners (cutsize and the ability to find a solu-
tion that meets balance constraints) deteriorate significantly [8]. Par-
titioning solutions that violate prescribed tolerance often lead to cell
overlaps when future subproblems run out of whitespace. Since nonuni-
form cell sizes generally worsen partitioner performance, modern cell
libraries that have widely varying cell sizes exacerbate the difficulties
of move-based partitioners. The role of partitioners in limiting the re-
duction of whitespace is the focus of our present research.

The essential components of a typical placement problem are the
placement region, possibly with discrete allowed locations, thecellsto
be placed subject to various constraints, and thenetlist topologythat
shapes the minimized objective function. Academic and commercial
standard-cell placers often apply a top-down, divide-and-conquer ap-
proach to define an initialglobal placement. The top-down approach
[20], [13], [2] decomposes the given placement problem into smaller
problems by subdividing the placement region, assigning cells to sub-
regions, reformulating constraints, and cutting the netlist—such that
good solutions to subproblems combine into good solutions of the orig-
inal problem. The concept ofplacement blocksis pivotal. A block rep-
resents: 1) a placement region with allowed locations; 2) a collection
of cells to be placed in this region; 3) all nets incident to the cells; and
4) locations of all cells beyond the given region that are adjacent to the
cells to be placed in the region; such external cells are considered to be
terminals for the block, and their locations are fixed. A high-level pseu-
docode for top-down global placement in terms of placement blocks is
shown in Fig. 1; sufficiently small partitioning instances are processed
asend-casesby specialized partitioners or placers.

0278-0070/03$17.00 © 2003 IEEE

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 1. High-level outline of the top-down partitioning-based placement process.

Every block yields a hypergraph partitioning instance: nodes
correspond to cells inside the block as well as propagated external
terminals [7], and hyperedges are induced over the node set from the
original netlist. In practice blocks are split through balanced min-cut
hypergraph bisection with FM-type move-based heuristics [12], [9];
the performance of such heuristics on larger instances is improved
through the multilevel paradigm [3], [11]. Global placement solutions
place all cells near legal sites in cell rows with minimal overlaps.
Detailed placement refinement then makes small perturbations to the
placement to legalize (remove overlaps) or improve routability. The
more overlapping cells and unroutable hotspots the detailed placer
must address, the larger the risk of solution quality degradation. As
more constraints or optimization objectives are added, e.g., timing,
density, orIR drop, legalizing an overlapping or unroutable global
placement while preserving solution quality becomes increasingly
difficult. In many cases, the problem may not be fixable at the
detailed placement stage. To this end, it is reasonable to aim for
nonoverlapping, routable global placements. One common technique
for managing both legality and routability during placement is
controlling the distribution of whitespace—inserting more whitespace
in congested areas. In this work, we focus on mathematical methods
of whitespace management during top-down placement with the goal
of producing nonoverlapping, routable global placements.

Hypergraph bisection instances arising in the top-down placement
process in some cases have tightbalance constraints[8], i.e., the sizes
of partitions in the solution should not deviate fromtarget partition
sizes by more than prescribed amounts.1 Such constraints may arise
in several circumstances. In leading-edge microprocessors, the pro-
portion of deliberately introduced free sites, i.e., whitespace, is lim-
ited.2 In other designs, whitespace may be distributed unevenly, and
thus some regions may be quite dense. To avoid overcapacity blocks
in such regions, total cell area assigned to a block must closely match
the area available for cells. Indeed, illegal solutions or excessively re-
laxed balance tolerances lead to uneven area utilization (i.e., proportion
of whitespace in a given subblock) and, eventually, overlapping cells.
Even when a legal solution is obtained by the partitioner, as the parti-
tioner exploits its available tolerance one child of the partitioned block
can have relatively less whitespace than its parent, so that partitioning
constraints become tighter on lower levels of top-down placement,even
if average whitespace is large. Such deviations in available whitespace
cannot be easily corrected, essentially because cuts parallel to rows
cannot be adjusted after partitioning. On the other hand, attempting to

1See [1] for a review of netlist partitioning formulations and constraints.
2Deliberate introduction of whitespace may be related to pin-limited designs,

limits of power distribution/dissipation density, and the need to maintain au-
toroutability. While these phenomena are increasingly addressed by packaging
and process technology, better architecture and circuit design techniques, mul-
tilayer interconnect processes, and cell library design, block-limited designs are
becoming increasingly common. This accounts for the large range of whitespace
currently seen in SoC designs.

maintain available whitespace by imposing unnecessarily tight balance
constraints will hurt solution quality and lead to increased wirelength
in the layout.3

In this paper we develop a mathematical model to find better toler-
ances: not too big, to generally avoid overcapacity or unroutable blocks,
and not too small, to facilitate common move-based partitioners.The
primary contribution of this paper is a new whitespace management
framework for global placement whose utility is supported by exper-
imental evidence. The framework can include consideration of layout
density issues, such as routability and IR-drop, during the top-down
placement process.

Whitespace allocation can be further improved using recent an-
nealer-based algorithms for detailed placement that address routing
congestion [21], [10], heat dissipation, crosstalk noise, DSM yield
improvement, etc. Modifications to global placement have been
proposed targeting wirelength [4] and congestion [17]. We believe
that our mostly mathematical contribution, being an easy addition to
top-down partitioning-based placers, provides a common denominator
for such work.

The remaining text is organized as follows. Basic notation is intro-
duced in Section II and straightforward facts about whitespace are men-
tioned. In Section III, we control splitting of single blocks by maxi-
mizing partitioning tolerance for givenwhitespace deterioration. This
process is described mathematically. Most surprisingly,relative white-
spaceand relative tolerancesare connected independently of white-
space deterioration, site and cell areas. This leads to a simple compu-
tation of bipartitioner parameters in terms of relative whitespace in the
block and the number of rows in the block. Experimental validation is
presented in Section IV. Section V concludes with directions for on-
going work.

II. WHITESPACEFUNDAMENTALS

Let the block havesite areaS, cell areaC (typically withC � S),
absolute whitespaceW = maxfS � C; 0g, andrelative whitespace

3The work of [8] in particular showed that iterative move-based partitioners
perform poorly with small tolerance. The authors of [8] proposed the technique
of intermediate relaxationsto trade CPU time for solution quality in such cir-
cumstances. Their work is orthogonal to ours: we address the question of how to
best control the allocation of whitespace (via bounds on partition sizes) during
the top-down partitioning process.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 3

Fig. 2. Basic variables for a block and two child blocks: site areaS, cell area
C, and whitespaceW = S � C.

w = W=S.4 A geometric bipartitioning of the block entailssite areas
S0 andS1 in child blocks, such thatS0 + S1 = S; S0 � S, and
S1 � S. Any hypergraph bipartitioning solution impliescell areasC0

andC1 in child blocks, such thatC0 + C1 = C; 0 � C0; 0 � C1 (if
in the original blockC � S, we will also requireC0 � S0; C1 � S1).
The input to a hypergraph bipartitioner must specify both the netlist
and the allowed ranges forC0 andC1, i.e., boundsCmin

0 � C0 �
Cmax

0 ; Cmin

1 � C1 � Cmax

1 (with Cmax

0 + Cmax

1 > C possible).
These bounds establishabsoluteTj = Cmax

j � Cmin

j and relative
�j = Tj=C partitioning tolerances forj = 0; 1 (�0 = �1 not required,
but often holds).Absoluteand relative whitespace in child blocks are
defined byWj = Sj � Cj andwj = (Wj=Sj) (see Fig. 2).

In order to expressw in terms ofw0 andw1, writew = (S�C=S) =
(S0�C0=S)+(S1�C1=S) = (S0=S)(W0=S0)+(S1=S)(W1=S1),
hence

w =
S0
S
w0 +

S1
S
w1: (1)

Since(S1=S) = 1�(S0=S), relative whitespace in a block is a convex
combination of relative whitespace in child blocks. Subsequently rel-
ative whitespace in a block is never smaller than that in every child
block. If one child block has more relative whitespace than its parent,
then the other child block has less. If we wish to limit relative white-
space in blocks from below, it suffices to consider end-case blocks only.
In the special case when child blocks have equal site area, (1) contains
an arithmetic average. In practiceS0=S can be small, e.g., 1/3 when
a three-row block is bipartitioned horizontally, and even smaller than
1=3 when some sites in the one-row child block are obstructed by spe-
cial wiring.

Given a collection of nonoverlapping placement blocks that cover
the layout, e.g., in the course of top-down placement, one can recur-
sively apply (1) to show that theaverage relative whitespacefor the
design (i.e., relative whitespace for the top-level block) is a convex
combination of relative whitespace in individual blocks.

Overcapacity cell area(or overfill) in a block is defined by� =
maxf0; C�Sg, relative overfill—by � = �=S. Given a collection of
nonoverlapping blocks that cover the layout, thetotal overfill �0 for
the design is the sum of overfill in all blocks;average relative overfill
�0 for the design is computed by dividing�0 by the site area in all
blocks. Similar to average relative whitespace, average relative overfill
is a convex combination of relative overfills in individual blocks.

For a given block, the relative whitespace and relative overfill cannot
be simultaneously bigger than zero, and ensuring nonzero whitespace
in all blocks precludes overfill. Assuming nonzero relative whitespace
(at the top level), we will require that for each block split the relative
whitespace in each child block is at least�w, wherew is the relative
whitespace in the block and0 � � � 1 is whitespace deterioration,
i.e.

w0 � �w and w1 � �w: (2)

For practical purposes,� = 1 and may be overly restrictive, as it en-
tails partitioning with zero tolerance in the proportion of site area, while

4We will sometimes refer toW aswhitespace.

� = 0 may be too loose, as it allows for child blocks with no white-
space. As� approaches one, the distribution of whitespace in the final
placement approaches uniform. An� of zero allows for fully utilized
regions of the layout. This can improve wirelength and timing, but may
also result in routability problems. It is desirable, then, to adjust� on
a per-block basis to account for maximum allowed layout densities in
leaf-level blocks. For example, in areas of high predicted routing den-
sity,� should be high, whereas in sparser areas it can safely be set to a
low value�, allowing for denser placement but still ensuring a nonover-
lapping result.

The following is the key observation for hierarchical whitespace al-
location in top-down placement.

Theorem: Assuming nonzero average relative whitespacew0 in the
design, the result of top-down placement will have zero total overfill if
every block split is performed with whitespace deterioration�i > 0,
possibly different for every block.

Proof: Relative whitespace in every end-case block will then be
at least�0 . . .�nw0 > 0.

In partitioning-driven top-down placement, whitespace deteriora-
tion is controlled with balance tolerance that constraints partitioning
solutions.

Corollary: Top-down placement results in a zero-overfill placement
if balance tolerances correspond to strictly positive whitespace deteri-
oration and all partitioning solutions are legal.

Excessively tight (i.e., to close to one) whitespace deterioration may
allow no legal solutions, e.g., for purely number partitioning reasons if
it entails tolerance below the size of one site.5 Small tolerance can also
imply poorer partitioning quality because it restricts the solution space
and may incapacitate move-based partitioners by disallowing moves of
large cells (when their sizes are bigger than tolerance).

On the other hand, [5] empirically shows that higher partitioning tol-
erances result in small placement wirelength. Therefore, it is important
to keep whitespace high enough to prevent overcapacity blocks and, at
the same time, keep partitioning tolerances high to ensure small cuts
and, thus, wirelength.

III. W HITESPACEALLOCATION

In this section, we will control block splits by maximizing parti-
tioning tolerance for given whitespace deterioration; this results in a
number of useful properties: (6), (7), and (8). Most surprisingly, rela-
tive whitespace and relative tolerances are recursively connected (12)
independent of whitespace deterioration. This allows to compute op-
timal relative tolerance given the initial and final relative whitespace.
The latter can be computed solely from the initial relative whitespace
(10).

We show how to determineCmin

j andCmax

j for a block only from its
relative whitespace and the number of rows covered (16). Our formulas,
derived to account for the worst case possible, can be transparently
adjusted for optimism, which may be useful in designs with abundant
whitespace.

A. Splitting a Block

We computeCmax

j andCmin

j for child blocks of a particular block
assuming given�. The resulting tolerances for both partitions appear
equal; thus, the relative tolerance� is determined by�. It is some-
what surprising that�; w, and� are connected independently ofSj or
Cj and any two of them imply a particular value for the third, which
can be computed by a simple formula. These relations facilitate further
modeling of recursive block splits in the next subsection.

5Cell sizes are typically small integer multiples of site size.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Rewrite (2) as

�
S � C

S
� Sj � Cj

Sj

) CjS � (1� �)SjS + �SjC

) Cj � (1� �)Sj + �
Sj

S
C

adding the original bounds forCj , we get

0 � Cj � min C; Sj ; (1� �)Sj + �
C

S
Sj :

Since0 � � � 1 and0 � C � S, we have

(1� �)Sj + �
C

S
Sj � (1� �)Sj + �Sj � Sj :

The above is now simplified6

0 � C0 � min C; (1� �)S0 + �
C

S
S0 =: Cmax

0 (3)

0 � C1 � min C; (1� �)S1 + �
C

S
S1 =: Cmax

1 : (4)

The remaining constraintC0 + C1 = C is now equivalent to

C0 � maxf0; C � Cmax
0 g =: Cmin

0 ;

C1 � maxf0; C � Cmax
1 g =: Cmin

1 : (5)

WhenC is very small compared toS (i.e., the block has a lot of white-
space) and� sufficiently small,Cmax

j , andCmin
j may degenerate into

C and zero, respectively. In such cases, all cells are allowed to go into
one partition and no further analysis is required until a child block ap-
pears with small enough white space to produce nontrivial partitioning
tolerance.

In the following analysis, we assume that all cells can never go into
one partition (worst case); therefore,7 Cmax

j = (1��)Sj+�(Sj=S)C
andCmin

j = C � Cmax
1�j . Now Tj = Cmax

j � Cmin
j = Cmax

0 +
Cmax
1 � C = (1� �)(S � C), i.e., absolute tolerances for partitions

are equal. Furthermore,� = T=C = (1� �)(S=C � 1) from which
straightforward calculations lead to

� =
(1� �)w

1� w
(6)

� = (� + 1)� �

w
(7)

w =
�

� + 1� �
: (8)

B. Hierarchical Whitespace Allocation

It has been shown above that, for a given block, feasible ranges for
partition capacities are uniquely determined by�. This section dis-
cusses methods of determining values of�. The methods presented
do not account for routability, as this will depend heavily on the ca-
pabilities of the specific router to be used. The framework presented
can be, however, simply extended to utilize congestion estimation by
increasing or decreasing the target whitespace of the leaf-level blocks
or the optimism applied to�. Further, we assume layout cut lines are
shifted to matchw0 andw1 as closely as possible tow in an attempt
to recover the whitespace degradation. This allows future partitioning
steps the benefits of high tolerance, but may be inappropriate for low-

6Here we also defineC andC , whileC , andC are defined
in (5).

7Our analyses hold for blocks allowing all cells in one partition; however, the
proposed values ofC on lower levels are not the best possible. In a way, we
assume the pessimistic case.

utilization designs, as it attempts to distribute whitespace uniformly,
resulting in an overly spread placement.

We start with the top-level block havingw0 whitespace and go on to
further blocks with whitespace

wi+1 = �iwi: (9)

We distinguish between blocks being split by cut lines parallel to rows
and those perpendicular to rows. This is because perpendicular cut lines
can be adjusted after partitioning to achieve nearly any desired distribu-
tion of whitespace among child blocks, which has the effect of� � 1.
In other words, we only have to consider row-parallel cut lines. LetR
be the number of rows; the expected numbern of recursively applied
parallel block splitswill be n = dlog2Re, assuming that rows are dis-
tributed evenly between child blocks at every block split.

To prevent overcapacity blocks and improve routability, assume also
that whitespace in every block below the current block must be at least
�w(� w0). We find �w, observing that end-case blocks have� = 0,
since they are not partitioned further. Thus, from (8) we get

�w = wn =
��

�� + 1
: (10)

Note that�w can be determined individually for each block being parti-
tioned, and provides a method of accounting for routability and similar
density-related issues. A straightforward way to determine�i is to as-
sume that they are all equal. This leads to8

� =
�w

w0

=
��

w0(�� + 1)
: (11)

However, assuming all�i equal appears more practical, since balanced
partitioners typically require a certain relative tolerance to be suc-
cessful regardless of whitespace deterioration. In a different, improved
approach, we combine (7) and (9) to get rid of�

wi+1 = (�i + 1)wi � �i: (12)

Now, assuming that all�i equal yieldswn = (� + 1)nw0 � � (� +
1)n�1 � � � � � � = (� + 1)nw0 � � ((� + 1)n � 1)=((� + 1)� 1),
resulting in

�w = wn = (� + 1)nw0 � (� + 1)n + 1

and

(� + 1)n =
1� �w

1� w0

: (13)

Therefore, we can replace the straightforward (11) with

� =
1� �w

1� w0

� 1 (14)

and combine (13) and (10) with�n = � to find a closed expression for
�

� =
1p
1� w0

� 1: (15)

Finally, (15), and (7) give a closed expression for whitespace deterio-
ration� in terms of relative whitespacew in the current block and the
numberR of rows in the block

� =

p
1� w � (1� w)

w
p
1� w

; n = dlog2 Re: (16)

8Due to essentially uncontrollable distribution of whitespace in child blocks
and to compensate for small whitespace fluctuations after perpendicular block
splits,� can be recomputed for every block, given the actual amount of white-
space in the block.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 5

ValuesCmax

j andCmin

j (j = 0; 1) supplied to partitioner can be di-
rectly computed by (3), (4), and (5).

This computation ofCmax

j andCmin

j can be performed for every
block using the exact amount of whitespace available after parti-
tioning.9 While resulting tolerances are likely to increase toward lower
levels, they will preserve original lower bounds for relative whitespace
in every block10 and thus prevent overcapacity blocks. Compared
to the pessimistica priori tolerances, such increased tolerances can
result in cut improvements during hypergraph partitioning and cause
smaller total placement wirelength.

C. Splitting Overcapacity Blocks

While our approach guarantees no overcapacity blocks and no cell
overlaps under certain conditions, these conditions may not always
hold. In particular, a partitioner may return illegal solutions when there
are cells larger than partitioning tolerance or, more generally, when bal-
anced solutions do not exist for number partitioning reasons. This typ-
ically happens when partitioning small blocks with tight tolerances,
where each cell accounts for a considerable percent of the block’s total
cell area.

When splitting such blocks, we will minimize the maximal relative
overfill in child blocks, which is equivalent to equal relative overfill
according to Section II.11 Hence, the desired partition capacitiesC1

andC2 need to satisfy�0 = (C0 � S0=S0) = (C1 � S1=S1) = �1

andC0 + C1 = C; they can be computed via

C0 =
S0
S

C; C1 =
S1
S

C: (17)

These considerations do not allow for nonzero partitioning tolerance,
since even the slightest imbalance in the resulting partitioning solution
would lead to an increase in relative overfill. However, there are cur-
rently no practical algorithms available for zero-tolerance partitioning.
Therefore, it is necessary to artificially introduce partitioning tolerance.
Appropriate values should be chosen corresponding to the cell area dis-
tribution and the capabilities of the partitioning algorithm used, e.g., we
used the smaller of 2% and the overall whitespace in the design. Equa-
tion (17) is used for computing target partitioning capacities.

IV. EXPERIMENTAL VALIDATION

In this section we present a comparison of our proposed method with
a simpler alternative whitespace allocation strategy for horizontal cuts.
In this simpler method, the target partition balances are proportional to
site areas in the resulting partitions and horizontal cut tolerances are
constant.

A. Top-Down Placement Testbench

We have implemented a full-fledged global placer that reads stan-
dard-cell row-based designs from Cadence Design Systems, Inc., in
library exchange format and design exchange format (LEF/DEF) and
produces cell placements with little or no overlap. Placement blocks
are split via min-cut partitioning, which is implemented as a variant of
multilevel Fiduccia–Mattheyses [9] for blocks with 200 cells or more
and (flat) Fiduccia–Mattheyses for smaller blocks. The placer chooses

9Compared to a possiblea priori computation for all blocks that only as-
sumes relative whitespace at the top level and the number of rows in the design,
but assumes thatevery block has the worst possible relative whitespace after
partitioning.

10In the assumption that all partitioning tolerances are satisfied.
11Since the relative overfill in the original block is a convex combination of

the relative overfills in child blocks, one of the child blocks having smaller over-
fill implies the other having a higher overfill.

TABLE I
STATISTICS FOR THE TESTCASESUSED IN

OUR EXPERIMENTS

vertical or horizontal block splits depending on the blocks’ aspect ratio
to always cut along the longest side of a block. When partitioning is per-
formed with vertical cut line, the current block is bisected by a straight
line and sites in the two resulting regions are counted to produce the site
area in each region. The target partition capacities (cell areas) are then
computed to be proportional to the site areas and add up to the cell area
in the block. Vertical partitioning is performed with 10% tolerance in
all our experiments. After partitioning, when the actual total cell area in
each partition is available, the vertical straight-line determining block
boundaries is optimally shifted to equalize relative whitespace in the
blocks.

We use two different methods to allocate whitespace for blocks split
by horizontal cut lines. In one set of experiments, we simply used the
same computations as for the vertical block splits with partitioning tol-
erance being 2%, except for the inability to adjust horizontal cut lines
after partitioning.12 The second method follows (16), (3), (4), and (5).
All overcapacity blocks are treated as explained in Section III-C.

We do not apply “legalization,” “cycling,” “overlapping” [14], or
any other techniques that would move cells between existing blocks
or change block boundaries other than during top-down block splits.
Without such postprocessing the effects of different approaches to
whitespace allocation come clear, and fair comparisons can be made.
Moreover, even with such pessimistic view of cell overlaps, our
top-down placements have very few cell overlaps. Our top-down
placer is implemented in theC++ language. Executables are compiled
with theSunPro CC4.2 compiler on Solaris2.6 and optimized with
�O5. We use Sun Ultra-10 300-MHz workstations with 256 Mb of
memory.

B. Results

We report experimental results for six industrial testcases, ranging
from 2.7 Kcells to more than 117 Kcells, with whitespace from 11%
to 30% (see Table I).13 Relative average overfill for final placements
is evaluated as explained in Section 2 and is given together with final
wirelength and CPU time in Table II.

Our experiments show the following.

• Our proposed method allows for maximal use of available white-
space, producing placements with typically 10% smaller wire-
length than the fixed 2% method.

• Increasing the fixed tolerance enough to achieve competitive
wirelengths produces placements with more overlap than our
proposed method.

• For every test case, our proposed method produces either lower
wirelength and the same amount of relative overlap, or no relative
overlap and lower wirelength, than the fixed 5% method.

12Which explains our choice of smaller tolerance.
13Whitespace is measured by dividing the site area available to cells by the

total cell area in the netlist. In this we accounted for sites put out of use by power
stripes and other obstacles, but such adjustments turn out to be very small.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

TABLE II
PLACER RUNTIME (CPU SECONDS ON A300-MHz SUN ULTRA-10), HALF-PERIMETER WIRELENGTH OF FINAL PLACEMENTS AND AVERAGE

RELATIVE OVERFILL R/O) IN PERCENT FOROUR PROPOSEDTOLERANCE COMPUTATION METHOD AND A STRAIGHTFORWARD METHOD

WITH FIXED TOLERANCE. ALL NUMBERS ARE AVERAGES OFFIVE RUNS

V. CONCLUSION AND FUTURE WORK

Our work addresses the global placement of modern ICs in which
whitespace can vary dramatically across the layout region.14 The pro-
posed methods allow handling very small amounts of whitespace and
can be used to appropriately distribute large amounts of whitespace
when it is available. Our framework can be extended to account for
target utilizations at particular areas of the layout region, allowing for
consideration of density-related effects such as routability andIR-drop.

We have derived simple formulas for optimal15 hierarchical
whitespace allocation in top-down partitioning-driven placement
of standard-cell row-based application-specified integrated circuit
designs. With a straightforward practical adjustment, partitioning
tolerance slowly increases as the placer descends to lower levels. We
limit relative whitespace in all blocks from below, and this constraint
prevents overcapacity blocks under the assumption that all partitioning
solutions are legal. We point out thatusing the proposed formula
requires almost no additional programming and incurs practically
no runtime penalty. The use of this formula also does not appear to
conflict with popular placement algorithms and design practices.

Experiments on industrial testcases with up to 114 K cells show
that our technique practically achieves cell overlaps on the order of
hundredths of a percent of the total areas and is superior to a com-
monly used straightforward technique, since it achieves better wire-
length under the assumption of comparable cell overlaps (which can
be provided by sufficiently small partitioning tolerance).

In real-world implementations, whitespace allocation can be
further improved using recent annealer-based algorithms for detailed
placement that address routing congestion [10], [21], heat dissipation,
or other concerns. Modifications to global placement have been
proposed targeting wirelength [4] and congestion [17]. We believe
that our mostly mathematical contribution, being an easy addition to
top-down partitioning-based placers, provides a common denominator
for such work without any noticeable costs. This can be contrasted
with nontrivial development required to implement algorithms based
on simulated annealing and their runtime costs [21].

REFERENCES

[1] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning:
A survey,” Integration, vol. 19, pp. 1–81, 1995.

14All implementations of this work are publicly available at http://vl-
sicad.cs.ucla.edu/software/PDtools/.

15In the worst case sense; also under the assumption of constant partitioning
tolerance and legal partitioning solutions on all levels.

[2] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov, and K. Yan, “Quadratic
placement revisited,” inProc. ACM/IEEE Design Automation Conf.,
1997, pp. 752–757.

[3] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel circuit parti-
tioning,” in ACM/IEEE Design Automation Conf., 1997, pp. 530–533.

[4] C. J. Alpert, G.-J. Nam, and P. G. Villarrubia, “The effect of free space
in global placement,” inProc. ICCAD 2002, pp. 746–751.

[5] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Relaxed partitioning
balance constraints in top-down placement,” inASIC’98, pp. 229–232.

[6] W. Deng, private communication.
[7] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of

standard cell VLSI circuits,”IEEE Trans. Computer-Aided Design, vol.
CAD-4, pp. 92–98, Jan. 1985.

[8] S. Dutt and H. Theny, “Partitioning around roadblocks: Tackling con-
straints with intermediate relaxations,” inProc. IEEE Int. Conf. Com-
puter-Aided Design, 1997, pp. 350–355.

[9] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for im-
proving network partitions,” inProc. ACM/IEEE Design Automation
Conf., 1982, pp. 175–181.

[10] B. Hu and M. Marek-Sadowska, “Congestion minimization during
placement without estimation,” inProc. ICCAD 2002, pp. 739–745.

[11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI design,” inProc. ACM/IEEE
Design Automation Conf., 1997, pp. 526–529.

[12] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,”Bell Syst. Tech. J., vol. 49, pp. 291–307, 1970.

[13] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, “GORDIAN: VLSI
placement by quadratic programming and slicing optimization,”IEEE
Trans. Computer-Aided Design, vol. 10, pp. 356–365, Mar. 1991.

[14] D. J. Huang and A. B. Kahng, “Partitioning-based standard cell global
placement with an exact objective,” inProc. ACM/IEEE Int. Symp. Phys-
ical Design, 1997, pp. 18–25.

[15] D. Jensen, C. Gross, and D. Mehta. (1998, Jan.) New in-
dustry document explores defect reduction technology chal-
lenges. Micro Magazine [Online]. Available: http://www.micro-
magazine.com/archive/98/01/jensen.html

[16] D. Jensen and W. Fosnight. (1998, Oct.) Defect prevention and elimi-
nation: Where the rubber hits the road(map). Micro Magazine[Online].
Available: http://www.micromagazine.com/archive/98/10/jensen.html

[17] A. Rohe and U. Brenner, “An effective congestion driven placement
framework,” inProc. ISPD 2002, pp. 6–11.

[18] “National Technology Roadmap for Semiconductors,” Semiconductor
Industry Association (SIA), San Jose, CA, 1997.

[19] H. D. Simon and S.-H. Teng, “How good is recursive bisection?,”SIAM
J. Sci. Comput., vol. 18, no. 5, pp. 1436–1445, 1997.

[20] R. S. Tsay and E. Kuh, “A unified approach to partitioning and place-
ment,” IEEE Trans. Circuits Syst., vol. 38, pp. 521–633, May 1991.

[21] X. Yang, B.-K. Choi, and M. Sarrafzadeh, “Routability-driven white-
space allocation for fixed-die standard cell placement,” inProc. ISPD
2002, pp. 42–48.

