Fast Equivalence-checking for Quantum Circuits

SHIGERU YAMASHITA IGOR L. MARKOV
Ritsumeikan University, 1-1-1 Noji Higashi University ofidhigan, 2260 Hayward St.
Kusatsu, Shiga 525-8577, Japan Ann Arbor, Michigan 48108,Al

ger@cs.ritsumei.ac.jp imarkov@eecs.umich.edu

March 9, 2010

Abstract— We perform formal verification of quantum circuits by in tegrating several
techniques specialized to particular classes of circuits. Our verifid@dn methodology is
based on the new notion of aeversible miter that allows one to leverage existing techniques
for simplification of quantum circuits. For reversible circuits which arise as runtime bottle-
necks of key quantum algorithms, we develop several verificatiorethniques and empiri-
cally compare them. We also combine existing quantum verification tde with the use of
SAT-solvers. Experiments with circuits for Shor's number-factaing algorithm, containing
thousands of gates, show improvements in efficiency by four orde of magnitude.

1 Introduction

Quantum circuits are considered among promising emergutigilogies beyond con-
ventional semiconductors [22], and significant progress made recently in prac-
tical implementations. In August 2009€Searchers at the [US] National Institute
of Standards and Technology ... demonstrated continuoastgm operations us-
ing a trapped-ion processbdif6] that maintained quantum bits in hyperfine states of
beryllium ions for up to 15 seconds at a time. An implementaticcount of NIST's
guantum processor [4] shows that the design of even twatgubuits relies on soft-
ware tools, similar in spirit to logic-synthesis and optation tools used today to
design digital logic circuits. Software tools for quantuimcuait design are the pri-
mary subject of our work. We note that a number of largely lateel technologies
for quantum circuits are currently pursued by researchérsaddition to ion traps,
several photonic realizations of Shor's number-factogtyprithm have been reported
since 2007 [7, 8], including a single-chip circuit [15]. hnotivates our focus on
technology-independent tools for quantum circuits, witiah be useful for many spe-
cific technologies and admit further adaptations.

Quantum circuits often operate on quantum states that icoetponentially large
superpositions, making quantum simulation, as well asitidesign and analysis on
conventional computers very challenging. To this end, areg software architecture
for quantum computing design tools was outlined in [18]. @wark focuses on one

such task — verifying the results of quantum circuit transfs, e.g., adaptations of
technology-independent quantum circuits to linear dewiahitectures, such as ion
traps [2,9]. Given a circuit that is known to be correct, oaeks to prove that a new
circuit optimized for a given physical technology is eqléva to the original circuit.

Past research in equivalence-checking for quantum ciralételoped computa-
tional techniques based on Binary Decision Diagrams (BDIB)20,21]. These tech-
niques can represent some exponentially large complaregalectors and matrices
using compact graphs. Quantum operations are then modgledaph algorithms
whose complexity scales with graph size rather than wittsthe of superpositions or
the amount of entanglement present. However, these digwiare much slower than
those for equivalence-checking of conventional digitgidcand do not scale to useful
instances of Shor’s algorithm.

An important observation is that a typical quantum algonitbonsists of hetero-
geneous modules [14] that favor different computationehmtéques for equivalence-
checking. This motivates the development of a new verificathethodology that in-
vokes the most appropriate technique for each module typassembles the results.
Our methodology relies on a new concept, introduced in Saad3alleda reversible
miter— a natural counterpart ahiter circuitsused in equivalence-checking of digital
electronic circuits. In conjunction with existing techaés for iterative circuit simplifi-
cation [5,10,16], reversible miters can drastically reslthe size and complexity of cir-
cuits under verification, especially when such circuitslseme structural resemblance
(e.g., when adapting textbook circuits to specific quantamputing architectures).

In Sec. 4 we develop an high-performance equivalence-ahgd&r quantum cir-
cuits. Our method isdaptivein the sense that it utilizes multiple techniques appro-
priate for different classes of quantum circuit modulesthiis context, we studye-
versible circuitswhich are a subset of quantum circuits that map conventi@iabit-
strings into other such bit-strings. In particular, theykst module in Shor's number-
factoring algorithm [17] —modular exponentiatior— is implemented as a reversible
circuit [11] (acting on entangled quantum states), excedidsther modules asymp-
totically in size, and thus requires most attention of CADI$o To verify such logic
modules, we adapt conventional state-of-the-art tectasiqi3, 23] in several ways,
and significantly scale up quantum equivalence checkingpifzal comparisons in
Sec. 4.1 confirm that properties of reversible circuits czabée much faster SAT-based
equivalence-checking. However, conventional technigaesot be applied to, e.g., the
Quantum Fourier Transform (QFTTherefore, we also study equivalence-checking of
circuits with non-conventional gates (we call these cispiioperly-quanturjy and the
integration of heterogeneous techniques.

Our contributions can be summarized as follows.

e Reversible mitergor equivalence-checking of quantum circuits, and thetie-in
gration with circuit simplification.

e The use of SAT-based equivalence checking and its integratith BDD-based
techniques.

e Adaptive equivalence-checking for quantum circuits thraégrates reversible
miters, circuit simplification, as well as SAT- and BDD-bdgechniques.

X1

X2

X3 /w N

) X;— i P

first gate T third gate '3 A RPN
second gate first gate second gate third gate

Figure 1: A reversible circuit and its irreversible reativa. Dashed boxes show
how reversible gates are represented by one-output gagdsrudigital logic.

cC W G, W
P A e

X1 H @
X2 @ H
M
Iw,) % Hadarmard Gate
wy /- B 0T cate
first gate ‘ third gate T \CNOT Gate

second gate Toffoli Gate

Figure 2: A properly-quantum circuit — one iteration of Geowlgorithm.
Circuit modules labeled’s, W, C, andWW are composed by concatenation.

2 Notation and Preliminaries

Recall that, when acting on conventional bits, gates NOTOTNind TOFFOLI can
be implemented using NOT, XOR and AND gates as shown in Figinthe quan-
tum case, they exchange basis states, which is why theifaesitontain only Os and
1s. As these gates obey the same algebraic rules in both, eesdsrm thencon-
ventional gatesIn comparison, the matrix of the Hadamard gate contajng2, and
its functionality cannot be expressed in Boolean logic. réfae we call such gates
properly-quantum. Each properly-quantum gate maps at least one 0-1 input combi
nation (basis state) to a quantum superposition of more tam basis state. Cir-
cuits that include properly-quantum gates are also caltedgrly-quantum. Properly
guantum circuits are necessary to generate entanglenefarmp quantum error cor-
rection and achieve computational speed-up over traditiigorithms. An example is
given in Fig. 2. As we show below, many reversible circuitthaut properly-quantum
gates can be verified relatively easily in practice usingatesdf-the-art equivalence-
checking tools for conventional logic circuits based ornveg instances of Boolean
SATisfiability. Modern SAT-solvers exploit structure in@jgation-derived instances,
and modern equivalence-checkers automatically identifyexploit similarities in the
circuits whose equivalence is checked.

Many quantum algorithms contain large, application-diesections dedicated to
the computation of Boolean functions. In order to embed entisnal computation
into the quantum domain, it must be made reversible, andlatdrprocedures exist for

such transformations [14]. The resulting circuits do neate entanglement, but can
be applied to superposition superposition states. Leumgabis quantum parallelism
in useful applications is difficult, but can be illustratgd®hor’s polynomial-time algo-
rithm for number-factoring [14, 17]. This algorithm is damted by a reversible mod-
ule that performs modular exponentiation [11] before theQum Fourier Transform
(QFT). We call such circuits without properly-quantum gaspecificallyreversible
circuits in this paper. A gate library used for reversible circuitsiisversaliff it can
express any (conventional) reversible transformationdighining multiple copies of
gates involved. The most common such gate library consistéQ¥, CNOT, and
Toffoli gates. Since the algebraic properties of the gatesversible circuits do not in-
volve guantum phenomena, we can calculate the logic fumetiealized at each point
in a circuit, as is normally done in conventional logic syadis and verification. For
example, we can calculate the function at wirgof the circuit shown in Fig. 1 after
the third gate ags = 23 ® 2120 B 1 P 1.

3 Reversible Miters

To check the equivalence of two combinatorial digital logicuits, C; andCs, one
checks if the conventionahiter circuit[13] shown in the left-hand side of Fig. 3 im-
plements the constant-0 function. In other words, every giadutputs are XOR’ed,
all XOR-outputs are OR’ed together, and the resulting G8AT instance is con-
verted to CNF-SAT using known techniques (a number of ogialireductions have
been proposed recently with large circuits in mind). Comiegral miters can be con-
structed for reversible circuits by treating them as AND/R&T circuits, except that
such miters will not be reversible. Therefore, we introdueeersible mitersvhich
can handle reversible and properly-quantum circuits éguall, and can benefit from
simplification of reversible circuits [5, 10, 16].

3.1 Properties of Quantum Circuits

In the following, the- symbol represents a concatenation of two circuits (or yates
illustrated in Fig. 2. Observe that for quantum or reveesitircuitsC; and Cs, the
concatenated circud; - C5 is of the same kind. Such circuits can also be structurally
reversed.

Observation 1 Given a quantum (or reversible) circuif = ¢; - g2 - - - - - g Where
g; is a gate, its copy where all gates are inverted and put in #heerse order, i.e.,

gt g, "+ g7 ', implements the inverse transformation to wasitmplements. We
therefore denote it by’ 1.

For example, for a circui” shown in the left-hand side of Fig. 1, the circGitC—!
is given in the right-hand side of Fig. 3. Note that NOT, CN@d Toffoli gates are
their own inverses (which explains their choice as libramjeg). The circuiC - C—!
is equivalent to arempty circuit This can be confirmed by iteratively cancelling out
pairs of mutually-inverse adjacent gates. Namely, in tgktrhand side of Fig. 3, the
third and the fourth gates can be removed at once. Then, toadand the fifth gates,

Xy
X
2l e
X a
n
X
c X3 DD
2
1
C, G

Figure 3: Miter circuits: conventional and reversible.

followed by the first and the last gates. This observationvatgs our new notion of
reversible miters

3.2 Reversible Miter Circuits

Definition 1 Given two quantum (or reversible) circuits; and C5, their reversible
miter is defined to be one of the following circuit§y - C, ™%, Cy ™! - Cy, Cy - C1 71,
Cy 7t .

In particular, for conventional miters one needs to cheelt the output functions
implement the constant 0 function, whereas for reversibtersione checks that each
output bit is equivalent to a corresponding input bit. Namél; and Cs are func-
tionally equivalent if and only if all of their reversible ters implement the identity
transformation. In particular, if one miter implements ttentity, then so do the re-
maining miters. IfC; = Cs, then straightforward circuit simplification [5, 10, 16]
cancels out all gates, resulting in an empty circuit. Sominefvariant miters enable
more cancellations than others, e.g.Cif and Cs differ only in their first segments,
C, - O ! exhibits many gate cancellations.

Reversible miters speed up equivalence-checking by dkmiosimilarities in cir-
cuits by two distinct mechanisms.

3.2.1 Local Simplification of Reversible Miters

When two conventional circuits end with identical gate seges, one cannot cancel
out these sequences because of observability don’t-agreduced by them. However,
reversible circuits do not experience don't-cares, andtidal suffixes always cancel
out. Note that a reversible mitét, - C; * places the last gate @f, next to the last gate
of Cy. If these two gates cancel out, the second-to-last gates@tpandC, become
adjacent, etc. Thus, no search is required to identify tgage cancellations, and they
can be performed one at a time. Even if the last two gates #exatit, it may be
possible to cancel out second-to-last gates, as long aagharid second-to-last gates
do not act on the same (qu)bit lines. These are special cdseaah more general
local simplificationsdiscussed in [5, 10, 16]. If; and C, are identical, an empty
circuit will result, but this outcome is also possible wheedl simplifications can prove
equivalence of two structurally different circuits. A systatic procedure for applying

a b b a .. a b b a
P R -
T N

Figure 4: Gate swap (complicated case).

e el -

U

Figure 5: Equivalent circuit templates.

simplifications was introduced in [5]. Local simplificat®in reversible circuits are
particularly easy to perform, are fast and do not consumeéwrmemory [10,16]. In our
experiments, even the simplest simplification rules camdtecally simplify reversible
miters. More sophisticated simplifications from [5, 10, p6dvide an additional boost.

We experimented with the following simplification procedurin a miter circuit,
consider one gate at a time, search for a matching inversetrano move them to-
gether to facilitate cancellation. Any two gates can be pedpf they do not act on the
same (qu)bit lines. Two adjacent NOT, CNOT or Toffoli gatas be swapped if the
control bit of one gate is not the target bit of the other gasar(e for properly-quantum
controlled¥/ gates). A more sophisticated swapping rule (for NOT, CN@®, Foffoli
gates) is illustrated in Fig. 4.

In our procedure, for the purposes of equivalence-checkimgtemporarily con-
sider the miter circuit to be “circular” by connecting itstputs to its inputs. Namely,
we allow moving the first gate to the end of the circuit, assiltated in Fig. 6. This
transformation does not change the equivalence of theeetitituit to the identity. In
other words, ifg; - g2 -~ gx—1- g = I (Identity), theng; - g1-go-- - gr—1-9k-91 =
gi - I-g1 = gy *-g1 = I. Therefore, to check equivalence betweenys - - --gr._1 - gx
and! is the same as to check equivalence betwgen - - - g5, - g1 andl.

A variety of circuit-equivalence templates can be used withabove simplifica-
tion procedure [10, 16, 19] to shrink the miter circuit. Suemplates are known for
both reversible and properly-quantum gates as shown irbFigor example, the trans-
formation illustrated in Fig. 6 enables further simplificatthrough the equivalence in
Fig. 5 on the right.

3.2.2 Simplification of Canonical Forms

Iterative circuit simplification is not guaranteed to reddg - C; ' to the empty circuit
in polynomial time when such a simplification is possiblending a short simplifi-
cation may be time-consuming. Yet, when constructing cexabriorms (ROBDDs
or QuiDDs) of reversible miters, a different kind of simgddition may occur. Sup-

Figure 6: Transforming a miter circuit after simplificatidbashed boxes outline circuit
modules, while horizontal dashed lines represent omittdsitsjand gates.

pose that”; andC5 end with functionally-equivalent but structurally digttrsuffixes
that do not admit local simplifications — an example is giveifili6]. In other words
Cy = A;-By andCy = Ay-By whereB; =~ By. ThenCy-Cy ' = Ay-By-By - Ay ~

Aq - A;l. As we traverse the mitet - C’gl, adding one gate at a time to the deci-
sion diagram (DD), the size of the intermediate DDs depemtisan the transforma-
tion implemented by the current circuit prefix, i.e., thedtions of the intermediate
wires. The intermediate DD fod; - B - B;l can be smaller than that fot; - B, if

A - B - B;l ~ A;. This phenomenon was observed in our experiments.

4 Equivalence-checking for Quantum Circuits

We now introduce equivalence-checking of quantum circoésed on several tech-
nigques appropriate for different classes of quantum discuthe first class contains
reversible circuits that arise as key modules in quanturorékgns.

4.1 Equivalence-checking for Reversible Circuits

To check the equivalence of two reversible circuif§, and C5, one can pursue two
strategies. The first strategy is to check that the conveatimiter implements the
constant 0 function. A conventional miter can also be aggiiereversible circuits as
explained below. The second strategy is to represent theftnamations performed by
C1 andCs in a canonical form which supports efficient equivalenceetting.

The latter strategy may use binary-decision diagrams (BP&sh as ROBDDs,
and QuIDDs [20] or QMDDs [12]. The former can be implementéithwither decision
diagrams or Boolean Satisfiability solvers by reducing @irSAT to CNF-SAT. In
particular, for conventional miters one needs to checktt@butput functions imple-
ment the constant O function. In addition to the basic SAT bDBbased approaches,
finding equivalent signals in two circuits is often very Hald13]. Such techniques
appear useful for reversible circuits as well, as shown ineaperiments.

4.1.1 Using existing computational engines

ROBDD. Calculate the output functions of miter circuits, using RliBas the primary
data structure. This technique cannot handle properlytguanircuits.

QuIDD. Build functional representations of given circuits andC5, and check if the

results are identical. In particular, QuIDDPro [20, 21]Idgimulti-terminal decision
diagrams called QuIDDs that can capture properly-quanioenits.

SAT. Given two reversible circuits, construct a CNF-SAT formiliat is satisfied only
by those input combinations for which the two circuits proeldifferent outputs. Then
use a contemporary SAT solver [24] to check satisfiabilitle construct a CNF for-
mula as follows. First we add a set of clauses for each gateeimiter circuit. The
clauses should be satisfied only with the variable assigtsribat are consistent with
the reversible gate. The readers familiar with SAT-basadvatence-checking can
think of a CNOT gate as an XOR gate with a bypass wire, and offfalifgate as an
XOR, AND and a bypass. More efficient clause generation ustithted below for a
Toffoli gate whose control bits are; andx,, and target bit isc3. Since the Toffoli
gate does not modify two of its inputs, there is no need foasap output variables.
We introduce only one new variablg for the target bit. Then logical consistency is
given by the conditiony; = (z1 - x2) @ 3 which can be expressed by the following
six clauses.

e Caser; =0o0rzy =0. Clauses(xz; + 73 +y1) - (1 + 23 +771) - (22 + T3 +
Y1) - (v2 + 23 +71)-

e Caser; = zy = 1. Clauses{(z1 + T2 + 3+ y1) - (T1 + T2 + T3 + J1)-

In the next step, we add a set of clauses that are satisfiedbgrilyose variable
combinations where some circuit output differs from theessive circuit input.

Here we can reuse some of thevariables introduced earlier. Let such a new
variable corresponding to theth primary output beg)o,. (If there is no target bit on
thei-th bit-line, we do not introduce a new variable for théh primary output, i.e., it
is obvious that the input and the output functions onittie bit-line are the same, and
thus we do not add the following clauses.) We introduce a remiablez; to express
the functional consistency of thidit-line. Namely, we consider that becomes 1 only
whenz; # yo,. For this condition, we add the following clauses.

e Casez; = 0. Clauses{(z; + x; + Yo,) - (zi + T + yo,)-
e Casez; = 1. Clauses{(z; + x; + yo,) - (Zi + T + Jo,)-

Finally we add(z; + 22 + - - - + z,,) wheren is the number of bit-lines of the circuits.
Sincez; = 1 mens that the input and the output functions on #tk bit-line are
different, the two circuits are different whém + 25+ - - - + z,,) is satisfied. Therefore,
the above construction generates a SAT formula that isfieatienly by those input
combinations for which the corresponding outputs of twauwils produce different
values. A CNF-SAT formula constructed for a miter grows éirtg with the size of the
miter. A key advantage of reversible miters is that they carsignificantly smaller,
due to gate cancellations and other circuit simplifications

*Recall that NP-completeness relates to worst-case compémdgtdoes not prevent fast solution of many
application-derived SAT instances. In industrial applmas, modern SAT solvers can often resolve CNF-
SAT instances with hundreds of thousands variables in akkieurs, although small hard instances are also
known.

Xy Xq

Xy X

X3 X3

Xy & ® Xy ® & &
X5 X5 T
X6 57 5% X5 B D

X7 X7

Xg Xg

X9 X9

X10 X10

(a) (b)

Figure 7: A ripple-carry adder circuit for = 4 (a), and its LNN version (b).

4.1.2 State-of-the-art Combinational Equivalence Checkig

SAT-based techniques can be dramatically improved threyglergies with random-
ized functional simulation and through identifying intexdiate equivalences. By hash-
ing the results of random simulation, one finds candidatévatgnt wires. Ifw; and
ws arenotequivalent, the counterexample returned by SAT is useditterthe results
of functional simulation and often distinguishes othernsiegly-equivalent pairs of
wires. Once intermediate wires, andws are proven equivalent, all downstream gates
are reconnected to;, andw, can be excluded from the SAT instance (along with some
of its upstream gates). If potentially equivalent wiressetected in a topological order
from the inputs, the impact of multiple circuit restruchgisteps accumulates, until all
output wire are proven equivalent or until an input comhborats found that disproves
the equivalence of outputs.

The state-of-the-art implementation of these technigoesd in the Berkeley ABC
system [23] (the “cec” command) features incremental S#Visg andfraiging — a
fast circuit-simplification technique based on hashind.[T® use ABC, we construct
a conventional (irreversible) circuit from a reversiblecait as shown in Fig. 1.

The impact of random-simulation techniques on SAT-baseidvalgnce-checking
can be illustrated by the example of multiplier circuits,igfhare known to confound
both BDD-based and SAT-based computations. The case ofadeui multipliers is
particularly difficult because it cannot be quickly conaddby finding (perhaps, by
luck) input combinations that disprove the equivalenceweieer, if the two given mul-
tipliers are structurally similar and include many equirglwires, then global equiv-
alence can be proven quickly through a series of lemmata.irf@mlpdata in Table 2
shows that on a 6-bit multiplier CEC (SAT-based combinala@quivalence-checking)
outperforms by far BDD-based and SAT-only methods.

Common benchmarks for reversible circuit synthesis carebiéed in milliseconds
by the above techniques. Therefore, we focus on scalabd&dblaf standard quantum

algorithms, whose optimization and equivalence-chechimgcritical to the success of
guantum computers being designed today. More concretelgaerformed experiments
with n-bit linear-nearest-neighbor (LNNJNOT gate circuits, a reversible ripple-carry
adder circuit proposed in [1jneshcircuits [2] and reversible multipliers. Given a
(qu)bit ordering, a linear-nearest-neighbor (LNN) CNOTegeircuit is a circuit which
realizes the functionality of a CNOT gate with target andtoarbits & bits apart, by
using only LNN gates (gates that operate only on adjacentsjulfAs an example of
the circuits in our study, we show a ripple-carry adder étrfar n = 4, and its LNN
version in Fig. 7. Studies of LNN architectures are impdrtaetause several promis-
ing implementations of quantum computation require the Ladhitecture (also called
the spin-chainarchitecture in the physics literature) and allow only adj# qubits to
interact directly. Thus, standard quantum circuits mustdegpted to such architectures
and modified to use only LNN gates. Specific transformatiorslaNN circuits have
been developed [2,9]. The overhead of the LNN architectuterims of the number
of gates is often limited by a small factor (3-5). Such phakgynthesis optimization
motivates the need for equivalence-checking against tiggnat, non-LNN versions.
Using important components of Shor’s algorithm [2, 14] —edd meshes and multi-
pliers — we build three types of equivalence-checking imsts.

Same.Two equivalent circuits.

Different 1. Add ten random Toffoli gates at the end.

Different 2. Add ten random Toffoli gates at the beginning.

Our empirical data for CNOT, adder and mesh circuits extibsisentially the same
trends. Hence we report results only for adders in Table IntiRwes are reported in
seconds on a Linux system with a 2.40GHz Ingl Xeon™ CPU with 1GB RAM.

We implementech-bit reversible multipliers usingn bit-lines, including2n bits
for two inputs,2n bits for the results, and ancillae. E.g., the line = 6 in the tables
deals with30-bit circuits. Then-bit adder circuit proposed in [1] us€s + 2 qubits.
Thus, the third column in Tables 1 and 2 shows the number otgjirbeach circuit.
The forth column shows the number of gates in each circuit.m<hods other than
“cec” timed out forn = 8, requiring more than 1,000s.

4.2 Checking Properly-Quantum Circuits

In this section we show that our proposed techniques canlégmdperly-quantum
gates, but remain compatible with fast special-case msthod

4.2.1 Utility of Reversible Miters

Earlier sections focused on equivalence-checking of séviercircuits which appear in
modules of quantum algorithms and require physical syigh@mstimizations [2] that
must be verified. However, other important modules in quardglgorithms, such as the
Quantum Fourier Transform (QFTare properly-quantum, and conventional circuits,
such asmodular exponentiatigncan be optimized for performance using properly-
guantum gates. Fortunately, the utility of miters relieg®ymbolic) cancellations of
gates, and equally applies to reversible and properly{guarcircuits, unlike previ-
ously known techniques for verifying conventional digitaicuits. Reduced properly-

10

Table 1: Adder verification performed by several techniques
Case | n | fqubits| tgates| SAT | QuiDD | BDD | cec
Same | 32 66 280 | 0.65 | 20.10 | 0.03 | 0.19
64 130 568 | 2.91 | 115.85| 0.11 | 0.23
128 | 258 1144 | 11.71| 771.20 | 0.52 | 0.31

Diff. 1 | 32 66 290 | 1.00 | 31.93 | 0.04 | 0.02
64 130 578 | 5.16 | 212.57 | 0.25 | 0.26
128 | 258 1154 | 15.25| > 1,000| 1.67 | 0.38
Diff. 2 | 32 66 290 | 1.09 | 40.40 | 0.09 | 0.02
64 130 578 | 10.98| 318.62 | 0.76 | 0.03
128 | 258 1154 | 22.72| >1,000| 9.88 | 0.03

Table 2: Multiplier verification performed by several te@ues.

n | fqubits | fgates| SAT | QuiDD | BDD | cec
Same | 4 20 166 1.86 50.45 | 0.09 | 0.00
6 30 411 | 392.74] > 1,000| 39.19| 0.01
Diff. 1 | 4 20 176 0.02 72.84 | 0.01 | 0.01
6 30 421 0.11 | >1,000| 0.03 | 0.02
Diff.2 | 4 20 176 0.02 95.94 | 0.01 | 0.02
6 30 421 0.17 | >1,000| 0.01 | 0.02

quantum miters can be verified using symbolic simulatiorhvg@ulDDPro [20] or
QMDD software [12]. Using reversible miters as pre-prooesan greatly decrease
overall runtime. We empirically compare the following tweethods.

With Local Simplification. Before invoking QuIDDPro, reduce the miter using local
simplification.

W/o Local Simplification. Apply QuIDDPro directly to the miter.

For properly-quantum circuit benchmarks, we used QFTrandular exponentia-
tion modules from circuits that implement Shor’s factorizatadgorithm on an LNN
architecture [2]. For each benchmark circuit wittinputs, we studied five cases (new
gates were added in the middle).

Same.Two identical copies of a benchmark circuit.
Different 1. A circuit and its copy with one gate added.
Different 2. A circuit and its copy with two gates added.
Different 3. A circuit and its copy with one gate deleted.
Different 4. A circuit and its copy with two gates deleted.

In Tables 3 to 6 we report runtimes in seconds for local sifiggliion of reversible
miters and subsequent QuIDDPro calls, subject 1@@)s time-out. In the “Same”
case, simplification alone proved equivalence. Howevethén“Diff. 2" case, many
gates remained after simplification and QulDD runtimes veettgstantial. In all cases,
local simplification improved overall runtimes.

For a more convincing example, we check equivalence betararmNN and non-

11

Table 3: Verifying QFT circuits without local simplificatio Compare to Table 4.

n Same Diff. 1 Diff. 2 Diff. 3 Diff. 4
simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuIDD
4 - 0.15 - 0.15 - 0.16 - 0.14 - 0.14
8 | - 1.75 - 1.80 - 1.97 - 1.74 - 1.83
16| - >1,000 | - >1,000 | - >1,000 | - >1,000 | - > 1,000
32 - >1,000 | - >1,000 | - >1,000 | - >1,000 | - > 1,000
64 | - >1,000 | - >1,000 | - >1,000 | - >1,000 | - > 1,000
Table 4: Verifying QFT circuits with local simplification.d@npare to Table 3.
n Same Diff. 1 Diff. 2 Diff. 3 Diff. 4
simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QulDD
4 0 - 0 0.03 0 0.05 0 0.04 0 0.05
8 0 - 0.01 | 0.03 0 0.17 0 0.04 0 0.26
16 | 0.05 - 0.07 | 0.05 0.08 0.26 0.06 | 0.04 | 0.07 | 0.05
32 | 0.73 - 111 | 0.04 1.13 9.17 099 | 004 | 1.22 | 0.08
64 | 17.29 - 24.32| 0.05 | 25.48 0.52 24.33 | 0.06 | 30.35 | 0.12
128 | 354.52 - 366.2| 0.04 | 497.21| >1,000| 522.57| 0.04 | 580.11| 0.39

Table 5: Verifying modular multiplication w/o local simfitation. Compare to Table 6.

n Same Diff. 1 Diff. 2 Diff. 3 Diff. 4
simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuIDD
4 - >1,000 | - >1,000 | - >1,000 | - >1,000 | - > 1,000
8| - >1,000 | - >1,000 | - >1,000 | - >1,000 | - > 1,000
Table 6: Verifying modular multiplication with local simifitation. Compare to Table 5
n Same Diff. 1 Diff. 2 Diff. 3 Diff. 4
simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuIDD | simp. + QuiDD
4 0.58 - 0.98 | 0.04 | 1.07 0.85 0.98 | 0.05 1.02 | 0.39
8 2.13 - 3.72 | 0.04 | 3.69 0.37 3.73 | 0.04 | 3.45 1.19
16 | 6.03 - 10.11 | 0.05 | 11.29 | >1,000| 11.16 | 0.05 | 11.26 | 5.73
32 | 16.33 - 27.65 | 0.04 | 27.49 3.68 27.21 | 0.05 | 27.83 | 0.04
64 | 36.28 - 58.32 | 0.02 | 59.27 0.56 60.91 | 0.05 | 60.13 | 1.33
128 | 74.77 - 119.71| 0.04 | 120.98| 1.88 | 120.83| 0.05 | 121.59| 52.55

12

LNN implementation (withoutmeasurement gatgsf Shor’s algorithm for factoring
the number 15. These equivalent properly-quantum circuitade 2,732 gates for the
non-LNN version and 5,120 gates for the LNN version. Theincure is very differ-
ent. For equivalence-checking, we used QuiDDPro with antdowit local simplifica-
tion, and these runs completed in 59.07s and 64095.22s, Tegpresults confirm the
effectiveness of local simplifications with reversible pedy-quantum miters.

4.2.2 Boosting Verification by Using SAT-based Combinatioal Tools

Local simplification may leave many gates around, after wiuIDDPro tends to

consume significant time and memory. However, if very fewperty-quantum gates
remain, a more lightweight verification procedure may bedus&eneric symbolic

simulators, such as QuIDDPro, do not scale (empiricallyyeléas leading-edge SAT-
based combinational equivalence-checking (CEC) usedeirEtactronics industry to

verify modern digital circuits (Sec. 4.1). Hence we lever&AT-based tools to boost
equivalence-checking of quantum circuits.

FOR TWO CIRCUITSC, AND (3, WE DO THE FOLLOWING.

Step 1.Construct the miter circutt’ = C' - C’Q_l.

Step 2.Perform simplification of the miter circuit.

Step 3. If properly-quantum gates remain, go to Step 4, else invaaeof-the-
art SAT-based combinational equivalence-checking (tee™command of ABC sys-
tem [23]) to tell if the miter circuit is equivalent to Idetyti

Step 4.Find the longest sequence of conventional logic gates (T, Toffoli) in
the miter circuit. Label this sequen€g. Let the simplified miter circuitb&,,-C,- Q5.
Step 5.Transform@, - C, - @, to C,, - Qy, - Q. Note thatQ), - C, - Q, = I (Identity)
iff C,-Qp-Q, = 1asshownin Sec. 3.2.1. Move conventional gategjn(Q, to the
front of the miter as much as possible, creating a transfdmmiéer C', - Q;, whereC',
andQ); are a reversible circuit and a properly-quantum circugpestively.

Step 6. Check the functionality of); by lightweight iterated simulation. If it is not
properly quantum, conclude that the miter circuit is nonlitg. Else, go to Step 7.
Step 7. Exploit the functionality of@;, and letC; be a conventional circuit which
corresponds to the exploited logic functionality. Thereatwhether”” - C}, is Identity
or not.

Suppose we have few properly-quantum gates as shown in fthealed side of
Fig. 6 whereC is relatively large. Then after Step 5, we can get the rigirehside
circuit from the left-hand side circuit in Fig. 6. Our miteedomes’; - Q2 whereCy
is reversible but), is properly-quantum. This avoids a heavy-duty generic tuan
simulator for(C.

A key observation is that the functionality @f; (at Step 6) should be classical
(inverse ofC?) if the entire miter is Identity. Thus, i), is properly-quantum, the
miter circuit is not Identity. Wheid); has few gates, this can be checked efficiently by
a quantum generic simulator. By Step 7, properly-quantutesgare reduced, and we
can use state-of-the-art SAT-based combinational earieatchecking. By avoiding
heavy-duty generic quantum simulation, our adaptive ntettam achieve significant
speed-ups whe€’, is large.

13

To validate our method, we studied circuits implementing weration of Grover’s
quantum algorithm for search [3] as shown in Fig. 2. A patéicatep of the algorithm,
calledthe oracle is implemented with a reversible circuit modulg based on a user-
defined Boolean functiofi (search predicate). To make verification more challenging,
we configured a search predicate that contains a multiplienit We then created
an equivalent variant of'; by applying a global, rather than local, circuit transform.
Namely, we applied a certain wire permutation on inputsCgfand its inverse on
outputs ofCy. This permutation was implemented by applying SWAP gateglitp
pairs of adjacent wires and then breaking down each SWAP igaiehree CNOT
gates, as described in Section 2. In our case study, the ggdpgarocedure goes as
follows.

Step 1. Construct the miter circui€ = C, - C; ' = C;- W' - Cj - Wt (W?)~L.
)=t~ (CcH

Step 2. Simplify the miter circuit. Because of the inserted SWAPegafif we use
only naive cancellation rules), we cannot cancel the twespafiC'; and (C7)~", or
C¢ and(C3)~1. But we can remove the sequeri¢g - (IW?2)~1, reducing the miter to
G- WGy (O3 (WA (G

Step 3.Since properly-quantum gates remain, go to Step 4.

Steps 4 and 5.Move (C]%)—1 to the input side of the circuit to maximize the conven-
tional logic part in the prefix. The miter becom€$ - Q, whereC; = (C3)~" - C}
andQ, = Wt - Cg - (Cg)~" - (W)~

Steps 6. and 7Using techniques described earlier, combine a quantunrigesimu-

lator (QuIDDPro [20, 21]) and state-of-the-art SAT-basedbinational equivalence-
checking (the “cec” command of ABC system [23]).

The above technique is compared to constructing a mitevitiand applying the
symbolic simulator QuIDDPro [20, 21] to the miter. QuIDDRalmne does not finish
in ten hours, but our technique completes in under sevemesco

5 Conclusion and Future Work

We have studied several techniques for equivalence-chgcdfireversible circuits, in-
cluding the new concept of reversible miters. In particulae have observed that
state-of-the-art SAT-based combinational equivaler@seking (cec) can be adapted
to this context and outperforms generic quantum technigBasic BDD-based tech-
nigues usually outperform SAT-based techniques, but not &s is the case with
ATPG, reversibility can significantly simplify equivaleechecking, while these sim-
plifications are compatible with other techniques and aiyniem. We then proposed
an adaptive method to verify quantum circuits more effidjetitan the existing quan-
tum circuit verification tools by combining them with the tetaf-the-art SAT-based
combinational equivalence-checking tool for the conwamli circuits. Experiments
suggest that reversible miters are useful for the verificatf reversible circuits as
well as properly-quantum circuits.

14

References

[1]

(2]

3]

[4]

(5]

[6]
[7]

(8]

9]

(10]

[11]

[12]

(13]

(14]

S. A. Cuccaro et al. A new quantum ripple-carry additiofrcuait.
http://xxx.lanl.gov/abs/quant-ph/0410184, Los Alamgwiat, 2004.

A. G. Fowler, S. J. Devitt and L. C. L. Hollenberg. Implemation of Shor’s
algorithm on a linear nearest neighbour qubit arr@uantum Information and
Computation4(4):237-251, July 2004.

L. Grover. Quantum mechanics helps in searching for alleem a haystack.
Physical Review Letterg9(2):325-328, July 1997.

D. Hanneke et al. J. P. Home, J. D. Jost, J. M. Amini, D. krgl, D. J. Wineland
Realisation of a programmable two-qubit quantum proce$doantum Physics
pre-printARXIV.0RG:0908.3031,National Inst. of Standards and Technology
August 2009.

K. lwama, Y. Kambayashi and S. Yamashita. TransformmaiRaoles for Designing
CNOT-based Quantum Circuit®AC, pp. 419-424, 2002.

R. C. Johnson. NIST scales up quantum computttf) . Times6 Aug. 2009.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieb, F. V. James, A.
Gilchrist and A. G. White. Experimental Demonstration of anfpiled Version
of Shor’s Algorithm with Quantum Entanglemeriehysical Review Letter99,
250505, Dec. 2007.

C-Y Lu, D. E. Browne, T. Yang and J-W Pan. Demonstratiorao€ompiled
Version of Shor’'s Quantum Factoring Algorithm Using PhatdQubits.Physical
Review Letter99, 250504, Dec. 2007.

D. Maslov. Linear depth stabilizer and quantum Fourfansformation circuits
with no auxiliary qubits in finite-neighbor quantum arcliieres. Physical Re-
view A76, 052310, Nov. 2007.

D. Maslov, G. W. Dueck, D. M. Miller and C. Negrevergne.udhtum circuit
simplification and level compactiodEEE Trans. on CAD27(3):436—444, Mar.
2008.

R. Van Meter, K. M. Itoh, “Fast quantum modular expornation,” Physical Re-
view A71(052320), May 2005.

D. M. Miller and M. A. Thornton. QMDD: A decision diagrarstructure for
reversible and quantum circuitslEEE Int'l Symp. on Multiple-Valued Logic
p.30, May 2006.

A. Mishchenko, S. Chatterjee, R. Brayton, N. Een. Inwgroents to combina-
tional equivalence checkinlCCAD, pp. 836—843, 2006.

M. A. Nielsen and I. L. ChuangQuantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

15

[15] A. Paliti, J. C. F. Matthews and J. L. O’'Brien. Shor’s Quiam Factoring Algo-
rithm on a Photonic ChipScience 4325(5945):1221, Sept. 2009.

[16] A. K. Prasad, V. V. Shende, K. N. Patel, I. L. Markov an®.JHayes. Algorithms
and data structures for simplifying reversible circuA&<M J. of Emerging Tech-
nologies in Computing2(4):277-293, Oct. 2006.

[17] P. W. Shor. Polynomial-time algorithms for prime fagtation and discrete log-
arithms on a quantum comput&AM Journal on Computing@6(5):1484—-1509,
1997.

[18] K. M. Svore, A. V. Aho, A. W. Cross, I. L. Chuang, I. L. Maok, “A Layered
Software Architecture for Quantum Computing Design TSAEEE Computer
39(1): 74-83, 2006.

[19] R. R. Tucci. QC Paulinesia. http://xxx.lanl.gov/aipsant-ph/0407215, Los
Alamos e-print, 2004.

[20] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Improvgaie-level simulation
of quantum circuitsQuantum Information Processing(5):347-380, 2003.

[21] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Equivatohecking of quantum
circuits and statedCCAD, pp. 69-74, 2007.

[22] J. Yoshida. 35 people, places and things that will stthpefuture. EE Times
February 29, 2008.

[23] The ABC Home Page.http://www.eecs.berkeley.edu/ ~alanmi/
abc/ .

[24] The MiniSat Home Pagéhttp://minisat.se/MiniSat.html

16

