
GATE-LEVEL SIMULATION OF QUANTUM CIRCUITS

GEORGE F. VIAMONTES, MANOJ RAJAGOPALAN,
IGOR L. MARKOV, AND JOHN P. HAYES

The Univ. of Michigan, Advanced Computer Architecture Lab., Ann Arbor, MI 48109-2122
E-mail: fgviamont,rmanoj,imarkov,jhayesg@eecs.umich.edu

Simulating quantum computation on a classical computer is a difficult problem. The matrices
(operators) representing quantum gates, and vectors modeling qubit states grow exponentially
with an increase in the number of qubits. However, by using a new data structure called the
Quantum Information Decision Diagram (QuIDD) that exploits the structure of quantum oper-
ators, many of these matrices and vectors can be represented in a form that grows polynomi-
ally. Using QuIDDs, we implemented a general-purpose quantum computing simulator in C++
called QuIDDPro and tested it on Grover’s algorithm. We observed that our QuIDD technique
asymptotically outperforms other known simulation techniques.

1 Introduction

Richard Feynman observed in the early 1980s that simulating quantum processes
on classical hardware seems to require super-polynomial (in the number of qubits)
memory and time. Traditional array-based representations are often insensitive to
the actual values stored, and even sparse matrix storage offers little improvement
for quantum operators with no zero matrix elements (e.g. Hadamard operators).
Gottesman6 identified a number of special-case quantum circuits for which tailor-
made simulation techniques require only polynomial memory and runtime. How-
ever, he noted that these “restricted types of quantum circuits fall short of the full
power of quantum computation.” Thus, in cases of major interest, such as Shor’s
and Grover’s algorithms, quantum simulation is still performed with straightforward
linear-algebraic tools and requires astronomic resources.

A number of “programming environments” for quantum computing were pro-
posed recently that are mostly front-ends to quantum circuit simulators. Their back-
ends typically use linear algebra methods to multiply matrices and require super-
polynomial computational resources in the number of qubits. The potential benefits
of efficient linear-algebraic operations on compressed arguments are immense.

Our approach uses graph-based techniques to improve asymptotic time and
memory complexity of quantum simulations by exploiting the structure of quantum
operators. Although abstract worst-case complexity is still exponential, our approach
achieves very substantial performance gains in many important cases.

Other advanced simulation techniques, e.g., MATLAB’s “packed” representa-
tion, include data compression, but often must decompress the operands of matrix-
vector multiplication. A notable exception is Greve’s simulation5 of Shor’s algo-
rithm that usesBinary Decision Diagrams(BDDs)2. Probability amplitudes of indi-
vidual qubits are modeled by single decision nodes. This only captures superposi-
tions where every participating qubit is rotated by�45 degrees fromj0i towardsj1i.
Though Greve’s BDD representation cannot simulate arbitrary quantum circuits, the
idea of modeling quantum states with a BDD-like structure is appealing and moti-
vates our approach.

1



1/2

1I1I

0I 0I

1I 1I

1/21/2

(a) (b) (c)

0.440.80

00

01

11

10

00

01

10

11

00

01

10

11

1/2
1/2
1/2
1/2

0.26
0.44

−0.10
0.80

1/2
−1/2
−1/2

1/2
0.26−0.10 −1/2

Figure 1. QuIDD examples of (a) best, (b) worst, and (c) mid-range complexity.

2 QuIDD Theory
The Quantum Information Decision Diagram(QuIDD) was born out of the obser-
vation that vectors and matrices which arise in quantum computing exhibit a lot
of structure. More complex operators obtained from the tensor product of simpler
matrices continue to exhibit these common substructures which BDDs can capture.
BDDs and operations for manipulating them were originally developed by Lee1 and
extended to Reduced Ordered BDDs (ROBDDs) by Bryant2 to handle large Boolean
functions efficiently. An ROBDD is adirected acyclic graph(DAG) with up to
two outgoing edges per node, labeledthenandelse. Algorithms that perform opera-
tions on ROBDDs are typically recursive traversals. While not improving worst-case
asymptotics, in practice ROBDDs achieve exponential space compression and run-
time improvements by exploiting various types of structure in applications.

Beyond the domain of digital logic design, ROBDD variants have been adopted
in many contexts. Multi-Terminal Binary Decision Diagrams (MTBDDs)3 and Al-
gebraic Decision Diagrams (ADDs)4 with their integrated linear-algebraic opera-
tions are particularly relevant to the task of simulating quantum systems. We have
developed a further refinement, the QuIDD, to compress complex-valued matrices
and vectors and operate on them in compressed form. Our C++ implementation of
QuIDDs, called QuIDDPro, uses ADDs, but can, in principle, use MTBDDs as well.
Space and time complexities of our simulations ofn-qubit systems range fromO(1)
to O(2n), but the worst case is not typical.

Vectors and Matrices. Figure 1 shows the QuIDD structure for three 2-qubit
states. We consider the indices of the four vector elements in binary, and define their
bits as decision variables of QuIDDs. A similar definition is used in ADDs.4 For
example, traversing thethenedge (solid line) of nodeI0 in Figure 1c is equivalent to
assigning the value 1 to the first binary digit of the vector index. Traversing theelse
edge (dotted line) of nodeI1 in the same figure is equivalent to assigning the value 0
to the second binary digit of the index. These traversals bring us to the terminal node
�1

2, which is precisely the value at index 10 in the vector representation.
QuIDD representations of matrices extend those of vectors by adding a second

type of variable node and enjoy the same reduction rules and compression bene-
fits. Consider the 2-qubit Hadamard matrix annotated with binary row and column
indices shown in Figure 2a. In this case there are two sets of indices: The first
(vertical) set corresponds to the rows, while the second (horizontal) set corresponds
to the columns. We assign the variable nameRi andCi to the row and column in-
dex variables respectively. This distinction between the two sets of variables was

2



00

01

R0R1 10

11

2
664

1
2

1
2

1
2

1
2

1
2 �1

2
1
2 �1

2
1
2

1
2 �1

2 �1
2

1
2 �1

2 �1
2

1
2

3
775

00 01 10 11

C0C1

(a) −1/2 1/2

1/2

0 1

*

R

C

R

R

CC

1

1 1

1

0

0

C

C

0

1

(b)

Figure 2. (a) 2-qubit Hadamard, and (b) its QuIDD representation multiplied byj00i= (1;0;0;0).

originally noted in several works including that of Bahar et al.4 Figure 2b shows
the QuIDD form of this sample matrix where it is used to modify the state vector
j00i= (1;0;0;0) via matrix-vector multiplication.

QuIDD Operations. Most operations defined for ADDs also work on QuIDDs
with only slight modification. A key example is matrix multiplication, which is an
extension of the dot-product operation and implemented as a recursive procedure
adapted from the well-knownBDD-Applyfunction.2 For more details, see our tech-
nical report.7 Tensor products can be implemented as follows. By definition,A
B
multiplies each element ofA by the entire matrix (or vector)B producing a new ma-
trix (or vector). Multiplication of the terminal values is done by first shifting the
variable numbers inB after those inA followed by a call to the recursiveApplyfunc-
tion with an argument that directsApplyto multiply when it reaches the terminals of
both operands.7 Since QuIDD operations are variants ofApply, they have complexity
O(jAj � jBj), which is polynomial in the number of qubits if bothjAj andjBj are.

3 Simulating Grover’s Algorithm with QuIDDs
We simulated quantum circuits for Grover’s algorithm8 in the state-vector representa-
tion by performing matrix-vector multiplications and tensor products using QuIDDs.
Ideal numbers of iterations for Grover’s algorithm are computed following Boyer et
al.9 Oracle circuits are implemented usingk-CNOT gates. To evaluate QuIDD rep-
resentations of all relevant quantum gates, we measured their size atn-qubits, where
n= 20::100 and observed that memory usage grew linearly.7 Thus, using QuIDDs,
simulation of Grover’s algorithm is not memory limited even at 100 qubits. Re-
sults in Table 1 deal with an oracle searching for one element out of 2n. As shown,
QuIDDPro achieves asymptotic memory savings compared to known interpreted and
compiled numerical analysis packages. The overall runtimes are still exponential in
n because Grover’s algorithm requires an exponential number of iterations, even on
an actual quantum computer. We also studied a “mod-1024” oracle7 searching for
elements whose ten least significant bits are 1. We observed that memory usage for
the mod-1024 oracle for up ton= 25 qubits grew as(7:592+0:041n). For additional
details on numerical precision, round-off errors, etc. see our technical report.7

4 Conclusions and Future Work
In this work, we proposed and tested a new technique for simulating quantum circuits
using a data structure called a QuIDD. We have shown that QuIDDs enable practical,

3



Table 1. Simulating Grover’s algorithm withn qubits using Octave (Oct), MATLAB (MAT), Blitz++ (B++)
and our simulator QuIDDPro (QP). Results were produced on a 1.2GHz AMD Athlon with 1GB RAM
running Linux. Memory usage for MAT and Oct is lower bounded by the size of the state vector and
conditional phase shift operator; B++ and QP memory usage is measured as the size of the entire program.
Runtimes for MAT and Oct are not shown past 15 qubits as simulation time was limited to 20 hours.

Runtime (s)

n Oct MAT B++ QP
10 89.4 14.0 0.22 0.20
11 2.94e2 45.9 0.72 0.39
12 9.26e2 1.53e2 2.22 0.88
13 3.09e3 5.80e2 6.92 1.94
14 1.36e4 5.90e3 23.09 4.79
15 7.10e4 5.92e4 70.4 9.32
16 TIME-OUT TIME-OUT 2.13e2 22.2
17 TIME-OUT TIME-OUT 6.34e2 50.7
18 TIME-OUT TIME-OUT 1.92e3 1.13e2
19 TIME-OUT TIME-OUT 5.74e3 2.00e2
20 TIME-OUT TIME-OUT 1.74e4 3.25e2

Memory Usage (MB)

n Oct MAT B++ QP
10 3.60e-2 2.00e-2 1.95e-2 0.211
11 6.80e-2 4.40e-2 7.03e-2 0.207
12 0.132 9.20e-2 7.42e-2 0.281
13 0.260 0.188 0.129 0.426
14 0.268 0.264 0.250 0.444
15 0.524 0.520 0.500 0.605
16 1.04 1.03 1.00 0.840
17 2.06 2.06 2.00 0.965
18 4.11 4.10 4.00 1.59
19 8.20 8.20 8.00 1.77
20 16.4 16.4 16.0 2.04

generic and reasonably efficient simulation of quantum computation. Their key ad-
vantages are faster execution and lower memory usage. In our experiments, QuIDD-
Pro achieves exponential memory savings compared to other known techniques. Our
ongoing work focuses on the growth of required precision and on simulating other
quantum algorithms, such as Shor’s, where we plan to simulate the effects of er-
rors and decoherence. We are also attempting to describe quantum gates that have
polynomial QuIDD representations and thus facilitate fast classical simulation.

AcknowledgmentsThis work was partially supported by the DARPA QuIST
program. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing official policies or endorsements
of the Defense Advanced Research Projects Agency, or the U.S. Government.

References
1. C.Y. Lee, “Representation of Switching Circuits by Binary Decision Diagrams”,Bell

System Technical Jour., 38:985-999, 1959.
2. R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”,IEEE

Trans. on Computers, C35:677-691, Aug 1986.
3. E. Clarke et al., Multi-Terminal Binary Decision Diagrams and Hybrid Decision Dia-

grams, In T. Sasao and M. Fujita, eds,Representations of Discrete Functions, pp. 93-
108, Kluwer, 1996.

4. R. I. Bahar et al., “Algebraic Decision Diagrams and their Applications”,In Proc.
IEEE/ACM ICCAD 1993, 188-191, 1993.

5. D. Greve, “QDD: A Quantum Computer Emulation Library”, 1999
http://home.plutonium.net/˜dagreve/qdd.html

6. D. Gottesman, “The Heisenberg Representation of Quantum Computers”,
quant-ph/9807006 .

7. G. Viamontes, M. Rajagopalan, I. Markov, J. Hayes, “Gate-Level Simulation of Quan-
tum Circuits”,quant-ph/0208003

8. L. Grover, “Quantum Mechanics Helps In Searching For a Needle in a Haystack”,Phys.
Rev. Lett.79:325-328, 1997.

9. M. Boyer, G. Brassard, P. Hoyer and A. Tapp, “Tight Bounds on Quantum Searching”,
4th Workshop on Physics and Computation, Nov. 1996.

4


