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Arbitrary two-qubit computation in 23 elementary gates
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We address the problem of constructing quantum circuits to implement an arbitrary two-qubit quantum
computation. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as
possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit
rotations and 2 controlled-NOT ~CNOT! gates. We also constructively prove a worst-case upper bound of 23
elementary gates, of which at most four~CNOT gates! entail multiqubit interactions. Our analysis shows that
synthesis algorithms suggested in previous work, although more general, entail larger quantum circuits than
ours in the special case of two qubits. One such algorithm has a worst case of 61 gates, of which 18 may be
CNOT gates.
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I. INTRODUCTION

Quantum computations can be described by unitary
trices @1#. In order to effect a quantum computation on
quantum computer, one must decompose the correspon
unitary matrix into a quantum circuit which consists of e
ementary quantum gates@2# connected by Kronecker~tensor!
and matrix products. These connections are often represe
using quantum circuit schematics. In some cases, circuit
compositions require temporarily increasing the dimens
of the underlying Hilbert space, which is represented
‘‘temporary storage lines.’’ Since there is always a multitu
of valid circuit decompositions, one typically prefers tho
with fewer gates.

Algorithms for classical logic circuit synthesis@3# read a
Boolean function and output a circuit that implements
function using gates from a given gate library. By analo
we can talk about quantum circuit synthesis. In this paper
only discuss purely classical algorithms for such synthe
problems. Even at this early stage of quantum computing
seems clear that algorithms for circuit synthesis are goin
be as important in quantum computing as they are in cla
cal Electronic Design Automation, where commercial circ
synthesis tools are necessary for the design of cell
phones, game consoles, and networking chips.

Given the truth table of a Boolean function, a two-lev
circuit, linear in the size of the truth table, can be construc
immediately. Yet, the optimization of the circuit structure
nontrivial. Given a unitary matrix, it is not nearly as easy
find a quantum circuit that implements it. Generic algorith
for this problem are known@4,5# but in some cases produc
very large circuits even when small circuits are possible.

*Electronic address: stephen.bullock@nist.gov
†Electronic address: imarkov@umich.edu
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hope that additional optimizations are possible. Importan
other works@5# suggest that generic circuit decompositio
can be found by means of solving a series of speciali
synthesis problems, e.g., the synthesis of circuits consis
of NOT, controlled-NOT ~CNOT!, andTOFFOLI gates as well as
phase-shift circuits. Such specialized synthesis problems
addressed by other researchers@2,6,7#.

A recent work@8# on time-optimal control of spin system
presents a holistic view of circuit-related optimizations, u
ing Lie groups. However, their approach is not as detailed
previously published circuit synthesis algorithms, and co
parisons in terms of gate counts are not straightforward.

Our work pursues generic circuit decompositions@2,4# of
two-qubit quantum computations up to global phase. Wh
some authors consider arbitrary one-qubit gates elemen
we recall that they can be decomposed, up to phase, in
product of one-parameter rotations according to Eq.~1!.
Therefore, we only view the necessary one-parameter r
tions as elementary. Some of our results~constructive upper
bounds! in terms of such elementary gates can be reform
lated in terms of coarser elementary gates. We also obs
that the standard choice of elementary logic gates in class
computing~AND-OR-NOT! was suggested in theXIXth cen-
tury by Boole for abstract reasons rather than based on
cific technologies. Today, theAND gate is by far not the sim-
plest to implement in complementary metal-oxid
semiconductor-based integrated circuits. This fact is
dressed by commercial circuit synthesis tools by decoup
libraryless logic synthesisfrom technology mapping@3#. The
former uses an abstract gate library, such asAND-OR-NOT and
emphasizes the scalability of synthesis algorithms that c
ture the global structure of the given computation. The la
step maps logic circuits to a technology-specific gate libra
often supplied by a semiconductor manufacturer, and
based on local optimizations. Technology-specific librar
may contain composite multi-input gates with optimized la
©2003 The American Physical Society18-1
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outs such as theAOI gate ~AND-OR-INVERTER!. In this con-
text, our choice of library makes our algorithms analogous
libraryless logic synthesis.

Gate library. We consider the following library ofel-
ementaryone- and two-qubit gates:

Ry~u!5S cosu/2 sinu/2

2sinu/2 cosu/2D for all 0<u,2p,

Rz~a!5S e2 ia/2 0

0 eia/2D for all 0<a,2p.

CNOT gates conditioned on each line:

topCNOT5~ u00&^00u1u01&^01u!1~ u10&^11u1u11&^10u!,

botCNOT5~ u00&^00u1u10&^10u!1~ u01&^11u1u11&^01u!.

The rotation gates above may be applied on either l
Note that the gate library we use generates U(4) up to glo
phase@2,4#. As no measurement appears in the library abo
we use the standard, if not universal@9#, convention that the
two qubits are measured only after application ofU
PU(22). In order to find gate decompositions, we use
canonical decomposition@8,10,11# that may be viewed as a
example of theKAK decomposition of Lie theory. The resul
ing procedure is often superior to previously published
neric algorithms@4,5# in terms of the size of synthesize
circuits.

Theorem I.1.Any two-qubit computation may be realize
exactly by at most 23 elementary gates, of which at m
four areCNOT gates. No ancilla qubits are required.

We prove that at least 17 elementary gates are requ
We also note that the synthesis algorithm above realize
given computation to infinite precision, as do other alg
rithms in the literature@2,4,5#. Another common question
treated in the literature is constructing approximations t
given quantum computation using a discrete rather than c
tinuous gate library. TheSolovay-Kitaevtheorem~see Ref.
@12# and Appendix 3 of Ref.@1#! and the universality result
of Nielsen et al. @13# are examples. See also the GQ
‘‘quantum compiler’’@14# available online@20#.

The remaining part of the paper is organized as follow
Section II recalls the synthesis question for one-qubit co
putations in the elementary gate library. Section III discus
circuits for diagonal computations within U(22). Section IV
reviews the universality arguments for the library of eleme
tary gates in order to obtain a specific gate count in the c
of two-qubit computations. Section V describes our 23
ementary gates, fourCNOT quantum circuit synthesis algo
rithm in terms of the canonical decomposition. Section
proves a lower bound of 17 on the number of gates requ
to implement arbitrary computations in SU(22). Section VII
discusses conclusions and ongoing work. Finally, Appen
A reviews the canonical decomposition which is related t
more easily computed decomposition via the ‘‘magic bas
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@8,11,15,16#. Appendix B describes a 28-gate decompositi
that uses the minimum possible number of variable rotat
gates.

II. IMPLEMENTING ONE-QUBIT COMPUTATIONS
WITH ELEMENTARY GATES

Recall the elementary gate library of the Introducti
@2,6#. This gate library is continuous rather than discre
consisting of allCNOTs andy- andz-axis Bloch sphere rota
tions. The goal of this work is to produce an algorithm whi
inputs a two-qubit quantum computationUPU(22) and out-
puts a quantum circuit diagram containing only these
ementary gates, which realizes the associated computa
In terms of the unitary matrixU, applying a one-qubit com-
putation APU(21) on the top line andBPU(21) on the
bottom line corresponds to computing the tensor~Kronecker!
product matrix A^ BPU(22). Applying U2PU(22) after
U1PU(22) corresponds to the matrix productU2U1. We
will sometimes emphasize tensor product with the^ sign for
clarity. These basic facts may be found in Ref.@1#, and we
generally follow the conventions of that text. This includ
reading circuits diagrams from left to right. As an exceptio
we writeU* 5Ūt for the transpose of the entrywise comple
conjugate of a unitary matrix.

Consider the analogous one-qubit problem. An arbitr
one-qubit quantum computation can be implemented
three elementary gates~Lemma 4.1 of Ref.@2#!.

U5S eid 0

0 eidD S e2 ia/2 0

0 eia/2D S cosu/2 sinu/2

2sinu/2 cosu/2D
3S e2 ib/2 0

0 eib/2D . ~1!

To recover the non-d parameters, we divideU by the root of
its determinant. The resulting matrixŨ has d50, while
other parameters are recovered by computingŨtXŨ. Thus,
in our library both the Hadamard gateH and the Pauli-X gate
require two Ry , Rz gates to implement. The above decom
position also appears in our two-qubit decomposition. Int
mediate steps produce generic one-qubit computations
tensor factors, and these may be implemented usingthree
elementary gates.

III. CIRCUITS FOR DIAGONAL UNITARIES

For a diagonal matrix DPU(4), we have D

5diag(z1 ,z2 ,z3 ,z4) with zj z̄j51,j 51 . . . 4. Onenormal-
izes the coordinates or their product by choosing the glo
phase. In contrast, the quantityz1z2

21z3
21z4 is invariant.

Lemma III.1. ~i! A diagonal matrix D
5diag(z1 ,z2 ,z3 ,z4) in U(4) may be written as a tenso
product of diagonalRz gates inU(21) iff z1z2

21z3
21z451.

~ii ! Any computation which is diagonal when written in th
computational basis may be implemented up to phase in
elementary gates or fewer.
8-2
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ARBITRARY TWO-QUBIT COMPUTATION IN 23 . . . PHYSICAL REVIEW A 68, 012318 ~2003!
Proof. ~i! The forward implication follows
from diag(h1 ,h2) ^ diag(h3 ,h4)5diag(h1h3 ,h1h4 ,h2h3 ,
h2h4). For the reverse implication, note that the equa
demandsD5diag(1,z3 /z1) ^ (z1 ,z2).

~ii ! In the computation of Fig. 1,D5diag(z1 ,z2 ,z3 ,z4)
and W5Rz(2f/2). The three gates a
left enact diag(eif/4,e2 if/4,e2 if/4,eif/4). Labelling
CNOT+(W^ 1)+CNOT5diag(w1 ,w2 ,w3 ,w4), w1w2

21w3
21w4

PU(1) takes on all possible values asf varies. Since the
expression for @CNOT+(W^ 1)+CNOT#+D is the product
foreach factor, we may force the composite gate to b
tensor ofRz(u) gates by appropriate choice off. j

IV. GATE COUNTS FOR PRIOR SYNTHESIS
ALGORITHMS IN TWO QUBITS

A proof @2# exists in the literature that the elementary ga
library of the Introduction is universal, and this proof may
explained@4# in terms of theQR decomposition@17# of lin-
ear algebra. These results covern-qubit computations, and
the appropriate gate counts are in terms of asymptotics on.
We briefly recall the construction in the particular case
two-qubit computations and count elementary gates exp
itly. This serves as a benchmark for our own quantum circ
synthesis algorithm, which uses the canonical decompos
rather thanQR.

A Givens rotationis a unitary matrixUPU(22) which
acts as a rotationVPSO(2) on two computational bas
states while fixing the subspace spanned by the other
Givens rotations are indexed by one plus the integers of
computational basis states rotated. TheQR decomposition
then asserts that anyUPU(22) may be written U
5G3,4G2,3G3,4G1,2G2,3G3,4D for D5diag(z1 ,z2 ,z3 ,z4), a
diagonal unitary matrix. The cost ofD in elementary gates
follows from Lemma III.1. The Table below describes o
implementations and gate counts for the various Givens
tations. Note here that topC-V refers to a top-conditioned
one-qubit computationV, i.e., V is executed iff the top line
carries 1. Such topC-V may be split into elementary gate
~@2#, Fig. 7 of Ref.@4#!.

Rotation Implementation Gate countCNOT

G3,4 topC-V 8 2
G2,3 botCNOT+

~topC-XVX)+ botCNOT 10 4
G1,2 (X^ 1) topC-V (X^ 1) 12 2

Thus, in the generic case the universality argument u
three G3,4 Givens rotations totaling 24 elementary gates

FIG. 1. Any 434 diagonal unitaryD5diag(z1 ,z2 ,z3 ,z4) may
be decomposed into up to five elementary gates. We sete2 if

5z1z2
21z3

21z4 and defineW5diag(eif/4,e2 if/4). The two one-qubit
unitaries on the right are diagonal.
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which 6 areCNOT gates,two G2,3 Givens rotations totaling
20 elementary gates of which 8 areCNOT gates, andone G1,2
Givens rotation which counts for 12 elementary gates incl
ing 2 CNOT gates. Additionally, one must implement diag
nal D. Using our Lemma III.1, this requires five elementa
gates of which two areCNOT gates. Thus, 61 gates will b
required in the generic~worst! case, and 18 of those will be
CNOT gates.

V. AN ARBITRARY TWO-QUBIT COMPUTATION
IN 23 ELEMENTARY GATES

A. Quantum circuit synthesis via the canonical decomposition

Our algorithm for producing quantum circuit diagrams f
two-qubit computations will use only 23 rather than 61
ementary gates, of which at most four will beCNOT gates.
Moreover, it will implement tensor products of one-qub
quantum computations as such, modulo cancelingCNOT

gates. These performance increases arise due to choosin
canonical decomposition@8,10,11# over QR. Recalling the
canonical decomposition from the literature requires m
notation. Note that Appendix A treats the canonical deco
position in detail.

First, the magic basis@8,11,15,16# of two-qubit states is
given by um1&5(u00&1u11&)/A2, um2&5( i u00&
2 i u11&)/A2, um3&5( i u01&1 i u10&)/A2, and um4&5(u01&
2u10&)/A2. The arabic numbers are indices rather than
ergy states.

We label asEPU(22) that two-qubit computation which
maps the computational basis into the magic ba
u00&°um1&, u01&°um2&, u10&°um3&, andu11&°um4&. In
terms of the computational basis,E has the following matrix:

E5
A2

2 S 1 i 0 0

0 0 i 1

0 0 i 21

1 2 i 0 0

D . ~2!

The canonical decomposition then makes the following sta
ment. Any two-qubit quantum computationUPU(22) may
be written as U5eif(U1^ U2)+D+(U5^ U6) where
U1 ,U2 ,U5 ,U6PSU(21) are one-qubit quantum computa
tions andD is a quantum computation which takes ea
magic basis state to a complex norm one multiple of its
The global phase is irrelevant to our application but imp
tant in computations of this decomposition. Also, note th
D5EDE* for D, some diagonal unitary matrix.

The proposition below uses the canonical decomposi
and provides the synthesis algorithm for Theorem I.1.

Proposition V.1. Let U be the matrix for any two-qubit
computation in the computational basis. LetC in
the following equation denote the botCNOT gate, i.e.,C
5(u00&^00u1u10&^10u)1(u01&^11u1u11&^01u). Then U de-
composes as

U5~U1^ U2!+C+~1% U3!+~1^ U4!+C+~U5^ U6!, ~3!
8-3
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whereU1 , . . . ,U6 are one-qubit gates on each line and t
algebraic expression1% U3 is topC-U3, a U3 computation
controlled by the top line.

Proof. Begin by writing the canonical decomposition fo
U as

U5~U1^ U2!+D+~U5^ U6!. ~4!

We now describe the implementation ofD5EDE* for D
5diag(a,b,c,d)PU(22). First multiply as follows:

EDE* 5
1

2 S a1b 0 0 a2b

0 c1d c2d 0

0 c2d c1d 0

a2b 0 0 a1b

D . ~5!

Multiplying by a botCNOT on the left flips rows two and four
while multiplying on the right flips columns two and fou
Thus,

EDE* 5S 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

D +S U4 0

0 BD +S 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

D
~6!

for someU4 ,BPU(2). ChooseU3 so thatU35BU4
21. Then

the block-diagonal matrixU4% B may be implemented via
U4% B5(1% BU4

21)+(1^ U4), with the former a top condi-
tionedU3 computation. j

B. The overall gate decomposition and gate counts

Let 1% U3 denote a top conditionedU3 gate for U3
PU(21). Then Proposition V.1 decomposes an arbitra
two-qubit unitary into

U5~U1^ U2!+@~ u00&^00u1u10&^10u!1~ u01&^11u1u11&

3^01u!#+~1% U3!+~1^ U4!+@~ u00&^00u1u10&^10u!

1~ u01&^11u1u11&^01u!#+~U5^ U6!, ~7!

whereU1 , . . . ,U6 are one-qubit gates. The immediate ga
count yields three elementary rotations for each of five o
qubit gatesU1 ,U2 ,U3 ,U5, andU6, two botCNOT gates, and
eight elementary gates to implement the topC-U4 gate, ac-
cording to Fig. 7 of Ref.@4#.

The gate count of 25 can be further reduced, given
structure of the topC-V circuit ~Fig. 7 of Ref. @4#!. Indeed,
that circuit can be written symbolically as

1% U35~1^ C!+@~ u00&^00u1u01&^01u!1~ u10&^11u1u11&

3^10u!#+~1^ B!+@~ u00&^00u1u01&^01u!

1~ u10&^11u1u11&^10u!#+~D ^ A!. ~8!

Here,C andD are elementary gates up to phase, butA andB
require up to two elementary gates@4#.
01231
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Since topC-U3 computation1% U3 is next to (1^ U4) in
Proposition V.1, we can reduce (D ^ A)+(1^ U4) to (D
^ U7) whereU75AU4. By merging computationA with the
generic one-qubit computationU4 that may require up to
three elementary gates, one reduces the overall circuit by
elementary gates.

The overall circuit decomposition can be described al
braically as follows:

U5~U1^ U2!+@~ u00&^00u1u10&^10u!1~ u01&^11u1u11&

3^01u!#+~D ^ U7!+@~ u00&^00u1u01&^01u!

1~ u10&^11u1u11&^10u!#+~1^ B!+@~ u00&^00u

1u01&^01u!1~ u10&^11u1u11&^10u!#+~1^ C!+@~ u00&^00u

1u10&^10u!1~ u01&^11u1u11&^01u!#+~U5^ U6!. ~9!

This is illustrated in Fig. 2 with gate counts.
Our circuit decomposition requires at most fourCNOT

gates, while other gates are elementary one-qubit rotati
Such a small number of non-one-qubit gates may be des
in practical implementations where multiqubit interactio
are more difficult to implement.

It is understood that Fig. 2 and our gate counts refer to
worst case. Specific computations may require only som
those gates. In particular, with an appropriate choice of
nonical decomposition our algorithm always implementsA
^ B as such in the six leftmost gates of Fig. 2, modulo fo
cancelingCNOT gates.

VI. PROVING A LOWER BOUND ON THE GATE COUNT

We have constructively shown in the preceding sect
that any two-qubit quantum computation can be imp
mented in 23 elementary gates or fewer, of which at m
four areCNOT gates and remaining gates are one-qubit ro
tions. We now show that at least 17 elementary gates
required.

Theorem VI.1. There exists a two-qubit computation suc
that any circuit implementing it in terms of elementary ga
consists of at least 17 gates. In particular, 15 one-qubit r
tions are required and twoCNOT gates.

Proof. First, recall that two-qubit quantum computation
can be represented by 434 unitary matrices, and such ma
trices can be normalized to have determinant one beca
quantum measurement is not affected by global phase. A
recall that we use two types of elementary gates:~1! one-
qubit rotations with one real parameter each and~2! CNOT

gates which operate on two qubits and are fully specified~no
parameters!.

FIG. 2. The decomposition of a generic two-qubit quantu
computation into up to 23 gates. Four generic one-qubit rotati
are marked with ‘‘3’’ because they require up to three element
gates. Computations requiring two or one elementary gates
marked similarly.
8-4
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Let us now consider the setQC of quantum computations
that can be performed by some given two-qubit circuitC
with fixed topology, where the parameters of one-qubit ro
tions are allowed to vary. Fixed circuit topology means th
~the graph of! connections between elementary gates can
be changed. Since the overall unitary matrix can be
pressed in terms of products and tensor products of the
trices of elementary gates, each matrix element is an
nitely differentiable function of the parameters of one-qu
rotations~more precisely, it is an algebraic function of s
and cos of those parameters!. In other words, setQC is pa-
rametrized by one-qubit rotations and has the local struc
of a differentiable manifold, whose topological dimension
GL(4) is the number of one-qubit rotations inC with vari-
able parameters. The topological dimension is, roug
speaking, the number of degrees of freedom.

Since every computation can be implemented by a limi
number of elementary gates, the set of possible circuit
pologies is finite. The set of all implementable quantum co
putations is a union of setsQC over the finite set of possible
circuit topologies. Its topological dimension is the maximu
of topological dimensions ofQC , i.e., the maximum numbe
of one-qubit rotations with varying parameters, allowed
one circuit.

On the other hand,øQC5SU(4). Wecompute its topo-
logical dimension as follows. First, we point out that t
matrix logarithm ~which is infinitely differentiable! maps
U(4) one-to-one onto the set of skew-symmetric Hermit
matrices: UU* 51⇒ log(U)1log(U* )5log(U)1@log(U)#*
50. Furthermore, 434 skew-Hermitian matrices have fou
independent real degrees of freedom on the diagonal and
otherwise completely determined by their six compl
upper-diagonal elements. Thus, the set of skew-Hermi
matrices has topological dimension 16, and the same is
about U(4). Subtracting 1 for global phase, we see that
one-qubit rotations are needed to implement some two-q
computations. A randomly chosen computation is such w
probability 1, i.e.,almost alwaysrather thanalways.

If no CNOT gates are used in a given two-qubit circuit, t
two lines never interact, and the two independent one-q
computations can be implemented in three elementary r
tions each. Therefore, two-qubit computations impleme
able withoutCNOT gates have only six degrees of freedo
Similarly, if only oneCNOT gate is allowed, then only 433
512 rotations can be placed on two lines to the left and
the right of theCNOT gate to avoid gate reductions. Th
proves that at least twoCNOT gates are necessary to impl
ment any two-qubit computation requiring 15 rotations.j

Appendix B realizes the minimum number of 15 inpu
dependent rotation gates. Hence, following is a summar
this paper’s upper and lower bounds for worst-case opti
two-qubit circuits:

~a! An upper bound of 23 elementary gates.
~b! A lower bound of 17 elementary gates.
~c! An upper bound of 4CNOT gates.
~d! A lower bound of 2CNOT gates.
~e! An upper bound of 19 one-qubit rotations~via Fig. 2!

all U-dependent.
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~f! An upper bound of 15 variable,U-dependent elemen
tary rotations~via Fig. 4!.

~g! A lower bound of 15 variable elementary rotations.

VII. CONCLUSIONS AND ON-GOING WORK

It is a well-known result that any one-qubit computatio
can be implemented usingthree rotations or fewer@2#. Our
work answers a similar question about arbitrary two-qu
computations, assuming thatCNOT gates can be used in ad
dition to single-qubit rotations without ancilla qubits. Firs
we show a lower bound that calls for at least 17 element
gates: 15 rotations and 2CNOT gates. We then constructivel
prove that 23 elementary gates suffice to implement an a
trary two-qubit computation. At most four of these areCNOT

gates and the rest are single-qubit gates. In compariso
previously known construction@2,4# implies 61 gates, of
which 18 areCNOT gates. While this construction is mor
general than ours, for two-qubit computations, our algorit
generates far fewer gates in the worst~generic! case. The
savings in the number of multiqubit gates~CNOT gates! are
particularly dramatic.

We are also attempting to extend these ideas to three
bits or more. Yet, a problem arises. The canonical decom
sition is an example of theKAK decomposition of Lie theory.
The KAK decomposition of SU(2n), n>3, requires
K,SU(2n) be a sufficiently large subgroup, in the sense t
SU(2n)/K must be a Riemannian symmetric space@8,18#.
Although both SO(4) and SU(2)3SU(2) are large sub-
groups of SU(4), the set oflocal unitary gateŝ j 51

n SU(2)
is not large enough in SU(2n) for n>3. In particular, one
does not expect a decomposition of the typeU15U2DU3 for
U1PSU(8), D conjugate diagonal, andU2 , U3PSU(2)
^ SU(2)^ SU(2).

We also continue to work on the two-qubit synthesis pro
lem. Remaining problems include~i! sharpening the lower
bound on elementary gates for synthesis of generic two-q
computations,~ii ! constructing a generically optimal two
qubit synthesis algorithm which agrees with the theoreti
lower bound, ~iii ! building more efficient synthesis algo
rithms which recognize computations with especially sm
circuits such as tensors and conditioned one-qubit comp
tions, and~iv! building more efficient algorithms which us
the least possible number of input-dependent rotations.
ther optimizations of the present method are intricate.
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APPENDIX A: COMPUTING THE CANONICAL
DECOMPOSITION

This appendix rederives the canonical decomposition. T
canonical decomposition has already appeared in the lit
8-5
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ture. There exist nonconstructive arguments@8,10# which al-
low for a broader perspective on the result in terms of
theory. Another treatment in the bra notation is construct
~Appendix of Ref. @11#! but offers little perspective. The
present treatment provides a Lie theoretic perspective w
pointing out common pitfalls in the explicit computatio
given below.

The first step is to describe the term ‘‘magic basi
@8,11,15,16#. Via a startling and omitted direct computatio
the matrix coefficients ofA^ B, with respect to the magic
basis, will all be real. HenceE* (A^ B)E is orthogonal. For
example, sayAPSU(21) is given by A5aE112bE12

1b̄E211āE44. Then (A^ 1)um1&5221/2(au00&
1 b̄ u 10& 2 bu01& 1 āu11&) 5 221/2(Reaum1& 1 Im aum2&
2Im bum3&2Rebum4&).

Theorem A.1 (from Ref. [11]). Let VPU(22), normalized
so that det(V)51. Then ^mjuVumk&PR for all j ,k
51, . . . ,4 if andonly if V5A^ B for A,BPSU(21). In
particular, SU(2)̂ SU(2)>SO(4).

Corollary A.2. SupposeVPSO(4), i.e., V is a two-qubit
quantum computation, det(V)51, and the computational ba
sis matrix coefficients ofV are real. ThenEVE* is a tensor
product of one-qubit computations in SU(2).

Warning.If VPO(4)2SO(4), i.e.,V is orthogonal of de-
terminant other than one, then oftenEVE* is not a tensor.
One must be sure not to confuse^cu and eif^cu when com-
puting the canonical decomposition. This creates some ad
complications below.

Let N52n. It is well known@17# that anyN3N matrix G
with complex entries has apolar decomposition G5PZ for
P Hermitian andZ unitary. This generalizes to any Lie grou
acted on by any Cartan involution@8#. Let SO(N) denote
orthogonalN3N ~real! matrices of determinant one. The
there exists~p. 305 of Ref.@18#! a decomposition, sayuni-
tary polar, stating MPSU(N) decomposes asM5PZ for
ZPSO(N) and P5Pt. SinceZ and M are unitary, so isP,
i.e., P215 P̄. In addition to this decomposition, we need t
following mild, well-known generalization of the spectr
theorem.

Lemma A.3. For anyPPU(n) with P5Pt, 'OPSO(n)
such thatP5ODOt, where D is diagonal with norm-one
entries.

Proof. We first show the following:

;A,B symmetric realn3n matrices withAB5BA, 'O
PSO(n) such that OAOt and OBOt are diagonal.

It suffices to construct a basis which is simultaneously
basis of eigenvectors for bothA andB. Thus, sayVl is thel
eigenspace ofB. For vPVl , B(Av)5A(Bv)5lAv, i.e.,
v°Av preserves the eigenspace. Now find eigenvectors
A restricted toVl , which remains symmetric.

Given the above, writeP5A1 iB. Now 15PP* 5PP̄
5(A1 iB)(A2 iB)5(A21B2)1 i (BA2AB). Since the
imaginary part of1 is 0, we conclude thatAB5BA. j

Thus, anyUPSU(22) may be written asO1DO2 for
O1 ,O2PSO(4). Stated in terms of groups, SU(22)
5SO(4)ASO(4) for A the diagonal subgroup of SU(22).
01231
e

le

’

ed

a

or

This is an instance of the Lie theoreticKAK decomposition
~@19# p. 580 of Ref.@18#! for SU(22). Note that, equivalently,
SU(22) 5 ESU(4)E* 5 @ESO(4)E* #(EAE* )@ESO(4)E* #
5@SU(2)^ SU(2)#(EAE* )@SU(2)^ SU(2)#, which is the
canonical decomposition. Given an explicitU, its canonical
decomposition is computed by the following procedure.

~1! Normalize the phase so thatUPSU(22).
~2! ComputeP2 for E* UE5PK1 the unitary polar de-

composition P5Pt, K1PSO(4), using P25PPt

5PK1K1
t Pt5E* UEEtUtĒ.

~3! Apply Lemma A.3 to P2. This produces P2

5K2D2K2
21 for K2PO(4), D2 diagonal.

‘‘ Warning:’’ ChooseK2PSO(4), sothatEK2E* is a ten-
sor product via Corollary A.2.

~4! Choose square roots entrywise inD2 to form D.
‘‘ Warning:’’ Choose square roots so that det(D)51.

~5! ComputeP5K2DK2
21.

~6! Compute K15P21E* UE5 P̄E* UE. Since det(P)
5det(D)51 and det(U)51, K1PSO(4).

~7! Thus E* UE5PK15K2D(K2
21K1), when U

5(EK2E* )(EDE* )(EK2
21K1E* ) upon conversion back to

the computational basis.
~8! Using Corollary A.2, computeU1 ,U2 ,U5, and U6

with

U1^ U25EK2E* and U5^ U65EK2
21K1E* .

~A1!

Steps 3 and 4 can always be performed in more than
way. Namely, the order of eigenvectors in Step 3 and
choice of branches of the complex square root of the eig
values in Step 4 does not affect correctness@assuming that
det(K2)51 and det(D)5det(U)]. However, it may affect
gate counts, and poor choices at these steps may caus
input tensorU5eifA^ B, A,BPSU(21), to not be decom-
posed into (A^ B)(1)(1). To prevent this, note that for suc
an input tensorE* (A^ B)EPSO(4) in Step 2, so thatP2

51 for any tensor. One may test for this condition explicit
and use a straightforward~local unitary! decomposition in-
stead.

Additionally, we observe that enumerating all possib
discrete degrees of freedom in Steps 3 and 4 does not a
computational complexity of the algorithm. Therefore,
practical implementation might exhaustively evaluate i
plied decompositions in order to achieve the smallest g
count.

APPENDIX B: MINIMIZING THE NUMBER
OF INPUT-DEPENDENT ROTATIONS

Theorem VI.1 shows that realizing generic two-qub
computations requires the use of 15 computation-depen

FIG. 3. Implementing E by elementary gates. HereS
5diag(1,i ) counts as one elementary gate and the Hadamard gaH
counts as two.
8-6
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Ry(u), Rz(u) gates. This appendix describes a 28-gate s
thesis algorithm which realizes this minimum of 1
computation-dependent rotations.

We first produce a circuit diagram for computationE
which translates SU(2)̂SU(2)↔SO(4). Thediagram is
shown in Fig. 3 and may be verified by multiplying the a
propriate 434 matrices.

The synthesis algorithm which is sharp in computatio
dependent rotations continues as follows. Use the canon
decomposition to write the input computationU5(U1
^ U2)+(EDE* )+(U3^ U4), where U1 , . . . ,U4 are one-
qubit gates andD is a diagonal unitary. We now implementE

FIG. 4. The overall structure of the decomposition, minimizi
input-dependentRy , Rz . Four generic one-qubit rotations ar
marked with ‘‘3’’ because they are worth up to three element
gates. Two Hadamard gates are marked with ‘‘2’’ because they
worth two elementary gates. Constant gates are in bold.
-
e,

c

EE

in

nt

ys

01231
-

-
al

via Fig. 3, which includes no input-dependent rotation gat
E* is implemented by reversing the figure, whileD is imple-
mented using Lemma III.1.

As D depends on the input, so do the three rotations in
implementation ofD per Fig. 1. EntanglerE and disentangler
E* are fixed matrices and require no parameters. Fina
each of the one-qubit computationsU1 , U2 , U3 , U4 generi-
cally require three rotations per Eq.~1!. Hence we have re-
alized the least possible number of variable rotations, 15

Adding up gate counts, we see thatU1 , . . . ,U4 may re-
quire up to 12 elementary gates. The diagonalD counts for
5, while E andE* count for 7 each, for a total of 31. How
ever, upon inspection of Figs.~1! and ~3!, one notes that
circuit EDE* has two cancelling botCNOT gates. Moreover,
since the inverse ofD is also a diagonal unitary matrix, w
can ‘‘flip’’ the asymmetric circuit forD in Fig. 1. This allows
us to merge a constant rotations fromE with a variable ro-
tation from D. The resulting circuit decomposition is illus
trated in Fig. 4 and requires up to 28 elementary gates
which 15 are variable one-qubit rotations, 5 are constant
tations and 8 areCNOT gates. The slight asymmetry in Fig.
is explained by the asymmetric circuit forD in Fig. 1.
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