
ACCELERATING CHANGES in process tech-

nology, system implementation platforms, and

electronics markets make future design technol-

ogy requirements uncertain. A new design tech-

nology’s time to market—from understanding

the design problem to integrating a new solution

in mainstream flows—can span several process

generations and the life of entire electronics mar-

kets. Thus, for designers, obtaining the right

design technology at the right time is difficult.

This situation demands that the entire design

technology community (commercial vendors,

captive CAD organizations, and academic

researchers) focus on improving the delivery of

design technology. Put another way, the com-

munity must address the well-known design pro-

ductivity gap by addressing the less well known

design technology productivity gap.

Today’s design technology landscape shows

many signs of the design technology productiv-

ity gap. Phrases such as “design productivity

gap” (for example, in the International Technol-

ogy Roadmap for Semiconductors) and the exis-

tence of the Marco Design and Test Focus

Research Center reflect a perceived need to

improve the effectiveness of CAD-algorithm

research. In 1999, the Design Automation Con-

ference found it necessary to institute a new

topic area: “Fundamental CAD Algorithms.” At

a more technical level, research fragmented

across too many subcommunities indicates a

need to clarify the technological leading edge.

And, at the level of individual problem formu-

lations (specifically, hypergraph bipartitioning),

we have noticed cases of silent, undocumented

implementation decisions that change result

quality by more than 400%.1 We also know of

two papers published since April 1998 that

report more than 1,000% differences in solution

costs returned by implementations of the same

well-known algorithm.1

To help the CAD community address these

problems, we have developed a new medium

for CAD-IP reuse, under the auspices of the

Marco Gigascale Silicon Research Center

(http://www.gigascale.org/). Called the Marco

GSRC Bookshelf, it serves as a clearinghouse

and a repository for intellectual property in

CAD (CAD IP). The Bookshelf is one of three

initiatives—along with a technology extrapola-

Toward CAD-IP Reuse:
A Web Bookshelf of
Fundamental Algorithms

CAD-IP Bookshelf

2

The free reuse of code and other types of CAD

intellectual property can help EDA vendors,

captive CAD organizations, and researchers

address the design technology productivity gap.

The Marco GSRC Bookshelf, a medium for CAD-IP

reuse, is now operational and accessible to the

general public over the Internet.

Andrew E. Caldwell

Simplex Solutions

Andrew B. Kahng

University of California at San Diego

Igor L. Markov

University of Michigan

0740-7475/02/$17.00 © 2002 IEEE IEEE Design & Test of Computers

tion system (GTX) and a measurement infra-

structure (Metrics)—in the GSRC’s “Calibrating

Achievable Design” research theme (http://vlsi-

cad.ucsd.edu/GSRC/) that seek to improve

design technology productivity.

Why reuse?
The usual criteria for technology delivery are

time to market and result quality achieved with-

in given resource constraints. These criteria

strongly motivate a culture of reuse throughout

the design technology community.

With respect to time to market, better soft-

ware development processes can improve

design technology productivity. Expected time

to market grows with project risk, which in turn

grows with the amount of code that must be

written from scratch. Cheaply reusing existing

codes with documented performance and a

history of successful reuse can reduce risk and

shorten time to market even if new features or

interfaces must be added.

Even to measure result quality, designers

must thoroughly understand algorithms and

software tools, including common bench-

marks, evaluation methodologies, and known-

good performance results. The analysis of

hypergraph partitioning in our earlier work

shows what can happen when any aspect of a

sophisticated technology is unclear. Such risks

increase as the research domain matures and

the literature expands—in other words, as a

problem gains importance and attention. When

individual researchers can no longer keep track

of all relevant research, there is a risk they will

poorly reinvent the wheel. Designers and

researchers need an infrastructure that clearly

identifies the best results in the CAD field at any

given time. This infrastructure should reuse

accumulated knowledge about standard

benchmarks, evaluation methodologies, and

performance comparisons. To build such an

infrastructure, we must move beyond mere

code reuse and consider a generalized form of

reuse—that is, the reuse of CAD IP.

CAD research tends to focus on narrow opti-

mizations—for example, efficient manipulation

of binary decision diagrams in logic synthesis

or netlist hypergraph partitioning in physical

design. If this narrowness is accompanied by

the inability to evaluate new results in the con-

text of full design flows, the usefulness of

research suffers. (In another article, we

describe instances of academic research con-

tinuing to use outdated context for specialized

optimizations long after industry changed to a

different context.2) A shared public infrastruc-

ture for the evaluation of specialized algorithms

would highly benefit the design technology

community, at a small amortized cost.

Finally, with respect to resource constraints,

the short supply of EDA engineers is widely

lamented. Commonly proposed solutions focus

on increasing the supply—for example, through

outreach to graduate-level education programs.

At the same time, many companies and research

groups reimplement basic software components

such as format readers and writers, delay calcu-

lators, circuit partitioners, and technology map-

pers. For mature technologies whose details

(apart from their existence and correctness) do

not affect their competitiveness in the market-

place, reimplementation incurs tremendous

waste. Resource imperatives alone will force data

models, polygon database implementations,

placers and routers, and so forth to evolve into

commoditized (but nearly free) foundation IP,

following the course of operating systems, data

structures, and graphical-user-interface compo-

nents before them. This evolution is consistent

with both the culture of “coopetition” (collabo-

ration among competitors), as seen in the histo-

ries of semiconductor manufacturing and

consortia such as Sematech, and the impetus

toward disaggregation (which allocates limited

resources to the areas where they add the great-

est value). Even for those who don’t embrace

these trends, reuse has benefits: When a tech-

nology becomes freely available, companies no

longer need to raid competitors to reimplement

it, and the ability to produce reusable code ben-

efits internal research and development.

Free reuse of IP (including software) has a

positive effect on all aspects of design technol-

ogy productivity: time to market, result quality,

and effective use of R&D resources. The design

technology community requires an adequate

level of IP reuse, in the form of convenient and

consistent evaluation methodologies, to iden-

tify the best available solutions for important

3May–June 2002

problems. Without this infrastructure, the field

is hobbled by barriers to research progress and

the inability to identify and adopt appropriate

research results for use in production design

tools and methodologies. The “Design- and

CAD-IP reuse” sidebar presents further motiva-

tion for a reuse infrastructure.

What is CAD IP?
CAD IP is intellectual property that encap-

sulates the theory and know-how behind the

creation, evaluation, and use of CAD tools. We

can contrast CAD IP with design IP, which is

typically captured, produced, and managed by

CAD tools. Just as design IP includes many

components (for example, test harnesses, sim-

ulation vectors, technology files, constraints,

and layout geometries), so does CAD IP. The

following are CAD-IP components3:

� data models that provide consistent seman-

tics and data structuring throughout the

design flow (ideally with an accompanying

canonical application programming

interface);

� mathematical problem formulations for opti-

mization and constraint satisfaction that iso-

late the fundamental difficulties in particular

design tasks and encourage solver reuse;

� use models and context descriptions for

problem formulations;

� test cases with corresponding high-quality

solutions—for both individual problem for-

mulations and integrated tool flows;

� descriptions and theoretical analyses of

algorithms;

� executable implementations, including not

only solvers (algorithms), but also inter-

change-format parsers and converters, legal-

ity checkers, and cost-function evaluators;

� leading-edge-performance results, as well as

standard algorithm comparison and evalua-

tion methodologies, to ensure that newly

proposed methods are improvements over

previous methods;

� software design and implementation

methodologies; and

� implementation source code.

Neither source code nor executables, nor

the traditional medium of written algorithm

descriptions (typically, six pages of 9-point, two-

column format in a proceedings), dominates

CAD IP. All the CAD-IP components are critical

to design technology progress.

Background
A number of earlier developments have

enabled CAD-IP reuse: electronic publishing,

software repositories, benchmarking sites, algo-

rithm evaluation methodologies, openness, and

software engineering.

Electronic publishing and automatic
archiving

Electronic publishing was established to con-

vert existing journals into electronic form to

reduce production costs, achieve faster dis-

semination, and provide continual availability.

Early interest in electronic publishing was

CAD-IP Bookshelf

4 IEEE Design & Test of Computers

Design- and CAD-IP reuse
The key goals of VLSI design are to meet time-to-market and qual-

ity requirements. Challenges to design success arise from the
increasingly complex electrical engineering, optimization, and con-
straint satisfaction problems inherent in the design process. Mistakes
are costly yet almost inevitable. To make matters worse, verification
and test complexity grows with the complexity of other design tasks.
The classic response to these challenges is design-IP reuse, which
includes

� modular design IP specifically created for reuse,
� formal or informal certification and socketization of modular IP,
� matching services that connect IP providers with prospective

users, and
� IP protection (for commercial applications).

For CAD-tool providers, the goals and challenges are strikingly
similar to those faced by VLSI designers. The complexities of opti-
mization, constraint satisfaction, and software engineering hamper
providers from meeting time-to-market and result-quality goals.
Accounts of seven-year development cycles from research to pro-
duction tool are common. Verification and test of software systems
and optimization heuristics are poorly understood, so mistakes can
be a showstopper. To successfully respond to these challenges, the
CAD community must adopt CAD-IP reuse. Since the Bookshelf’s
inception in 1999, the concept of CAD-IP reuse has gained consid-
erable momentum in the EDA industry; notable examples include the
LEF/DEF and OpenAccess source-code releases.

fueled by the potential for cheap, fast, low-qual-

ity publications to drive established publica-

tions out of business (see an article by Odlyzko,

for example4) and had detrimental effects on

the research community. The scholarly com-

munity urged peer review to increase quality,

and by 1997, several organizations (the

American Mathematical Society, for example)

had established high-quality, low-volume online

journals. Today, high-quality online journals

flourish in hundreds of research communities,

and many are competitive with paper-based

publications. In recent years, articles on elec-

tronic publication have addressed economics,

IP issues, competition between media types,

and electronic libraries. Noting new information

types, use models, and requirements for dis-

semination of scholarly information, the litera-

ture concludes that the new types and larger

amounts of research-related information require

new forms of presentation.

Implementation repositories
With the growing popularity of the World

Wide Web, algorithm researchers are tempted

to make their codes available through a home

page. This form of publication allows unlimited

appendices to publications that would have

length limits in conference proceedings and

journals, as well as additional cross-referencing

and indexing through hyperlinks and Internet

search engines. A more systematic approach to

Web publishing is comprehensive implementa-

tion repositories, or portals, that attempt to col-

lect all material relevant to a particular domain.

Examples in the CAD-IP domain are

h t t p : / / w w w . m r c . u i d a h o . e d u / v l s i / ,

http://microsys6.engr.utk.edu:80/ece/msn/, and

http://openeda.org (a portal for open-source

implementation IP with goals similar to those of

the Bookshelf project described in this article).

Examples in the optimization domain are

Netlib, a collection of mathematical software,

papers, and databases at http://www.netlib.

org/index.html; the Stony Brook Algorithm

Repository at http://www.cs.sunysb.edu/~algo-

rith/; and the Decision Tree for Optimization

Software at http://plato.la.asu.edu/guide.html.

These repositories, which represent their

domains as tree diagrams, have reasonably

good coverage. The Stony Brook Repository,

perhaps the most refined of the three, identifies

and encourages high-quality implementations

of well-known algorithms. Far smaller than

Netlib, it can afford to rank every entry and pro-

vide brief reviews by maintainers. Typically,

standards for inclusion in these repositories are

rather minimal, with no concern for interoper-

ability and reuse (for example, codes in Netlib

for a given problem may be in both C and

Fortran and take inputs in different data for-

mats). The repositories trust implementations to

compute cost functions, and give little attention

to evaluation and comparison methodologies.

Overall, implementation repositories tend to be

informal and lack descriptions of implementa-

tion techniques and algorithm details.

Furthermore, the content of such repositories is

often detached from any specific applications.

Benchmarking sites
In addition to algorithms, the Decision Tree

for Optimization Software references bench-

mark instances and performance data. Several

other sites are entirely dedicated to bench-

marking: the Combinatorial Algorithm Test Sets

(CATS) at http://www.jea.acm.org/CATS/; the

Collaborative Benchmarking Laboratory (CBL)

at http://www.cbl.ncsu.edu/www/; and the OR-

Library at http://mscmga.ms.ic.ac.uk/info.html.

Benchmarking sites appear more fragmented

than implementation repositories, and we are

not aware of comprehensive cross-disciplinary

work or surveys on this subject. Whereas CATS

and OR-Library primarily aim for coverage, CBL

specializes in particular physical design topics

for VLSI CAD. CBL benchmarks fueled parti-

tioning, placement, and routing research for

many years. Brglez, the CBL site maintainer,

makes recommendations on the statistical

aspects of benchmarking in his publications5

and illustrates them using benchmarks at the

site. In particular, he attempts to ensure that

reported results are statistically significant by

validating them on mutated benchmarks—

benchmarks that are sufficiently different from

the originals to expose fragile coincidences but

that preserve the essential features affecting

reported results.

On the other hand, several key aspects of

5May–June 2002

benchmarks are addressed only by ad hoc,

episodic activity. In the partitioning communi-

ty, Alpert noted that as of 1997, the VLSI CAD

circuit benchmarks posted at CBL no longer

reflected modern technologies, and proposed a

new suite of more difficult and varied bench-

marks for VLSI hypergraph partitioning, based

on IBM-internal circuits.6,7 Nevertheless, there

has been no consistent effort to maintain the

latest partitioning benchmarks in a single loca-

tion. Another aspect of benchmarking, com-

mon data formats, has also failed to receive

proper attention. Formats still in use in acade-

mia, such as the .netD partitioning format, are

unnecessarily difficult to read, counterintuitive,

or restrictive. For example, cells in the .netD for-

mat are numbered from 0, whereas pads are

numbered from 1. Such a triviality causes

common format violations and variants of stan-

dard benchmarks, most likely with differing

optimal solutions. Other formats correspond to

outdated use and data models.

Algorithm evaluation methodologies
Barr et al.’s pivotal technical report, which

analyzes the ways a heuristic optimization

method “makes a contribution,” spurred atten-

tion to algorithm evaluation methodologies. The

authors urged that such a heuristic be fast, accu-

rate, robust, simple, high-impact (“solving a new

or important problem faster and more accu-

rately than other approaches”), generalizable,

and/or innovative. They held that high-impact

research in heuristics, must necessarily address

a problem that abstracts or otherwise reflects a

real-world application. To this end, a research

experiment should be driven by a clear state-

ment of “the questions to be answered and the

reasons that experimentation is required.”8

Particular experimental reporting method-

ologies for optimization algorithms are typically

agreed on by researchers and become part of

the community culture. A popular reporting style

uses “best-so-far curves,” which plot the solution

cost the algorithm is expected to achieve in a

multistart regime versus the given CPU time bud-

get.8-10 This yields a speed-dependent ranking

that depicts regions of dominance in the 2D

plane (instance size and CPU time) for each

heuristic compared. Our earlier article points out

the need for use-model-aware comparisons

against the leading edge and the inherent risks

of failing to make them.1 In other words, if you’re

evaluating an apple peeler, you don’t want to

use it on oranges; moreover, you want to com-

pare it with the best apple peelers available.

Openness
Errors are inevitable in implementations,

evaluations, and reporting. Their average cost

grows with algorithm complexity and slows

progress in the field. A natural solution is to

leverage community resources to verify perfor-

mance claims and implementations, so that

every researcher does not have to replicate the

evaluation effort. The two most common

approaches to ensure community participation

are requiring that any modification or exten-

sion to publicly available software be made

available on the same terms, and publishing

source code (either approach can be effective

without the other). The Free Software Foun-

dation (http://www.fsf.org/) and the Open

Source Initiative (http://www.opensource.org/)

represent these approaches. Both see quality

issues as being closely tied to IP issues.

Rosenburg provides comprehensive references

and detailed discussion.11

Successful projects such as the Linux

operating system, the GNU (GNU’s Not Unix)

compiler collection, and the K Desktop Envi-

ronment (KDE) window manager for Linux

(http://www.kde.org) used the Open Source

model. The model lets users fix bugs, add fea-

tures, and submit the patches as candidate

changes to the model’s maintainers. One of the

best-publicized studies of open software argues

that it provides a robust business model.12 All

submitted changes become immediately avail-

able to everyone, but very few changes make it

into official releases. Thus, the Open Source is a

hybrid of refereed and unrefereed electronic

publication. All submissions immediately

appear in the unrefereed section, and high-

quality submissions are published in the refer-

eed section.

The Berkeley model is an interpretation of

Open Source that makes source codes avail-

able for any purpose, including commercial

use. The only fee is a nominal shipping and

CAD-IP Bookshelf

6 IEEE Design & Test of Computers

handling charge. This model is credited for the

success of several large software projects at UC

Berkeley, such as BSD Unix and various VLSI

CAD tools (Spice, Magic, Octtools, and

MIS/SIS). For more details, see http://www.

opensource.org/licenses/.

Software practice and engineering
Engineers with no formal training in com-

puter science can write optimization codes.

They are not required to follow good coding

standards or accepted software practices. This

tendency is especially strong in academia,

where better implementations traditionally have

little perceived additional value over poor ones.

Hence, any software repository should establish

educational mechanisms, such as returning sub-

missions for revision, and enforce software stan-

dards by rejecting poor implementations and

confusing source code. Our caveat is that dra-

conian requirements or unfamiliar software

practices can turn off potential authors and

block potentially useful development. We rec-

ommend the application of Occam’s razor to all

prospective rules and regulations.

Related issues include poor maintenance

and unavailable development tools, again par-

ticularly in academia. Student-written codes

may be virtually unusable after the student

graduates or moves on to another project.

Some authors cannot produce clean code

because they have limited expertise or because

commercial memory debuggers are unavail-

able. The community must allocate resources

for evaluating such implementations and

improving the promising ones.

New CAD-IP reuse medium
The Marco Gigascale Silicon Research

Center established the GSRC Bookshelf of

Fundamental CAD Algorithms to facilitate CAD-

IP reuse. The project has collected relevant

experiences from electronic publishing, soft-

ware repositories, algorithm evaluation

methodologies, benchmarking, software engi-

neering, and the Open Source and Free

Software organizations. It has also proposed

mechanisms for more-efficient CAD-IP reuse

and research in fundamental CAD algorithms.

To date, the primary result of these efforts is

our proposal of a two-pronged framework for

IP reuse, including

� a new electronic publishing medium with

support for implementations of fundamen-

tal VLSI CAD algorithms alongside textual

works, and

� common open standards for data represen-

tations and evaluation methodologies.

The proposed framework emphasizes ease of

use, resource savings stemming from reuse, and

inclusive rather than exclusive mind-sets.

The Bookshelf project maintains an active

presence on the Web (http://gigascale.org/

bookshelf) in the form of a prototype CAD-IP

reuse medium, focusing on algorithm imple-

mentations, evaluation, and related information.

This medium is similar to a refereed scholarly

electronic periodical or conference proceedings

but also has software repository features. It con-

tains high-quality, reviewed, archival, citable

publications (both text and implementations)

that are relatively difficult to change once pub-

lished. In its “Preview” section, authors can pub-

lish new contributions, which remain visible

regardless of the editors’ decision to publish or

not to publish them in the refereed, or “Golden,”

section. In contrast to traditional scholarly pub-

lications, we place the most value on advances

in implementations, as well as improvements

and innovations conducive to such advances.

The Bookshelf’s charter mandates the fol-

lowing tasks:

� collecting and disseminating leading-edge

knowledge on optimization algorithms;

� providing comprehensive information about

the target domain of VLSI CAD, including as

many relevant subproblem types as possible;

� serving as an institutionalized community

memory of past approaches, benchmarks,

and results, to facilitate their continued use;

� providing an infrastructure for CAD-IP reuse,

including a consistent data model and a

framework that encourages a uniform appear-

ance of contributions, in each type of CAD IP

and in interfaces, documentation, and com-

mon testing and evaluation methods;

� rewarding those who publish leading-edge

7May–June 2002

implementations by making it citable just as

text publications are, thus compensating for

any perceived loss of competitive advantage

(this entails acceptance of new areas of

expertise);

� lowering barriers to entry caused by imple-

mentation complexity; and

� assisting in the maturation of the domain.

Unlike traditional conferences and journals,

we accept and encourage submissions that

have been made public earlier, as long as there

are no copyright conflicts. Items published else-

where can be referenced in publications on

our site but not stored there if they don’t con-

form to our copyright policies, explained in the

“Bookshelf copyrights” sidebar.

Like traditional conferences and journals, we

do not require that authors maintain their sub-

missions after publication; rather, they may sub-

mit significant revisions as new items. This

weaker type of version control simplifies quality

control and reuse mechanisms. By not moving

substandard publications to the “Golden” area,

we encourage authors to meet published stan-

dards. Exceptions are generally made through

peer review rather than by a fixed committee.

Structure
At the highest level, an exemplar of the new

medium covers a domain. Our exemplar covers

the domain of optimization algorithms for VLSI

CAD, particularly physical design and logic syn-

thesis. Individual areas in the domain are called

slots. The Bookshelf includes slots for graph col-

oring, Boolean satisfiability, technology map-

ping, hypergraph partitioning, block shaping

and packing, global routing, scheduling, and so

on. Individual submissions are represented by

entries embedded in slots. There are four main

types of entries:

Problem definitions provide the means for

encapsulating optimization problems and solu-

tions. Typical entries include

� standard file formats;

� integrated I/O, including parsers of standard

formats;

� standard benchmark instances; and

� reasonably good or interesting solutions.

Reference solver implementations allow devel-

opers of new solvers to make relevant compar-

isons and developers of larger applications to

leverage existing work. These solvers should

� solve problems given in one of the standard

formats or in-memory classes;

� produce results equivalent to a published,

high-quality approach; and

� support modifications and performance

analysis.

Independent evaluators act as reliable tools

for measurement of solution quality.

CAD-IP Bookshelf

8 IEEE Design & Test of Computers

Bookshelf copyrights
Motivated by the success of the Berkeley model for open software

release and distribution, the Marco GSRC Bookshelf supports free and
open distribution of all its entries. We will also strongly support the prac-
tice of freely providing data models and data interchange formats,
including both the syntax and the application programming interface.
Implementation releases (in library, executable, or source code form)
should also be freely usable. The following is the MIT License template
(also known as the X Consortium License), which we use when we dis-
tribute Bookshelf software (including source code and documentation),
and which is distributed with many open-source software titles, includ-
ing those shipped today with every Linux and Solaris distribution:

Copyright (c) {year} {copyright holders}

Contact author(s): {address} and/or {email} Affiliations: {company} and/or {institution}

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the “Software”), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies

or substantial portions of the Software.

The Software is provided “as is,” without warranty of any kind, express or implied,

including but not limited to the warranties of merchantability, fitness for a particular

purpose, and noninfringement. In no event shall the authors or copyright holders be

liable for any claim, damages, or other liability, whether in an action of contract, tort or

otherwise, arising from, out of, or in connection with the Software or the use of or other

dealings in the Software.

This license allows arbitrary—including commercial—uses and does
not require notifying authors of any particular types of use. The main
requirement is that the license itself be copied without modification.

Heuristic evaluation and comparison method-

ologies include

� descriptions of testing procedures and best-

known results;

� precepts for experimental evaluation of

metaheuristics; and

� references to relevant optimizers and

benchmarks.

These four categories are sufficient to con-

tain a wide variety of information types—for

example, bibliographies and other links of

resources, expositions, experimental studies,

and statistical descriptions of real-world prob-

lems and their solution spaces. Experimental-

research papers, and even theoretical papers

with a clear relevance to creating better imple-

mentations, fit well in this framework.

Additionally, the Bookshelf accepts many

data types that don’t fit well in traditional pub-

lication media. These include generic and

domain-specific standard data formats, detailed

statistics describing benchmark instances and

their solution spaces, and several types of exe-

cutables. Common executables such as test

case generators, optimizers, evaluators, and

consistency and constraint checkers can be

independent entries in the new medium.

Management and evolution
We distinguish two types of standards,

which apply equally to submissions, but which

we enforce in different ways. Individual review-

ers verify the availability of all submission com-

ponents (for example, on the Web), the

submission’s suitability for particular purposes,

the submission’s consistency, and the presence

of documentation, usage examples, and regres-

sion tests. The steering committee ensures cor-

rect labeling, focus and utility, compatibility

with common data formats, and ease of evalu-

ation with published mechanisms. The com-

mittee also makes sure the submission

complies with copyright law and fairly

acknowledges contributors, prior publication,

and funding sources. For each submission, the

committee interprets what belongs to the

domain and what does not, formally introduces

new slots, solicits necessary entries to improve

coverage, organizes peer review, and makes

acceptance decisions.

We attempt to prevent the so-called mainte-

nance wars that become possible with contin-

ually updated Web pages by limiting support

for versioning, thus avoiding the temptation for

authors to publish untested code.

We designed our medium to capitalize on

existing implementations and increase their

availability. Therefore, in its early stages it

resembles a library (hence, the name

“Bookshelf”) more than a journal or proceed-

ings. Because most software is independent,

the Bookshelf currently takes multiple, nearly

independent entries in each slot. This contrasts

with open-source practices that foster high

modularity and implementation reuse. For

example, we allow duplication when it reduces

dependencies between entries—that is, if B

depends on A, it is easier to include a copy of

A in B than to track dependencies between ver-

sions of A and B. The lack of versioning support

also simplifies dependencies.

With the inclusion of large amounts of soft-

ware, the question of code reuse arises. Even if

an instance at first does not explicitly support

reuse, policies and user interfaces should be

scalable so that support for code reuse can be

added in the future. For pragmatic reasons,

implementations of the new medium will likely

introduce features only when actually needed—

and only after establishing a reliable author and

user base. Another consideration depending on

critical mass is the provision of both refereed

and unrefereed sections of the publication medi-

um. We believe that a refereed section driven by

a steering committee must come first. While our

prototype builds momentum, we are including

only refereed entries, though the inclusion cri-

teria are somewhat relaxed.

SLOTS IN THE Marco GSRC Bookshelf are list-

ed at http://gigascale.org/bookshelf/Slots/. Con-

tent is available in 28 slots. Four popular

examples include Placement, Single Intercon-

nect Tree Synthesis, Clock Skew Scheduling

and Clock Topology Generation, and Gate Siz-

ing for Performance Optimization. The slot con-

tents were created by researchers from 26

9May–June 2002

leading universities around the world, as well

as system and EDA companies. The four exam-

ples just mentioned were developed at the Uni-

versity of California at Los Angeles (UCLA), the

University of Illinois at Chicago, the University

of Pittsburgh, and the University of Wisconsin.

Some leading-edge implementations are

freely available on the Bookshelf, accompa-

nied by performance results on standard

benchmarks. The “UCLA physical design tools”

sidebar describes one open-source release

available on the Bookshelf.

In addition to Bookshelf maintenance, our

work focuses on interoperability among slots and

research into design flows based on the contents

of individual slots. By the end of 2002, we plan to

release executable Bookshelf extensions (Book-

shelf.exe) that will automate several routine oper-

ations associated with empirical research in

algorithmics (automatic processing of simulation

results) and assembly of experimental VLSI

design flows, such as fast prototyping with script-

ing languages. Bookshelf.exe will offer compu-

tational resources and easy access to Bookshelf

content through several Web- and e-mail-based

interfaces. Recent industry initiatives such as

OpenAccess (see http://openeda.org) may facil-

itate interoperability among slots.

The Bookshelf shares its goal of providing

open-source CAD software with more recent

efforts such as OpenEDA. The goal of CAD-IP

reuse is by no means new; indeed, a number of

companies exist because of the demand for

reusable tool components such as hardware

description language front ends, waveform view-

ers, schematic-capture editors, and format con-

verters. Notable examples include Interra (http://

www.interra.com), Engineering DataXpress

(http://www.dataxpress.com), and Artwork

Conversion Software (http://www.artwork.com).

Nevertheless, the Bookshelf offers a unique com-

bination of emphases: algorithmic CAD IP,

advancement of leading-edge design technolo-

gy, free reuse, comparison and evaluation

methodologies, and common data modeling.

Through our ongoing work, we hope to

build the Bookshelf’s content and breadth and

to make the Bookshelf a part of the research

process in the design technology community.

We will also build new linkages among

Bookshelf slots, common data models, and

industrial data interchange formats to enable

vertical benchmarking and more complete

evaluation of algorithm innovations. �

Acknowledgment
This work was supported by the Marco

Gigascale Silicon Research Center and by a

grant from Cadence Design Systems.

References
1. A.E. Caldwell, A.B. Kahng, and I.L. Markov,

“Hypergraph Partitioning for VLSI CAD: Methodol-

ogy for Heuristic Development, Experimentation

and Reporting,” Proc. ACM/IEEE Design Automa-

tion Conf. (DAC 99), ACM Press, New York, 1999,

CAD-IP Bookshelf

10 IEEE Design & Test of Computers

Open-source release: UCLA Physical Design Tools
The Bookshelf hosts the UCLA Physical Design Tools (http://vlsi-

cad.cs.ucla.edu/software/PDtools) set, released 2 June 2000. The
open-source distribution provides source codes from the Placement
and Partitioning slots and contains more than 118,000 lines of C++
code in 35 packages, released under the MIT license shown in the
“Bookshelf copyrights” sidebar.

Included are implementations of advanced industrial-grade VLSI
physical design tools: Capo placer, MLPart partitioner, the object-ori-
ented UCLA DB database with the Library/Design Exchange Format
(LEF/DEF) parser and all supporting libraries, and regression tests.
(The LEF/DEF interchange formats from Cadence Design Systems
are the de facto standard for physical library and layout-design infor-
mation. The source code for reader/writer and C API documentation
is at http://openeda.org.)

All codes conform to the ANSI C++ standard and extensively use
the Standard Template Library and other recent C++ features. The
distribution is self-contained in the sense that no additional libraries
are needed to compile it. Installation procedures consist of down-
loading one tar.gz file, uncompressing it, and running an installation
script. The script adapts the packages to the user’s system, runs
compilation, builds all libraries and regression tests, and then runs
regression tests to verify that installation was successful. Users have
reported successful installations with g++2.95.2, SunPro CC5.1, and
MSVC++6.0 on Intel, Sun, IBM, and Hewlett-Packard hardware, run-
ning Linux, Solaris, or MS Windows.

The UCLA Physical Design Tools are also freely available at such
sites as http://openeda.org, http://dacafe.org, and http://opencollec-
tor.org. Within the first few months of release, the tool set had been
downloaded several hundred times—to most major EDA companies
worldwide and to academic and industrial sites in 10 countries.

pp. 349-354.

2. A.E. Caldwell, A.B. Kahng, and I.L. Markov, “Can

Recursive Bisection Alone Produce Routable

Placements?” Proc. ACM/IEEE Design Automa-

tion Conf. (DAC 00), ACM Press, New York, 2000,

pp. 477-482.

3. A.E. Caldwell, A.B. Kahng, and I.L. Markov, “VLSI

CAD Bookshelf,” 1999, http://gigascale.org/

bookshelf/.

4. A.M. Odlyzko, “Tragic Loss or Good Riddance?

The Impending Demise of Traditional Scholarly

Journal,” Int’l J. Human-Computer Studies, vol.

42, no. 1, Jan. 1995, pp. 71-122.

5. F. Brglez, “ACM/SIGDA Design Automation

Benchmarks: Catalyst or Anathema?” IEEE

Design & Test of Computers, vol. 10, no. 3, 1993,

pp. 87-91.

6. C.J. Alpert, “The ISPD-98 Circuit Benchmark

Suite,” Proc. ACM/IEEE Int’l Symp. Physical

Design (ISPD 99), ACM Press, New York, 1998,

pp. 80-85; http://ww1.acm.org/pubs/contents/pro-

ceedings/dac/274535. See errata at

http://vlsicad.cs.ucla.edu/~cheese/errata.html.

7. C.J. Alpert, “Partitioning Benchmarks for the VLSI

CAD Community,” http://vlsicad.cs.ucla.edu/

~cheese/benchmarks.html.

8. R.S. Barr et al., Designing and Reporting on Com-

putational Experiments with Heuristic Methods,

tech. report, June 27, 1995.

9. G.R. Schreiber and O.C. Martin, “Procedure for

Ranking Heuristics Applied to Graph Partitioning,”

Proc. 2nd Int’l Conf. Metaheuristics, 1997, pp. 1-19.

10. G.R. Schreiber and O.C. Martin, “Cut Size Statis-

tics of Graph Bisection Heuristics,” SIAM J. Opti-

mization, vol. 10, no. 1, Jan. 1999, pp. 231-251.

11. D. Rosenburg, “The Open Source Software

Licensing Page,” 1998, http://www.stromian.com/

Open_Source_Licensing.htm.

12. E. Raymond, “The Cathedral and the Bazaar,”

1997, http://tuxedo.org/~esr/writings/cathedral-

bazaar/.

Andrew E. Caldwell is a
staff engineer at Simplex
Solutions, Sunnyvale, Califor-
nia. His research interests
include large-scale circuit
partitioning, placement, and

routing. Caldwell has an MS in computer science

from UCLA and is on leave from the UCLA PhD
program in computer science. He is a member
of the ACM and the IEEE.

Andrew B. Kahng is a
professor in the departments
of Computer Science and
Engineering and Electrical
and Computer Engineering
of the University of California,

San Diego. He also leads the Calibrating
Achievable Design activity, which includes the
Bookshelf project, in the Marco Gigascale Silicon
Research Center. His research interests include
VLSI physical layout design and performance
analysis, combinatorial and graph algorithms,
and large-scale heuristic global optimization.
Kahng has an AB in applied mathematics
(physics) from Harvard College and an MS and a
PhD, both in computer science, from the
University of California, San Diego. He is a mem-
ber of the ACM and the IEEE.

Igor L. Markov is an assis-
tant professor of computer
science and engineering at
the University of Michigan,
Ann Arbor. His research
interests include combinato-

rial optimization with applications in IC design
and quantum computing. Markov has an MA in
mathematics and a PhD in computer science,
both from UCLA. He is a member of the ACM
and the IEEE.

Direct questions and comments about this
article to Andrew B. Kahng, UCSD CSE and ECE
Depts., La Jolla, CA 92193-0114, and to Igor L.
Markov, Univ. of Michigan EECS Dept., Ann
Arbor, MI 48109-2122; abk@ucsd.edu and
imarkov@eecs.umich.edu.

For further information on this or any other comput-

ing topic, visit our Digital Library at http://computer.

org/publications/dlib.

11May–June 2002

