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Abstract

When minimizing a given objective function is challenging be-
cause of, for example, combinatorial complexity or points of non-
di�erentiability, one can apply more e�cient and easier-to-implement
algorithms to modi�ed versions of the function. In the ideal case, one
can employ known algorithms for the modi�ed function that have
a thorough theoretical and empirical record and for which public
implementations are available. The main requirement here is that
minimizers of the objective function not change much through the
modi�cation, i.e., the modi�cation must have a bounded e�ect on
the quality of the solution.

Review of classic and recent placement algorithms suggests a di-
chotomy between approaches that either (a) heuristically minimize a
potentially irrelevant objective function (e.g., VLSI placement with
quadratic wirelength) motivated by the simplicity and speed of a
standard minimization algorithm, or (b) devise elaborate problem-
speci�c minimization heuristics for more relevant objective functions
(e.g., VLSI placement with linear wirelength).

Smoothness and convexity of the objective functions typically en-
able e�cient minimization. If either characteristic is not present in
the objective function, one can modify and/or restrict the objective
to special values of parameters to provide the missing properties. Af-
ter the minimizers of the modi�ed function are found, they can be
further improved with respect to the original function by fast local
search using only function evaluations. Thus, it is the modi�cation
step that deserves most attention.

In this paper, we approximate convex non-smooth continuous func-
tions by convex di�erentiable functions which are parameterized by
a scalar � > 0 and have convenient limit behavior as � ! 0. This
allows the use of Newton-type algorithms for minimization and, for
standard numerical methods, translates into a tradeo� between solu-
tion quality and speed. We prove that our methods apply to arbi-
trary multivariate convex piecewise linear functions that are widely
used in synthesis and analysis of electrical networks [19], [27]. The
utility of our approximations is particularly demonstrated for wire-
length and nonlinear delay estimations used by analytical placers for
VLSI layout, where they lead to more \solvable" problems than those
resulting from earlier comparable approaches [29]. For a particular
delay estimate we show that, while convexity is not straightforward
to prove, it holds for a certain range of parameters, which, luckily,
are representative of \real-world" technologies.
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I. Introduction

W
E consider minimization of convex and continuous
objective functions that are di�erentiable almost ev-

erywhere, except for points where directional derivatives
disagree, e.g., functions involving absolute values. Exam-
ples in VLSI analytic placement include wirelength [1], [28]
and delay [13], [14], [29], [27], both of which depend on the
absolute value of cell-to-cell distances. Examples abound
in other applications, e.g., multi-facility location [6], [11],
[20] and de-noising in image processing.
Classic minimization algorithms, e.g., Newton methods

and variants [23], [16], [35], assume di�erentiability and
are inapplicable if optima occur at or near points of non-
di�erentiability.1 Therefore problem-speci�c algorithms
have been developed. In several works [1], [11], [20], non-
di�erentiability has been addressed by function regulariza-

tion, i.e., removing non-di�erentiabilities without signi�-
cantly changing the set of minimizers The main bene�t of a
successful regularization is that Newton-type methods be-
come applicable: their speed improves as the magnitude of
the regularization increases, but optima of the regularized
objective diverge from those of the original problem. To
gauge the tradeo� between the speed and solution quality,
our regularization is parameterized by a scalar � � 0, with
� = 0 corresponding to the original function and any � > 0
giving a smooth function amenable to numerical methods.
Reasonable convergence properties as � ! 0 and problem-
independent scaling of � allow the use of the regularized
objective, instead of the original objective, for practical
applications.
This paper proposes new generalized approaches to con-

struct regularizations for given objectives including arbi-
trary convex piecewise linear functions that are widely used
in synthesis and analysis of electrical networks [19]. The
described methods extend those applied to analytical place-
ment in VLSI layout in [1], where the regularized objec-

1There are more sophisticated methods that can treat non-
di�erentiability directly. However, they typically complicate algo-
rithms, increase computational e�ort, and have convergence prob-
lems. Examples include subgradient optimization [15], use of an aux-
iliary variable and auxiliary inequality constraints [12, x4.2.3] or solu-
tion of a sequence of problems with updated weights in the objective
function [12, x4.2.3].
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tive lead to a new interpretation of the well-known heuris-
tic GORDIAN-L [28] and suggested a faster algorithm.
Comparable regularizations of linear wirelength and path-
delay based objectives cannot be produced by previous ap-
proaches.2 Combining our proposed regularization with a
novel strictly convex estimate for path-based delay yields
problems that are amenable to Newton-type methods, yet
are smaller and easier to solve than those produced by [13],
[14], [29]. We thus achieve a new outlook on performance-
driven analytical placement.
Section II reviews previous work on timing-driven VLSI

placement and de�nes an application domain of interest.
Section III describes our proposed methods of function reg-
ularization, along with asymptotic analysis, typical exam-
ples and a theorem on applicability to arbitrary convex
piecewise linear functions. Applications to timing-driven
VLSI placement are given in Section IV followed by empir-
ical validation in Section V, and conclusions in Section VI.

II. Past work and motivating examples

A. Wirelength approximation

Analytical placers locate cells to minimize wirelength by
solving a sequence of optimization problems. Since the
exact wiring of nets is unknown until routing occurs, wire-
length estimations are used. For instance, one can solve
the problem:

min
x
f
P

i>j aij jxi � xj j : Hx = bg; (1)

where x is the cell location vector and each non-negative
number aij weights the importance of keeping cells i and
j in close proximity (when cells i and j are not con-
nected, wij = 0). The matrix H represents generic lin-

ear placement constraints via the linear system of equa-
tions Hx = b. Linear constraints include �xed and aligned
cells as well as center-of-gravity constraints [28] intended
to spread cells evenly throughout the placement region. A
similar optimization can be formulated in the y direction.
Unfortunately, the presence of j:j implies that the prob-
lem as formulated is not directly amenable to Newton-type
methods since the objective function is neither di�eren-
tiable nor strictly convex. Linear programming represen-
tations of the above problem [33] with 104 { 106 unknowns
and constraints are too expensive [27] where practical al-
gorithms require very e�cient numerical solutions.
PROUD [30] and other algorithms [18], [24] minimize3:

min
x
f
P

i>j aij(xi � xj)
2 : Hx = bg; (2)

where the linear objective is changed to the quadratic ob-

jective. The ease of minimization is due to the simplicity of

2In [20], the lp norm (
P

jxij
p)

1

p is regularized with (
P

jxij
p+�)

1

p ,
which is not smooth for p=1 (the Manhattan norm which governs
cell-to-cell distances used in wirelength and delay estimation).
3To further illustrate the purpose of the linear constraints, we point

out that PROUD [30] do not include any constraints into the prob-
lem formulation; i.e., H = 0. On the other hand, both [18], [24]

include �rst moment constraints 1

n

P
i
Aixi = Xc to help cell spread-

ing, where Ai is the area of cell i and Xc is the desired center of
gravity.

the quadratic objective which results in the problem being
solved via the solution of one system of linear equations.
Another algorithm, GORDIAN-L [28] and [9]4 minimizes

the linear objective through a series of quadratic objectives
with updated edge weights

min
x�

f
P

i>j
aij

jx��1
i

�x��1
j

j
(x�i � x�j )

2 : Hx� = bg; (3)

where x��1 and x� denote cell location vectors at iterations
� � 1 and �. A quadratic objective is used to avoid the
non-di�erentiability of (1). Coe�cients ij =

aij
jx��1

i
�x��1

j
j

are computed at a given iteration. The updated values
x�i are then found by quadratic minimization and used to
re-compute ij .
As an alternative, regularization of (2) has been proposed

in [1] and considers:

min
x
f
P

i>j aij

q
(xi � xj)

2
+ � : Hx = bg: (4)

This optimization problem was solved in [1] in two ways:
with a linearly-convergent �xed-point method due to
Eckardt's [7], [8] generalization of the Weiszfeld algo-
rithm [34], and with a novel primal-dual Newton method
having quadratic convergence. Numerical testing in [1] il-
lustrates the tradeo�s in values of � > 0 versus time and
di�culty.5

It appears that PROUD favors a simpler but \incor-
rect" objective to capitalize on known algorithms, while
GORDIAN-L pursues the \correct" objective with a new
specialized algorithm. The regularization approach is in
the middle | the objective function is modi�ed by very
little so that standard optimization techniques can be ap-
plied, although the optimization techniques are perhaps
more involved than those in PROUD.

B. Delay approximation

Performance-driven analytical placers typically represent
critical path delays with an approximation of the Elmore
delay model [10], but di�er in how they address perfor-
mance objectives into their formulations.
Timing-driven placement typically relies on a particular

delay model for individual nets, and even \pin-to-pin" seg-
ments of interconnect. Based on an equivalent-� model
(i.e., a lumped-distributed model with half the capacitance
at each end), the Elmore delay can be represented in a
convenient form with posynomials, which allows a trans-
formation into an optimization instance with strictly con-
vex objective (see [12, x6.8.2.3]). However, this technique
is rather limited, e.g., it is not compatible with absolute

4Another example of constraint selection: GORDIAN-L [28] in-
cludes the �rst moment constraints, similar to [18] whereas [9] aban-
dons constraints in favor of an alternative approach to distribute cell
areas based on Poisson's equation.
5It is also shown in [1] that the GORDIAN-L heuristic can be in-

terpreted as a special case � = 0 of a �xed-point method having
guaranteed linear convergence for � > 0. The proof consists of di�er-
entiating the objective function in (4), setting � = 0 and comparing
to (3).
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values appearing in length calculations such as Formula
(3).
A closed-form expression for interconnect delay of a dis-

tributed RC line has been derived in [26] (see also [3], [4]).
[14] simpli�ed that model by decomposing the distance into
x and y portions and ignoring the \crossterms" between x
and y. Thus, the delay between cells i and j is represented
as

dij = bdi + �riC
L
i +�(rhchjxi � xj j

2 + rvcv jyi� yj j
2) (5)

+�Cj(rhjxi�xj j+rvjyi�yj j)+�Ri(chjxi�xj j+cvjyi�yj j)

where bdi is the intrinsic cell delay of cell i, Ci is the input
load capacitance, Ri is the equivalent on-resistance of the
output transistor and CL

i is the capacitive load. rh; rv; ch
and cv are per-unit vertical and horizontal resistance and
capacitance.
[14] determined optimal values of constants experimentally
as
� � = 1:02; � = 2:21 for 90% rise threshold
� � = 0:59; � = 1:21 for 70% rise threshold
� � = 0:5; � = 1:0 for 62% rise threshold
A popular ad hoc approach is to convert timing analysis
results into net weights [31], [25] used in the wirelength
objective function. For example, SPEED [25] extends the
GORDIAN-L algorithm to account for timing information
by modifying the objective function in (3) as

min
x�

f
P

i>j !ij
�
ij(x

�
i � x�j )

2
: Hx� = bg;

where !ij are net weights calculated during a timing anal-
ysis step performed between iterations � and ��1. Known
cell coordinates and a wiring model for each net are re-
quired for the timing analysis. For a net model, a star
model is used with Elmore delays. Note that the weights
do not directly account for the delay. Intuitively, the e�ect
of weights is to duplicate important nets to increase their
inuence on the total [weighted] wirelength objective. In-
teger weight k is equivalent to k copies of the same net.
We are not aware of convergence rate studies or non-trivial
a priori conditions for convergence. In particular, conver-
gence is unclear when intermediate optimizations are not
solved to the true minimum, which is the case in real-life
solvers.
Including path delays explicitly as non-di�erentiable con-

straints is a more rigorous approach [13], [14], [29], but
also more challenging for implementations and numerics.
A typical implementation tradeo� is between, on one side,
budgeting of net delays and including constrains for [many]
individual nets into the optimization problem, or on the
other side, establishing (fewer) constraints for individual
critical paths. Per-net constraints are simple and only in-
clude the locations of incident cells, while per-path con-
straints include locations many more cells and lead to more
elaborate and potentially less successful line search.
For example, the Prime algorithm [14] handles con-

straints using the Lagrangian relaxation (one constraint
per-path). The problem reduces to the minimization of

L(x; �) =
X
ij

cij jxi � xj j+

�X
k=1

�k(hk(x) � �)

where hk(x) is the path-delay function and � is the tar-
get clock cycle. Rewriting gives the primal minimization
objective6

l(x) =
X
ij

2
4cijjxi � xj j+

X
k2Kij

�kdij

3
5+ const

The resulting method is analogous with a nonlinear resis-
tive network problem. They also draw an equivalence re-
lationship to GORDIAN-L [28]. The nonlinear problem
is solved by using piecewise linear approximations and ex-
plicitly monitoring for and skipping non-di�erentiabilities.
The duals are updated using a simple Newton method.

Following the other alternative, the RITUAL algorithm
[29] computes required arrival ri and actual arrival times
aj by performing timing analysis between iterations. Then
it minimizes

L = 0:5wTQw+ bTw

(same as in GORDIAN [28] via w = (x;y)), subject to
constraints

aj � ai + dij aj � Te ai � Ts

where

dij = Ri �
X
sinks

(chjxi � xsink j+ cv jyi � ysinkj)

The use of variables xi and xsink is reminiscent of LP for-
mulations for bounding box minimization. This results in
more constraints (four active constraints per net), com-
pared to Prime. In order to avoid the numerical degenera-
cies of linear programming, RITUAL resorts to quadratic
programming. Lagrangian relaxation is used to handle
constraints; additionally it is shown that only \active con-
straints" (determined by graph traversal) need to be con-
sidered. The primal problem reduces to solving one linear
system, and the duals are solved by use subgradient opti-
mization.

[27] reduces a series of delay budgeting problems to linear
programming by a general construction that approximates
nonlinear delay terms by univariate piecewise linear func-
tions. The resulting LP formulations are too costly to solve
since their combinatorial complexity increases when better
precision is required.7

6The constant term is the sum of � , intrinsic cell delay and delay
from the solution in the y-direction
7[27] relies on speci�cs of particular budget delay formulations to

apply rather elaborate algorithms based on min-cost ows and graph-
based simplex methods.
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The above approaches to including explicit performance
information all have considerable drawbacks and imple-
mentation di�culties, e.g., the degeneracies of linear pro-
gramming formulations are rather di�cult to address in a
simple implementation. Our approach will be to approx-
imate linear programming formulations by nonlinear pro-
gramming to allow e�cient Newton methods. The com-
putational complexity of our proposed smooth nonlinear
approximations does not increase with required precision,
unlike the complexity of piece-wise linear approximations
that enable linear programming (cf. [27]). Therefore, when
solving mixed linear and nonlinear programs, we pursue
smooth nonlinear approximations rather than reductions
to linear programming.
We distinguish two desired features of such an ap-

proach. (i) strictly convex edge delay estimates in terms of
cell positions and (ii) their regularization to remove non-
di�erentiabilities. Critical path delays are then computed
as sums of corresponding edge delays, resulting in smooth
and convex functions.
We demonstrate below how these elements lead to con-

cise performance-driven formulations amenable to e�cient
Newton-type methods, where path delays are integrated
into the objective function.

III. Function regularization

In this section we develop a general method to modify
functions so that standard optimization techniques can be
applied. The real-valued function f(�) that we modify is
assumed to be convex and continuous over an open subset
X � Rn. We seek a family of smooth convex functions
f�(�) for � > 0 with
(a) lim�!0 f�(x) = f(x) uniformly on Rn and
(b) lim�!0 infx2Rn f�(x) = infx2Rn f(x)
For simple functions, we provide \recipes" for regular-

ization and prove their desired limit behavior. For more
complicated functions, e.g., f(x) = 2jxj + x2, we isolate
non-di�erentiabilities to small symbolic fragments (e.g., ab-
solute value functions) for which recipes exist. Replacing
the symbolic fragments with their regularizations yields a
regularization of the overall function.

A. Piecewise linear functions

We begin by considering f : R ! R and distinguish a
common case where regularizing f is easy:

f(x) =

�
�1(x� x0) + C; if x � x0;
�2(x� x0) + C; if x < x0;

(6)

where �1 > 0, �2 < 0, and C is arbitrary, i.e., a \V-shape".
For p � 2, the �-regularization of f is de�ned by:

8x; f�(x) = C + (jf(x) � Cjp + �)
1

p : (7)

This regularization is di�erent from that in [20], as p is now
a regularization parameter.

Example 1 If f(x) = jxj and p = 2 then f�(x) =p
x2 + �. This can be used to regularize the l1-norm. The

value p = 2 is typical since it is the smallest value for which
the regularized function is twice-di�erentiable.
Theorem 1: 8p � 2;8� > 0, f� de�ned in (7) is:
(a) at least (dpe � 1)-times continuously di�erentiable,
(b) strictly convex,
(c) for p > 2 a non-integer: exactly dpe � 1 = bpc-times
continuously di�erentiable,
(d) for p � 2 an integer: at least p-times di�erentiable
(in fact, in�nitely di�erentiable) i� �1 = ��2.
Proof: The function f� is continuous everywhere and is in-
�nitely di�erentiable everywhere except at x0. The second
derivative exists and is positive everywhere, except possibly
at x0, leading to (b).
The 1st,...,(dpe�1)th left and right derivatives of jf(x)�

Cjp are all zero at x0, while for p a non-integer its higher
derivatives are in�nite. The chain rule then implies (a)
and (c).
If �1 = ��2 and p � 2 is an integer, then f�(x) =

C+((�1)
pjx�x0j

p+�)1=p, and is in�nitely di�erentiable. If,
instead, �1 6= ��2 then the left and right p-th derivatives
of jf(x)�Cjp di�er at x0, proving the \only if" of (d).
Theorem 2: For f� de�ned in (7), we have:
(a) 8x; jf�(x) � f(x)j � �1=p,
(b) lim�!0 f�(x) = limp!1 f�(x) = f(x) uniformly onR,
(c) 8x;8�1 > �2 > 0, f�1(x) > f�2(x) > f0(x) = f(x),
(d) lim�!0minx2R f�(x) = minx2R f(x),
(e) 8� > 0 limx!�1 f�(x) = f(x).
Proof: The inequalities (c) are shown by subtracting C
and taking both sides of the inequality to the power p. Note
that f� � C � �1=p > 0 for � > 0.
For (a), observe that � = j(f� � C)p � (f � C)pj =

j(f� � C) � (f � C)j � j(f� � C)p�1 + : : : + (f � C)p�1j �

(f� � C)p�1jf� � f j � �
p�1

p jf� � f j.
Item (b) follows from (a); (d) follows from (b) and (c).
Using (c) and the above inequalities, we have jf�(x) �

f(x)j � �
(f�(x)�C)p�1

. Since limx!�1 f�(x) = 1 for

�1; �2 6= 0, we have that limx!�1 jf�(x) � f(x)j = 0,
proving (e).
Note that 2(e) is not true anymore with �1 = 0 or �2 = 0

(e.g., f(x) = �1maxfx; 0g or f(x) = ��2minfx; 0g).
These two cases can be reduced to �1 6= 0 and �2 6= 0 by
rotating the plot around the coordinate center, which mo-
tivates an alternative regularization of f that is coordinate-
independent. Consider the upper branch of a hyper-
bola with asymptotes going along the plot of f(x). For
f(x) = �1maxf0; x�x0g+C (the same as (6) with �2 = 0)
such a hyperbola can be de�ned in the x-y plane (i.e., for
y = f(x)) with the following equation:8

(2(y � C)=�1 � x+ x0)
2 � (x� x0)

2 = �: (8)

One can verify that Theorem 1 holds for this regulariza-
tion with the regularized function being in�nitely di�eren-
tiable as well. Theorem 2 also holds.

8For �1 > 0 and �2 < 0, a hyperbola similar to that in Equation
(8) would de�ne an in�nitely di�erentiable regularization, otherwise
satisfying the statements of Theorems 1 and 2. For �1 6= ��2, it will
di�er from the regularization de�ned in (6) because the latter is not
twice-di�erentiable according to Theorem 1(d).
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The asymptotic behavior of regularizations stated in
Theorems 1 and 2 can be proven for the case of arbitrary
univariate convex piecewise linear functions using the fol-
lowing theorem.
Theorem 3: Any convex piecewise linear function with
k linear segments can be represented (not necessarily
uniquely) as a sum of a constant and k�1 convex functions
of the form (6), possibly with �1 = 0 or �2 = 0
Proof: We call a convex function of the form given in

(6) a simple function. It su�ces to show that a convex
piecewise linear function f(x) with k � 1 > 0 break points
can be represented as a sum of such a function with k � 2
break points and a simple function.
Take a break point x0 and consider the two adjacent

linear segments. Continuing them to +1 and �1 gives
a simple function g(x) such that g(x) � f(x). Moreover,
f(x)�g(x) is convex since we are simply subtracting a lin-
ear function from f(x) on each of (�1; x0] and [x0;+1),
while f(x) � g(x) has a horizontal linear segment in place
of the two maximal linear segments adjacent to x0 and is
convex near x0. The procedure is illustrated in Figure 1.

Corollary 4: Any univariate convex piecewise linear
function with k linear segments can be �-regularized with
jf(x)�f�(x)j � �1=p(k�1). The regularization will possess
properties according to Theorems 1 and 2.

Example 2 If �1 and �2 in (6) are of the same sign, but

f(x) is still convex, then by Corollary 4 it can be regular-
ized.
Figure 2 shows a plot of piecewise linear f(x) together

with f�(x). f(x) can be interpreted as the objective func-
tion for a placement problem with one movable cell con-
nected to three �xed pads located at 1, 0 and 0:4 by edges
of weight 1; 2 and 1 respectively.
A single univariate piecewise linear function can be e�-

ciently minimized with convex binary search, but this be-
comes di�cult when such functions are combined, e.g., as
f(g(y))+f(x)g(y), since the combinatorial complexity (i.e.,
the number of maximal domains of linearity) considerably
increases. Working with smooth approximations, combina-
torial problems can be circumvented via symbolic di�eren-
tiation. In other words, gradient and Hessian computations
and smooth minimization may be much easier than solving
linear programs.
We now show a generalization of the above theorem to

multivariate functions.
Lemma 5: An arbitrary multivariate convex piecewise
linear function with k linear domains can be represented
as a maximum of k linear functions.
Proof: Every linear domain is represented by a linear

function, which is dominated by the original function ac-
cording to the convexity property. Since the domain of the
original function is the union of linear domains, the maxi-
mum of all respective linear functions is never smaller than
the original function.
Corollary 6: An arbitrary multivariate convex piece-
wise linear function segments can be �-regularized with
jf(x)� f�(x)j � �1=p log k. The regularization will possess

1

1.5

2

2.5

3

3.5

4

4.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

f(x)
f_beta(x)

Fig. 2. f(x) = j1� xj+ 2jxj+ j0:4� xj with p = 2; � = 0:01 and

f�(x) =
p

(1� x)2 + � + 2
p

x2 + � +
p

(0:4� x)2 + �

properties according to Theorems 1 and 2.
Proof: The maximum function of k arguments can be

regularized by a reduction to k two-argument maximum
functions, arranged into a binary tree of depth log k.
Note that the estimate in Corollary 6 is better than in the

previously considered special case of univariate functions.
Corollary 6 shows that an arbitrary convex piecewise

linear function can be minimized using �-regularization.
Additionally, we can regularize an arbitrary linear pro-
gram. First, by a well-known reduction (used in the El-
lipsoid method) it su�ces to solve constraint-satisfaction
for Ax � b. The latter can be reduced to unconstrained
minimization of a convex piecewise linear function by mini-
mizing the violation of constraints (the constraints are sat-
is�ed if the value 0 is reached). However, the practical
utility of such a general reduction is not clear.

B. Symbolic regularization and examples

For many functions, the cusps that need to be regularized
are due to an absolute value or more general case analysis
in the symbolic representation of the function. De�ne F
by:

8x; F (x) =

�
F1(x� x0) + C; if x � x0;
F2(x� x0) + C; if x < x0;

(9)

with F1(t) continuously di�erentiable for t � 0 and F2(t)
continuously di�erentiable for t � 0. We also assume that
F (t) is non-negative and convex as well as F1(0) = F2(0) =
0 (but possibly F 01(0

+) 6= F 02(0
�)). Let C be arbitrary.

For p � 2, the �-regularization of F (x) is de�ned by:

8x; F�(x) = C + (jF (x) � Cjp + �)
1

p ; (10)

which subsumes (7) for the piecewise linear case.
Replacing a symbolic fragment with a regularization in

a larger function leads to a smooth function. Multiple reg-
ularizations can be performed with single � or multiple
independent �i. The convexity properties and the limit
behavior of the fragment regularizations often extend to
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(a) (b) (c)
x0 x1 x2 x0 x1 x2 x0 x1 x2

= =+
+

+

Fig. 1. Illustration of the proof of Theorem 3. (a) the original piecewise linear function with three break points, (b) the same function
divided into the sum of a simple function and a piecewise linear function with two break points. (c) the �nal result in which the original
function in (a) is divided into three simple functions obtained by the division of the piecewise linear function with two break points in (b).

the resulting function through sums, products, exponents,
etc. Properties 1 and 2 from [20] provide excellent ex-
amples of such symbolic regularization; however, the non-
di�erentiable fragments are regularized di�erently there.

Example 3 maxfa; bg = (a + b + ja � bj)=2 and

minfa; bg = (a + b � ja � bj)=2 can be regularized as, re-
spectively, (a+ b+ (ja� bjp + �)1=p)=2 and (a+ b� (ja �
bjp + �)1=p)=2.
In particular, for f(x) = maxf0; (x � x0)g and p = 2,

f�(x) =
1
2 ((x� x0) +

p
(x� x0)2 + �), which matches the

hyperbola in (8) when �2 = 1.

Example 4 f(a; b) = maxf(a+b)2; (a�b)2g = a2+b2+

2jabj can be regularized as f�(a; b) = a2+b2+2
p
a2b2 + �.

C. Practical issues

When f(x) is convex, but not strictly convex, it can have
multiple minimizers. However, f�(x) is strictly convex for
� > 0 and has only one minimizer (see, e.g., Figure 2).
>From the theorems in Section III, under mild conditions a
minimizer of f can be obtained as the limit of the minimizer
of f�(x) as � ! 0. In some cases, the minimizer of f�(x)
already minimizes f(x), e.g., for any � the unconstrained
minimizer of (7) is the unconstrained minimizer of (6) if
�1 > 0 and �2 < 0.
Numerical methods using �-regularization require spe-

ci�c values of � to evaluate the regularization or its deriva-
tives. Ideally, there should be a way to de�ne � via an
instance- and scale-independent parameter (clearly, if one
scales all x coordinates in an instance up by a factor of
100, the e�ect of the old value of � will be di�erent). In
practice, the pth exponent of the maximal x value for a
problem can be multiplied by an instance-independent �0
to produce �.

IV. Applications to analytical placement

We now show how regularization enables the use of
Newton-type methods in delay minimization. With a judi-
cious choice of a wiring model for each net, the application
of regularization results in smooth and convex path-based

delay modeling which previous analytical placers were un-
able to handle directly in the optimization process (cf. Sec-
tion 2.2).

A. Convex delay model for a single net

For a given net we use rectilinear L-shaped interconnects
to connect the source directly to each sink (see Figure 3).
An equivalent-L model is used for each such segment L-
segment by distinguishing the x- and the y-leg. Let Cs

be the capacitance of sink s, Rd be the driver resistance
and rx (ry) and cx (cy) be the per-unit interconnect series
resistance and shunt capacitance, respectively, in the x- (y-
) direction equivalent-L model. The delay from the source
to a speci�c sink consists of:
(a) Source resistance times all downstream capacitance:

Rd(
P

s cxj�j+ cyjj+ Cs) (11)

(b) Interconnect resistance times sink capacitance:

(rxj�j+ ryjj)Cs (12)

(c) Interconnect resistance times interconnect capaci-
tance:

rxcx�
2 + rycy

2 + rycxj�jjj: (13)

where � = xd � xs and  = yd � ys. Components (a)
and (b) are convex. However, they are non-di�erentiable
when cells are aligned vertically or horizontally. Compo-
nent (c) is clearly convex if (but not \only if") the cross
term j�jjj is ignored. The magnitude of the cross term can
be comparable to other terms and should not be ignored
if strict convexity can be otherwise guaranteed. Note that
the L-shaped interconnect is assumed to have its vertical
leg incident to the source, and its horizontal leg incident to
the sink.9

This model is somewhat similar to the model introduced
in [14] (see Equation (5)). Terms representing the driver

9This seemingly arbitrary choice can be \�xed" in several ways, but
we feel that the small overall improvement in accuracy will not justify
increased complexity.
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Fig. 3. Wiring model for a single net.

resistance times all downstream capacitance and the in-
terconnect resistance times sink capacitance are the same
except for the constant factors that [14] determined exper-
imentally (those can also be trivially added to our model
and do not inuence theoretical analyses). On the other
hand, we do not ignore the coupling of x and y directions
in the interconnect delay term. [14] also notes that drop-
ping the interconnect term results in a linear model and
reduces to that used by Jackson and Kuh [13].

Proposition 7: When cy=ry > 0:25cx=rx then the delay
component in Formula (13) is strictly convex.

Proof: The functions q�; q+ : R2 ! R

q�(�; ) = �2rxcx + 2rycy � rycx�; (14)

q+(�; ) = �2rxcx + 2rycy + rycx�; (15)

are strictly convex under the assumption of the propo-
sition. This claim is easily checked by considering
the non-negativity of the Hessians of q� and q+, i.e.,
(2rxcx) � (2rycy) > (rycx) � (rycx) for both functions.
Since jrycxj = maxfrycx;�rycxg, the function d(�; ) =
maxfq�(�; ); q+(�; )g is the maximum of two strictly
convex functions and is hence strictly convex. The function
d(xd � xs; yd � ys) is strictly convex as a composition and
equals component (c) of the interconnect delay.

Thus, given suitable capacitance to resistance ratios in
the di�erent routing directions (e.g., di�erent metal lay-
ers), the cross term can be kept. Regularization of delay
components (a) and (b) is straightforward. Component
(c) is regularized similarly to Example 4 in Section III-B
as q

(�rycx)
2
+ � + �2rxcx + 2rycy: (16)

and the convexity is preserved. Figure 4 illustrates (13)
and its regularization (16).

Again, observe that proposed wiring model assumes an
order in which the x- and y-legs of the L-segment are routed
(when the source and the sink do not have the same x or
y coordinates). However, we select this order arbitrarily
and adjust the resistance-capacitance ratios in Proposition

7 appropriately. Certainly, both models could be repre-
sented for each L-segment during the optimization, e.g.,
the average or the maximum of the two models can be
easily expressed (with maximum function being regular-
ized). Quite likely, a single wiring model represents typical
tradeo�s accurately enough, e.g., in comparison with net
re-weighting or various heuristic updates used by earlier
proposed methods.

B. Wirelength and delay brought together

We have illustrated the use of function regularization
to both wirelength and delay approximation. Here, we
propose several concise performance-driven formulations
which tie wirelength and delay approximations together in
a consistent fashion; i.e., a problem formulation in which
both wirelength and delay are considered simultaneously.
In order to be speci�c, these formulations use explicit enu-
merations of critical paths, potentially unacceptable for
large modern circuits (there may be exponentially many
critical paths). We note, however, that �-regularization
advocated in this work can be applied with equal success
to timing-driven optimizations that handle critical paths
implicitely, via Static Timing Analysis. This is because
the delay of each timing edge can be regularized indepen-
dently, and their sum will be a regularization of path delay.
Below we propose unconstrained formulations which are

favored by newer analytical placers [9] and can be trans-
parently handled by leading nonlinear minimization algo-
rithms and software [12], [16], [35].
For penalization of path delays in a particular set P (e.g.,

speci�ed by the designer) the objective function is:

min
x;y

ff(x;y) +K
P

�2P d��(x;y)g; (17)

where f(x;y) is an estimate of the total netlist wirelength
(e.g., (4)) and d��(x;y) is the regularized delay for path �.
Parameter K normalizes delay and wirelength, thus allow-
ing one to tune the trade-o� between smaller wirelength
and smaller delay. P may be constructed to exclude false
paths and include paths that look important to circuit de-
signers.
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Fig. 4. Regularization of the interconnect delay.

For minimization of longest path delays the objective
function is:

min
x;y

n
f(x;y) +K

P
�2P max

n
�; d��(x;y)

oo
; (18)

where � is a \soft" target delay, i.e., we are not interested in
minimizing path delays below �. Since delay information
is included in the objective function, the number of con-
straints is not increased by the inclusion of performance
information.
The parameter � can be adjusted between iterations of

timing optimization. Note that this formulation avoids
computing the longest path, as the multi-variate max func-
tion is not smooth and has exponentially many cusps. Al-
ternatively, the multi-variate max can be re-written as a
chain of two-variate max functions and regularized sequen-
tially ([17] proposes a new, direct regularization of the
multi-variate max function). Also note that when man-
ual circuit modi�cations are allowed after automatic CAD
tools, it is usually not di�cult to speed up any given path.
Therefore, minimizing the longest path delay is not the only
goal | one may want to minimize the number of critical
paths, or the average criticality of a path. The latter can
be achieved by our formulation with appropriate selection
of the coe�cient K, since average path delay is a special
case of weighted total path delay.
Finally, although we favor unconstrained formulations,

we note that convex constraints, e.g., �rst moment con-
straints [18], [28], [25], [24] can be easily included and
solved [35] with Newton-type methods.

V. Empirical validation

In this section we compare the placement quality
produced by function smoothing techniques (we used
�-regularization with �0 = 0:01), by straightforward
quadratic placement10 and by linear programming (guaran-
teed optimality, but with huge running time).11 We are not
aware of such a comparison in the literature, even though

10I.e. solving one linear system per x� or y� dimension.
11To avoid accounting of the e�ects of converting multi-pin nets

into cliques or stars, we apply all methods after such a conversion.
Optimal solutions produced by linear programming give a basis for
comparison.

quadratic placement has been widely used in academic and
industrial placement tools.

We considered three sub-circuits that appear during top-
down placement of larger circuits and converted them into
graphs using a standard clique conversion so that all ap-
proaches be equally applicable. During top-down place-
ment [2], [32], a given circuit is recursively partitioned in
two by straight-line cuts until the partitions are so small,
that all cells inside can be placed by exhaustive enumer-
ation or branch-and-bound. Clearly, the core of the algo-
rithm is the partitioning step. If one subcircuit is parti-
tioned at a time, all other cells are considered in the ge-
ometric centers of their respective subregions. Placement
is performed to minimize wirelength, and its results can
be interpreted, e.g., by median partitioning (see [32] for a
more complicated scheme). The main di�culty that can
be addressed by our analytical formulation is the ability to
trade of wirelength with other, possibly non-linear, objec-
tives. Our experiments test the practicality of minimizing
the wirelength alone, since (i) the timing terms in our for-
mulations are often not nearly as computationally intensive
as wirelength, and (ii) the structure of timing-critical paths
may vary considerably, so that even a dozen speci�c exper-
iments are unlikely to give new insight compared to the
pure minimization of wirelength.

It is important to note that, unlike in min-cut partition-
ing, analytical placement requires su�ciently many �xed
vertices to \pull apart" the movable vertices. The top-
down placement paradigm does not provide such instances
at the �rst level of recursive partitioning. For example,
our largest testcase with 17,380 movable cells is a part of a
larger circuit having 68,685 placeable cells (roughly 4 times
more) and 744 �xed pads. This corresponds to the third
level of top-down partitioning. The �rst three levels were
performed by a min-cut partitioner.

Note that, since a very large number of partitionings
(min-cut or analytical) need to be solved in order to place
a circuit, each needs to be performed extremely fast. For
example, in pure min-cut placemet (which cannot directly
address non-linear terms), competitive runtimes for a cir-
cuit with 20K cells will be on the order of 10-20 seconds
per start (2-4 independent randomized starts are often used
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in placement applications). Analytical placers are typi-
cally slower, but their runtime must have the same order
of magnitude for them to stay practical. Note that ana-
lytical placers are typically deterministic and are therefore
applied only once to each problem instance.
Our empirical results are reported in Table I. Clearly, the

results may vary for other applications, and also depend on
speci�c values of � and convergence criteria used. In fact,
the latter would normally be tuned to particular applica-
tions and runtime budgets (the smaller the �, the better
solutions can be produced, for the cost of larger runtime).
Therefore, our experiments should only be considered as a
\proof of concept".
For the benchmarks considered, our implementation of

�-regularization is able to quickly �nd solutions that are
within 20% of optimum produced by the leading commer-
cial linear programming solver CPLEX 6.5.1 (March `99
revision). The CPU time growth for the �-regularization
approach is very close to linear in the number of movable
cells. Additionally, linear programming becomes inappli-
cable once the placement objective has nonlinear terms.
This is often the case in leading-edge applications, because
piecewise linearization of the nonlinear terms will signi�-
cantly exacerbate run time.
Solutions produced by quadratic placement are at least

twice as far from the optimum. Our results con�rm that
quadratic placement su�ers from minimizing a wrong ob-
jective, no matter how well and how quickly this objective
can be minimized in its own right.
In addition to the particular application we used to eval-

uate our methods, recent placement literature o�ers a good
selection of applications and approaches of di�erent kinds
compatible with our methods. In particular, while [32]
presents a top-down placer based on analytical optimiza-
tion and avoids any use of min-cut partitioning, two works
published in the Fall of 2000 develop approaches that do
not use any form of partitioning : [22] proposed a at force-
directed macro cell placer, and [5] described a multilevel
large-scale placer based on recent advances in numerical
analysis. These two works suggest another type of appli-
cations where our techniques may be useful.

VI. Conclusions

The main assertion of our work is that the mathematical
properties of the objective function are more fundamental
than particular optimization algorithms. The construction
or adaptation of optimization algorithms may be simpli-
�ed once the properties | especially di�erentiability and
convexity | are understood.
Numerical solvers perform best with smooth and con-

vex functions. However, non-di�erentiable points occur in
important objective functions, e.g., when Manhattan dis-
tances are used. We have presented general, provably good
regularization techniques for eliminating cusps in optimiza-
tion objectives and discussed their theoretical and practi-
cal properties. In particular, we can apply nonlinear opti-
mization to minimize an arbitrary convex piecewise linear
function (a widely-used abstraction for modeling electrical

networks [19]), and even an arbitrary linear program. Our
techniques rely on generic minimization algorithms rather
than highly specialized heuristics, e.g., in previous works
on circuit placement [25], [28], [29], [30]. The utility of our
methods has been demonstrated for wirelength- and delay-
based objectives in VLSI applications, where they lead to
smaller and easier performance-driven placement formula-
tions. Additionally, since convexity plays an important role
in regularizations and subsequent optimization, we high-
light the need in provably convex delay models. Our pro-
posed Elmore-type delay model is similar to that used in
[14] and is provably convex given conditions found in typ-
ical applications.
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(1937), pp. 355-386.

[35] S.J. Wright, Primal-Dual Interior-Point Methods, Philadelphia,
SIAM Press, 1996.

Bio sketches of authors

Ross Baldick is an associate professor of elec-
trical and computer engineering at the Univer-
sity of Texas at Austin. He has undergraduate
degrees from the University of Sydney, Aus-
tralia. He received his M.S. and Ph.D. from
the University of California, Berkeley.

Andrew B. Kahng (b. Oct. 1963, San Diego,
CA) received the A.B. in applied mathemat-
ics/physics from Harvard College, and the M.S.
and Ph.D. in computer science from the Uni-
versity of California at San Diego. After 11
years on the UCLA computer science faculty,
most recently as Professor and Vice-Chair, he
is now Professor in the UCSD CSE and ECE
departments as of January 2001. He has pub-
lished over 160 papers in the VLSI CAD lit-
erature, centering on physical layout and per-

formance analysis; he has also received the National Science Foun-
dation Young Investigator award and a Design Automation Confer-
ence Best Paper award. He was the founding General Chair of the
ACM/IEEE International Symposium on Physical Design, and since
1997 has de�ned the physical design roadmap for the SIA Interna-
tional Technology Roadmap for Semiconductors. He currently leads
the "C.A.D." theme in the MARCO Gigascale Silicon Research Cen-
ter (http://vlsicad.cs.ucla.edu/GSRC/) and the U.S. Design Tech-
nology Working Group for the International Technology Roadmap
for Semiconductors. His research interests include VLSI physical lay-
out design and performance analysis, combinatorial and graph algo-
rithms, and large-scale heuristic global optimization.



11

Andrew Kennings received the B.A.Sc.,
M.A.Sc., and Ph.D. degrees in Electrical En-
gineering from the University of Waterloo,
Canada in 1992, 1994 and 1997 respectively.
He is currently working at Cypress Semicon-
ductor as a Sta� Software Engineer. His re-
search interests include VLSI physical layout,
analytical and combinatorial optimization al-
gorithms, and PLD architectures.

Igor Markov is an assistant professor of com-
puter science and electrical engineering at the
University of Michigan, Ann Arbor. He grad-
uated from Kiev University, Ukraine in 1993
with an undergraduate degree in mathemat-
ics. He received his M.A. in pure mathematics
from the University of California Los Angeles
(UCLA) in 1994. In 1995 he worked for Para-
metric Technology Corp. in Waltham Mas-
sachusetts, on solid modeling CAD software.
Igor Markov received the best Ph.D. student

award for 2000 at the Computer Science Department at UCLA.


