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Abstract

A linear wirelength objective more e�ectively captures timing, congestion, and other global placement
considerations than a squared wirelength objective. The GORDIAN-L cell placement tool [19] mini-
mizes linear wirelength by �rst approximating the linear wirelength objective by a modi�ed squared
wirelength objective, then executing the following loop { (1) minimize the current objective to yield
some approximate solution, and (2) use the resulting solution to construct a more accurate objective {
until the solution converges. This paper shows how to apply a generalization [5, 6] of a 1937 algorithm
due to Weiszfeld [22] to placement with a linear wirelength objective, and that the main GORDIAN-L
loop is actually a special case of this algorithm. We then propose applying a regularization parameter
to the generalized Weiszfeld algorithm to control the tradeo� between convergence and solution accu-
racy; the GORDIAN-L iteration is equivalent to setting this regularization parameter to zero. We also
apply novel numerical methods, such as the Primal Newton and Primal-Dual Newton iterations, to
optimize the linear wirelength objective. Finally, we show both theoretically and empirically that the
Primal-Dual Newton iteration stably attains quadratic convergence, while the generalized Weiszfeld
iteration is linear convergent. Hence, Primal-Dual Newton is a superior choice for implementing a
placer such as GORDIAN-L, or for any linear wirelength optimization.

Keywords: Interconnect delay, quadratic placement, linear wirelength, linear placement, analytic
placement, GORDIAN-L, Weiszfeld, Newton, Primal-Dual

1 Introduction

The placement phase of layout has a signi�cant impact on routability and performance of a given

IC design. Quadratic placement techniques have received wide attention over the past decade, since

they are e�cient enough to handle large designs while retaining good solution quality. The quadratic

placement approach can be traced back to [23, 8, 3, 21] and other early works. The basic idea is

to solve recursively generated sparse systems of linear equations, where each system captures a one-

�An earlier version of this paper was presented at ISPD-97. This work was supported by a grant from Cadence Design
Systems. Andrew B. Kahng is currently Visiting Scientist at Cadence (on leave from UCLA, 4/96 - 10/97)
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dimensional placement problem with minimum squared wirelength objective. The solution to any

given one-dimensional placement can be re�ned in various ways, e.g., the PROUD algorithm of [21]

applies min-cut partitioning to induce hierarchical subproblems, and the GORDIAN algorithm of

[13] applies min-cut partitioning as well as center-of-gravity constraints that de�ne more constrained

version of the original problem.

The heart of the quadratic placement technique lies in solving for the one-dimensional placements.

Two such placements in the x- and y-directions will induce a two-dimensional \global placement",

which due to the objective function and continuous formulation will have most cells clumped in the

center of the layout region. Quadratic placers vary mostly in how they map a global placement

to a feasible cell placement (i.e., with non-overlapped cells in legal locations). Min-cut partitioning

and center-of-gravity constraints are simply means of gradually \spreading out" the global placement

during the course of this mapping. The well-known example of GORDIAN [13] uses a conjugate-

gradient iteration to solve for optimal cell locations under the squared wirelength objective, then

partitions the cells by assigning each cell to one of four centers of gravity that correspond to the

four quadrants of the layout. Constraints are de�ned such that all cells assigned to a given center

of gravity must have average x- and y-coordinates at that location. The numerical optimization is

performed again with the added constraints, and each quadrant is subdivided into four subquadrants.

GORDIAN terminates when each cell has been assigned to a unique center of gravity.

Observe that the squared wirelength objective is applied only because it allows the one-dimensional

placement problem to be reduced to the solution of a system of linear equations. The main di�culty

with the squared wirelength objective is that it over-penalizes long wires and under-penalizes short

wires. Thus, a strongly connected cluster may be spread out over the placement which increases wiring

congestion for the router. The extra wiring caused by the spread of highly connected components can

also reduce the routing resource exibility needed to satisfy timing and signal integrity constraints.

Mahmoud et al. [16] have compared the linear and squared wirelength objectives for analog

placement and concluded that the linear wirelength objective is superior. Indeed, whenever a more

\detailed" placement objective is feasible, as with simulated annealing approaches [20], the preferred

objective has always been based on minimum spanning tree, single-trunk Steiner tree, or bounding-

box perimeter routing estimates. Such routing estimates reect linear wirelength and more accurately

capture congestion (routing resource utilization) and interconnect-related signal delay.1 Works such

1Recent literature has noted that a �rst-moment RC delay estimate such as Elmore delay [7] has a term that is
quadratic in the length of a source-sink routing path. In performance-driven deep-submicron design, this fact needs
to be taken into some perspective. We observe that a local net (say, O(100) �m in length) will typically be driven
by a small device and routed on high-impedance lower routing layers: when the driver resistance is high the dominant
portion of interconnect-related delay is from capacitive loading, i.e., it is linearly dependent on total wirelength. On the
other hand, a (timing-critical) global net (say, O(1000) �m in length) will be driven by a larger device and routed (with
appropriate spacing and topology) on wider, lower-impedance upper layers. Even if the ratio of driver/wire resistances
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as [18] have further shown that a linear wirelength objective can be used to form one-dimensional

placements that directly yield e�ective bipartitioning solutions.

The 1991 work of Sigl et al. [19] proposed an important modi�cation of GORDIAN, called

GORDIAN-L, which optimizes the linear wirelength objective.2 Since the linear wirelength objective

cannot be addressed directly by numerical methods, GORDIAN-L approximates the linear objective

by a quadratic objective, then executes the following loop { (1) minimize the current quadratic objec-

tive to yield some approximate solution, and (2) use this solution to �nd a better quadratic objective

{ until the solution converges. GORDIAN-L achieves solutions with up to 20% less area than GOR-

DIAN while signi�cantly reducing routing density and total minimum spanning tree cost [19]; it has

been used widely in industry for both ASIC and structured-custom design (e.g., Motorola PrediX

oorplanner, Siemens LINPLACE placer, etc.). However, the GORDIAN-L improvement comes at

the price of signi�cantly increased CPU cost ([19] reports a factor of �ve increase over GORDIAN).

To achieve reduced CPU cost, or substantially improved solution accuracy within given CPU cost

bounds, our work has developed alternative numerical methods for linear wirelength minimization.

The purpose of our paper is to apply new numerical methods to the problem of analytic VLSI

placement with a linear wirelength objective. Our contributions are as follows.

� We show that the main GORDIAN-L loop can be viewed as a special case of a generalized

version [5, 6] of a 1937 algorithm due to Weiszfeld [24]. This relationship allows us to extend

the technique to other objectives, e.g.,

� The GORDIAN-L solver uses a technique called minimal gate width (cf. page 429 of the original

GORDIAN-L paper [19]) to avoid numerical errors when the distance between two placed objects

is close to zero. While we can use the minimal gate width with generalized Weisz�eld, we

instead propose using a �-regularization parameter to control the tradeo� between convergence

and solution accuracy. We show that the original GORDIAN-L iteration with zero minimal gate

width is equivalent to setting � equal to zero.

� We note that our generalization of GORDIAN-L can handle not only linear wirelength, but also

wirelength of an arbitrary real exponent p � 1.

� Next, we apply modern numerical methods such as Primal Newton and Primal-Dual Newton

to placement with a linear wirelength objective. While such methods have been previously

is low enough for wire resistance e�ects to become signi�cant, design methodology such as repeater insertion (needed
to reduce gate load delay and improve noise immunity, as well as reduce interconnect delay) and wire width sizing will
yield in interconnect-related delay that is more \linear" than \quadratic".

2More recent works also discuss the linear wirelength objective. Notably, Li et al. [14] use spectral techniques and
clustering to address a combination of the linear and squared wirelength objectives; see also [10].
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used in �elds such as image processing, our work is the �rst to mathematically derive how such

methods can be applied to the linear wirelength placement objective. We further show that

Primal-Dual Newton stably attains quadratic convergence, thus improving substantially over

the linearly convergent Weiszfeld iteration. Primal-Dual Newton solves the same problem that

the GORDIAN-L engine solves, except that it is more general (thus enabling other placement

formulations).

� Extensive experiments show that Primal-Dual Newton converges signi�cantly faster than the

Weiszfeld (GORDIAN-L) solver over a range of instance complexities and �-regularization regimes.

It is straightforward to integrate the Primal-Dual Newton iteration into existing numerical place-

ment engines.

2 Preliminaries

A quadratic placer takes a netlist hypergraph as input and produces a placement of the cells. To apply

existing numerical optimizations the netlist must �rst be transformed into a graph.

De�nition: An undirected weighted graph G(V;E) consists of a set of vertices V = fv1; v2; : : :vng
and a set of edges E = fe1; e2; : : : ; emg where each edge is an unordered pair of vertices. A weight

function w : E ! <+ assigns a nonnegative weight w(e) to each edge in e.

To convert the netlist into a graph, the authors of [13] use a star model wherein a new \net node" is

created for each net in the netlist, and an edge is added between the net node and each cell connected

to the net. Placing the net node at the center of its incident cells (as GORDIAN assumes) makes the

star model equivalent to a clique model which introduces an edge of weight 2
p
between every pair of

cells incident to a given p-pin net. The total squared wirelength will be the same for any placement

under either the star or clique models.

De�nition: The n � n adjacency matrix A = (aij) for the graph G has entry aij = w(vi; vj) if

(vi; vj) 2 E and aij = 0 otherwise.

De�nition: The n � n Laplacian matrix Q = (qij) of A has entry qij equal to �aij if i 6= j and

entry qii equal to
Pn

j=1 aij , i.e., qii is the degree of vertex vi.

De�nition: The n-dimensional placement vector x = (xi) corresponds to the physical locations of

cells v1; : : : ; vn on the real line, i.e., xi is the coordinate of vertex vi.

GORDIAN [13] uses a squared wirelength objective:
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Squared Wirelength Formulation: Minimize

�Q(x) =
1

2
xTQx+ dTx =

nX
i>j

aij(xi � xj)
2 + dTx

s.t. Hx = b (1)

Here, H is a q � n constraint matrix that represents q center of gravity constraints (a special case

is that of �xed (pad) locations). Vector b gives the coordinates of the q centers of gravity. For vj

belonging to the i-th group of vertices, the (i; j) entry of Hx is set to be 1
ni
, where ni is the total

number of vertices in the group. The optional linear term dTx represents connections of cells to �xed

I/O pads. The vector d can also capture pin o�sets [19].

De�nition: The m�n incidence matrix C = (cki) for G represents the relationship between edges

and vertices of G. For each edge ek = (vi; vj) 2 E, cki = w(ek) and ckj = �w(ek); the orientation of

edges (signs of cki and ckj) can be arbitrary. All other entries of C are zero.

Note that there are 2m non-zero entries in C and that each row sum is zero. The GORDIAN-L

linear wirelength objective is as follows:

Linear Wirelength Formulation: Minimize

�L(x) =k Cx k1=
nX
i>j

aij jxi � xj j s.t. Hx = b (2)

A term dTx can again be added to incorporate pin o�sets and connections to pads.

3 GORDIAN and GORDIAN-L

GORDIAN [13] obtains a placement by repeatedly optimizing �Q, alternating between the horizontal

and vertical directions. Constraints for the optimizations are respectively given by Hxx = bx and

Hyy = by, corresponding to the x and y directions as explained above. To handle non-unit areas

a(vi) for each vertex vi, entry ij is can be changed to a(vi)
Aj

, where Aj is the sum of the areas of all

vertices with center of gravity bj .

The algorithm must ensure that at each iteration Hx and Hy have maximal rank and constrain

each cell by exactly one center of gravity. This implies that there is exactly one nonzero element in

each column of Hx and Hy.

GORDIAN begins with each cell attracted to the same center of gravity located in the center of

the layout. During an iteration, for each center of gravity we consider the group of cells (if of size

� 2, i.e., if the constraint is non-trivial) attracted to it. The corresponding region is cut in two by
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a vertical or horizontal line passing through the center of gravity, and two new groups of cells with

respective new centers of gravity replace the old group. This leads to a �nal solution where cells do

not overlap.

Figure 1 summarizes the ow of the GORDIAN algorithm. The algorithm takes as input a graph

G obtained by applying the 2
p
-clique model to a circuit netlist; it outputs the coordinates of the placed

cells. The repeat loop in Steps 2-8 continues as long as the number of cells is bigger then the number

of center of gravity constraints. At each iteration, Step 3 minimizes a quadratic objective function

which is derived below. The resulting placement is used to re�ne the center of gravity constraints,

yielding left and right constraints and larger linear systems (Steps 5 and 6). This process is then

repeated in the y direction (Step 7), with each non-trivial constraint re�ned into top and bottom

constraints. In each iteration, the number of subregions can quadruple, so the number of iterations

through the repeat loop in Step 2 is O(logn).

GORDIAN Placement Algorithm

Input: Graph G(V;E) representing a circuit netlist,
and its Laplacian Q; O�set vectors dx, dy

Output: Vectors x;y denoting the vertex coordinates
Variables: Constraint systems Hxx = bx;Hyy = by

of increasing size representing current
set of center of gravity constraints

1. Set bx and by to 1-dim vectors cx and cy
where (cx; cy) is the center of the layout
Set up the objectives
�Q(x) = xTQx+ dTx x and �Q(y) = yTQy+ dTy y

2. repeat (Steps 3-7)
3. Minimize �Q(x) s.t. Hxx = bx
4. for each non-trivial constraint do (Steps 5-6)
5. Replace with two new constraints:

the cells to the left from the center are
attracted to the center of the left half
of the region. Similarly, for those cells
to the right from the center. Update Hx;Hy

6. Replace the center of gravity bi with
centers of gravity of two new groups
(update bx and by)

7. Repeat Steps 3-6 for y instead of x
(in Step 5 use top/bottom instead of left/right)

8. until no two cells share the same center of gravity
9. return x, y

Figure 1: The GORDIAN algorithm.
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We �nd the unique minimizer x for �Q(x) de�ned in Equation (1) by solving the possibly un-

determined constraint system Hx = b, passing to an unconstrained formulation and �nally solving a

quadratic programming problem as follows. Matrix H is diagonalized by a permutation of columns

into [Hd jHi] (Hd is q�q-diagonal; Hi has size q�(n�q)). This diagonalization is possible since every
column has exactly one nonzero element and the constraints are non-degenerate. Correspondingly, the

placement vector x splits into n � q independent variables xi and q dependent variables xd, so that

we can rewrite Hx = b as [Hd jHi]

"
xd
xi

#
= b or Hdxd +Hixi = b.

Inverting the diagonal matrix, we get

xd = �H�1
d Hixi +H�1

d b

This allows us to express x as

x =

"
xd
xi

#
=

"
�H�1

d Hi

I

#
xi +

"
H�1

d b
0

#

or as x = Zxi+ � with obvious notation for Z and �. We combine this formula with (1) to reduce the

dimension of the unknown minimizer and obtain an unconstrained formulation

�Q(x) =
1

2
xTi Z

TQZxi + (Q� + d)TZTxi + C

where C represents all constant terms. As �Q(x) depends on xi only, we introduce 	Q(xi) = �Q(x),

so that

	Q(xi) =
1

2
xTi Z

TQZxi + c0
TZTxi + C

where c0 = Q� + d. We see now that 	(xi) gives an (n � q)-dimensional unconstrained quadratic

programming problem. To determine its optimal solution, the gradient r	(xi) is set to zero, yielding
the (n� q)� (n� q) linear system

ZTQZxi = �c

which can be e�ciently solved with, e.g., conjugate gradient or another Krylov subspace solver [9].

Once the optimal value xi is obtained, the optimal solution for x is given by x = Zxi + �.

GORDIAN-L

Placement with minimum squared wirelength objective has an unique solution that can be found by

solving the corresponding linear system. In contrast, placement with a minimum linear wirelength

objective can have multiple optimal solutions. For example, a single movable cell connected to two

�xed pads by edges of equal weight can be optimally placed anywhere between the two pads. In

general, the set of optimal placements is closed and lies within the convex hull of �xed pads (see [21]).
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Direct minimization of a linear objective function can be achieved by linear programming, but this is

usually computationally expensive.

Sigl et al. [19] minimize the linear wirelength objective �L(x) by repeatedly applying the GOR-

DIAN quadratic solver. They observe that the linear objective can be rewritten as

�L(x) =
X

(i;j)2E

aij jxi � xj j =
X

(i;j)2E

aij(xi � xj)
2

jxi � xj j :

If jxi � xj j were constant in the denominator of the last term, then a quadratic objective would be

obtained and could be handled easily. The GORDIAN-L solver �rst solves the system �Q(x) to obtain

a reasonable approximation for each jxi � xj j term. Call this solution x0. GORDIAN-L then derives

successively improved solutions x1;x2; : : : until there is no signi�cant di�erence between xk and xk�1.

From a given solution xk�1, the next solution xk is obtained by minimizing

�k
L(x

k) =
X

(i;j)2E

aij(x
k
i � xkj )

2

jxk�1i � xk�1j j =
X

(i;j)2E

gkij � (xki � xkj )
2 (3)

where gkij =
aij

jxk�1
i

�xk�1
j

j
. Note that the coe�cients gkij are adjusted between iterations. The iterations

terminate when the factors (xki � xkj ) no longer change signi�cantly.3 Just as with �Q(x), we can

minimize �k
L(x) in Equation (3) by applying a Krylov subspace solver.

GORDIAN-L Solver (new Step 3 for Figure 1)

Input: Adjacency matrix A, constraint matrix Hx

and vector bx.
Output: Solution x that optimizes �L(x)

such that Hx = bx.
Variables: Intermediate solutions xk

1. Solve �(x(0)) as in Step 3 of Figure 1. Set k = 1.
2. do (Steps 3-7)
3. Update each edge weight gkij to

aij

jxk�1
i

�xk�1
j

j
.

4. Construct �k
L(x

k) from Equation (3).
5. Minimize �k

L(x
k) s.t. Hxx

k = bx.
6. k = k + 1.

7. while
P

1�i�n jxki � xk�1i j > �

8. return xk.

Figure 2: The GORDIAN-L solver.

The GORDIAN algorithm can be transformed into GORDIAN-L by replacing Step 3 of Figure 1

with the solver shown in Figure 2. Note that GORDIAN-L [19] also includes an additional modi�cation.

3Some convergence criterion must be speci�ed in any implementation. Unfortunately, we do not know convergence
criterion used in GORDIAN-L, which makes CPU time comparisons impossible.
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Rather than subdivide each region into two subregions, GORDIAN-L subdivides each region into three

subregions and then minimizes the objective �L; the result is then used to subdivide the region into

�ve subregions, and the minimization is performed again. The resulting solution is used as the output

for Step 3 in Figure 1, and centers of gravity are assigned as before. This modi�cation improves

performance but increases the number of calls to the numerical solver.

4 Applying the Weiszfeld Algorithm to Placement

In 1937, Weiszfeld [22] proposed a technique to optimize the placement of nodes, in which the instance

was a complete unweighted graph. In other words, the objective function was to minimize the total

sum of distances between all placed objects. Later Eckhardt [5, 6] generalized this technique for

arbitrary connectivity matrices. Eckhardt proves the global linear4 convergence of this technique (see

also [15]).

We show that by choosing the appropriate matrix, Eckhardt's extension of the Weiszfeld algorithm

is actually equivalent to GORDIAN-L (with an initial assumption of zero minimal gate width, as

opposed to a small �xed minimal gate width). This enables us to apply Eckhardt's linear convergence

proof to GORDIAN-L. To guarantee numerical stability, a technique called �-regularization is used in

the Weiszfeld algorithm.

4.1 Generalized Weiszfeld Algorithm in the context of GORDIAN-L

We now explain the generalized Weiszfeld algorithm in the context of the GORDIAN-L numerical

solver. The objective is to minimize f(x) =k Cx k1 subject to Hx = b with q�n-matrix H imposing

q constraints on n cell locations. Observe that

f(x) =k Cx k1=
mX
j=1

jCjxj �
mX
j=1

q
(Cx)2j + �

where � > 0 is a small constant. The purpose of � is to approximate the non-di�erentiable objective

function by a smooth function. In order to write the derivative of f(x) compactly, notice that5

d(jCjxj2)
dx

= 2CT
j Cjx (4)

Hence,

5f(x) =
mX
j=1

CT
j Cjxq

(Cjx)2 + �

4Choose a norm and let �(k) denote the norm of the residual vector at the k-th iteration. Assume that log �(0)
�(k) � Bks

for some constant B and s 2 f1; 2g. We say that the convergence is linear when s = 1 and quadratic when s = 2.
5Here CT

j Cj = Cj 
Cj a.k.a. the Kronecker product.

9



and the partial derivatives of the Lagrangian L(x; �) are

�L

�x
=

mX
j=1

CT
j Cjxq

(Cjx)2 + �
+ �HT = 0 (5)

�L

��
= Hx� b = 0 (6)

Thus, the original minimization problem has been transformed into two systems of equations which

can be combined to yield the nonlinear system"
B(x) HT

H 0

# "
x

�

#
=

"
0

b

#
(7)

where B(x) =
Pm

j=1
CT
j
Cjp

(Cjx)2+�
. This system is the generalized Weiszfeld system of Eckhardt [5, 6].

This choice for the matrix B enables us to apply this technique to placement with a linear wirelength

objective.

To solve this system, we guess an initial approximation x0 and solve the system with B(x) = B(x0),

and this solution is called x1, which is the next iterate. In general, we compute the Weiszfeld iterate6

xk from the previous value xk�1 by solving the linear system"
B(xk�1) HT

H 0

# "
xk

�

#
=

"
0
b

#
(8)

which we call the low-level system. The iterations continue until a convergence criterion is met. For

example, such a criterion may be based on the norm of the residual vector (the di�erence between

the left hand side and the right hand side of Equation (7)). This is the main ow of the generalized

Weiszfeld algorithm.

We now show that this technique is actually the same technique used in the GORDIAN-L solver.

Recall that GORDIAN-L approximates the linear wirelength objective by a quadratic objective:

�L(x
k) =

X
(i;j)2E

aij(x
k
i � xkj )

2

jxk�1i � xk�1j j (9)

Thus, like the generalized Weiszfeld algorithm, GORDIAN-L uses the k � 1st iterate to solve for the

kth iterate. Equation (9) can be rewritten as

�L(x
k) =

mX
j=1

(Cjx
k)2

jCjxk�1j

for which the Lagrangian is

L(xk; �) =
mX
i=1

(Cjx
k)2

jCjxk�1j
+ �T (Hxk � b)

6The mathematical idea behind solving Equation (7) is to build an iteration xk 7! xk�1 whose �xed point is the
unknown solution. Hence, Weiszfeld can be classi�ed as a �xed-point method.
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and
�L

�xk
=

mX
j=1

CT
j Cjx

k

jCjxk�1j + �HT = 0 (10)

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

beta=0.02

Reg(x)
MinGW(x)

Figure 3: Comparing the Minimal Gate Width function (MinGW) with the �-regularization
(Reg) in one dimension. The original objective is represented by jxj. Here � = 0:02 and
the minimal gate width is set to

p
� � 0:141. Note that the discontinuous MinGW has

continuous one-sided derivative (optimality conditions), as its branches are given by x2

2
p
�

and jxj. By demanding continuity of the objective function and therefore dropping the
factor of 1/2, we would make the optimality conditions discontinuous.

Setting ~B(x) =
Pm

j=1
CT
j Cj

jCjxk�1 j
and using Equation (6), we obtain the same system as in Equation (8)

except that the matrix B is now replaced with ~B. The only di�erence between these two matrices is

that applying the �-regularization technique approximates jCjxj with
q
(Cjx)2 + �. This is necessary

to avoid numerical problems when jxk�1i � xk�1j j becomes too small (cf. Step 3 of Figure 2). In

GORDIAN-L (see [19]), if this term becomes smaller than the minimal gate width, it is replaced

with this minimal gate width. In summary, it is simply a matter of using two di�erent schemes (�-

regularization versus minimal gate width, cf. Figure 3) to guarantee reasonable behavior of the solver

at the cusps of the objective function. Either scheme can be used with Weiszfeld, and we observe that

�-regularization is superior to using minimal gate width: it is closer to the original objective function,

and its unique minimizer has convenient limit behavior.

Theorem Let ��
L be the �-regularization of a linear wirelength objective function �L, then

(a) lim�!0�
�
L(x) = �L(x) uniformly on Rn

(b) 8x 2 Rn; 8�1 > �2 ��1
L (x) > ��2

L (x) > �0
L(x) = �L(x)

(c) lim�!0minx2Rn �
�
L(x) = minx2Rn �L(x)
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Proof It is enough to prove (a) and (b) for only one term
q
(Cjx)2 + �. For (a) this is done by

the observing that j��
L��Lj =

p
�, the inequalities (b) for one term are true by squaring both sides.

(c) follows from (a) and (b).

To follow up on the minimal gate width, notice that if one changes the term jCjxj in the original

formulation to maxfjCjxj�tjg, one gets an equivalent of minimal gate width, as de�ned in GORDIAN-
L, but on a per-edge basis (tj can be made quite large if one wishes not to penalize a particular edge

once it is shorter than tj). By considering terms of the form maxf0; jxi�xj j+ jyi�yj j�tijg, one gets a
two-dimensional generalization of the minimal gate width. Both variations of the objection functions

need to be �-regularized.

In addition to handling the linear wirelength, the Weiszfeld algorithm can also be applied to the

wirelength of an arbitrary real exponent p > 1 by considering terms jCjxjp and the like. Indeed,

to derive Weiszfeld, we only need to di�erentiate the objective function (cf. GORDIAN-L whose

algorithm relies on a speci�c form of the obj. function) and jxjp is smooth (it's not for p = 1), so no

�-regularization would be needed.

4.2 �-regularization.

In our application of the generalized Weiszfeld algorithm to placement with linear wirelength, the

objective function was �-regularized to bound the denominator in Equation (5) away from zero. We

now highlight properties of the regularized objective function and its relation to the original placement

objective function.

By changing all expressions of the form j � j in the original objective to
p
(�)2+ �, the resulting

objective becomes strictly convex and therefore has an unique global minimizer. As � ! 0, this

minimizer approaches that of the original linear objective which, in turn, can have plenty of minimizers.

For example, given a single movable vertex connected to two �xed pads on opposite ends of the layout,

�L has uncountably many optimal solutions, while the �-regularization will have only one (for � > 0).

Clearly, as � increases, the disparity between the regularized objective and the original objective

increases as well (and the derived solutions will be further from optimal). On the other hand, if � is

too small, the derivative of the objective function (which is used in variational methods) will behave

badly near points where the original objective is not smooth: matrices in linear systems will become

ill-conditioned, and solving them will become computationally expensive, if not impossible.

The �rst question now is: \How should � be expressed to have comparable e�ects for various

unrelated placement problems?" In the original objective function, all expressions of form j � j are
actually jxi � xj j. These expressions are upper bounded by L, the length of placement interval,
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which varies across di�erent placement instances. If we set � = �rL
2, where �r is a small number,

then
q
(xi � xj)2 + � = L

q
(~xi � ~xj)2 + �r with ~xi and ~xj being on order of 100 for any placement

problem. Our experiments show that in this way we obtain similar behavior for di�erent placement

problems if we use the same value of �r | independent of problem size. We have worked with values

ranging from 101 to 10�7.

The second question | how to choose good values of �r | is harder; the answer largely depends

on how the solutions produced by the Weiszfeld method are used. One can repeatedly solve Weiszfeld

for decreasing values of � and stop when the di�erence between successive placements is small; alter-

natively, one can stop when the objective function stabilizes. Both strategies can lead to premature

stopping, and �nding a good heuristic is an open question.

5 The Primal Newton Method

The Newton approach is often used as a base for developing more sophisticated methods with su-

perlinear convergence(e.g. in [2, 15]). In this section, we develop what we call the Primal Newton

method for minimizing the linear wirelength objective. Our main purpose is to introduce the reader

to techniques that we will use in developing the Primal-Dual Newton method.7 Primal-Dual will also

be a Newton method, but with an additional set of dual variables. Because the Primal-Dual Newton

method converges at least as fast as the Primal Newton method and is more stable (i.e., its region of

convergence is strictly larger), we do not report experimental data for Primal Newton.

Consider minimizing
Pm

j=1

q
(Cjx)

2 + � such that Hx = b where k � n-matrix H imposes k

constraints on n cell locations. As before, Cj 2 Rn contains only two nonzero entries | plus and

minus the i-th edge weight | at locations corresponding to the two vertices of the edge.

The Lagrangian for this problem is

L(x; �) =
mX
j=1

q
(Cjx)

2 + � + �T (Hx� b) (11)

Taking partial derivatives and using Equation (4), gives us

�L

�x
=

Pm
j=1

CT
j
Cjxp

(Cjx)
2+�

+HT� = 0 (12)

�L

��
= Hx� b = 0 (13)

Applying the Newton method to this nonlinear system, we rewrite the system (invoking the fact that

7The key issue addressed by Primal-Dual Newton is global convergence, which Primal Newton lacks. No precise
mathematical statement about global convergence of Primal-Dual Newton has been proven, but its reliable convergence
properties have been observed in the literature (e.g. [2, 15]) and our experiments.
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rows of matrix C are precisely Cj and utilizing some linear algebra) as follows:

"
M HT

H 0

#"
�x
��

#
= �

"
K(x; �)
Hx� b

#
(14)

where

M(x) = CTE(x)
�1
F(x)C (15)

and the following notations are used:

� K(x; �) =
Pm

j=1
CT
i
Cixp

(Cixk)2+�
+HT�

� �i =
q
(Cixk)2 + �, with � de�ned as for the Weiszfeld algorithm

� E(x) is an m�m diagonal matrix with values in the i-th row equal to �i

� F(x) is an m�m diagonal matrix with values in the i-th row equal to (1� (Cix
k)2

�2
i

)

At the end of each iteration, we update x and � as

x = x+ �x

� = �+ ��

Starting with initial values of x and �, we compute corresponding values for M(x) and K(x; �), then

update x and � by solving the system in (14). This is repeated until some convergence criterion is

met. We call this particular implementation of the Newton method Primal Newton.

The Primal Newton method does not possess any kind of global convergence property. Local

convergence takes place | a proof can be found in [17] | but we do not know of any estimates of

the size of the local convergence region. One can use various globalization techniques (e.g., line search

and trust regions) to guarantee convergence of the Primal Newton method everywhere. However,

all of these globalization techniques are known to be ine�cient in a number of applications (such as

placement and image processing) due to the small size of the region where Primal Newton converges

quadratically. Modi�cations to a Newton method which allow it to achieve global convergence can be

found in [15], where a corresponding theorem is proven and numerical results demonstrating advantages

over the Weiszfeld method are shown. [15] also contains a discussion of degeneracy | a feature of

some placement problems for which Newton-like methods are only linearly convergent.

The various considerations related to top-level stopping criteria for Weiszfeld in the previous section

do not carry over to the Newton method, since we are searching for x which cannot be characterized

as satisfying a particular linear system. In other words, we do not have an analogue for the residual
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norm. However, convergence criteria in terms of successive iterates are easily de�ned since �x is the

di�erence between successive iterates. Alternatively, various convergence criteria can be deduced from

the observation that the nonlinear residual| the right hand side of (14) | goes to zero as the Newton

method progresses.

6 The Primal-Dual Newton Method

The idea of the primal-dual Newton approach was developed by Conn and Overton in [4] and has been

recently used for a denoising application in image processing (see [2]). Numerical results suggest that

the approach has fast convergence, stability and signi�cant practical value.

Recall that the optimization problem we will solve is: �nd x which minimizes

f(x) =
mX
j=1

q
(Cjx)

2 + � s. t. Hx = b (16)

where Cj 2 Rn again contains only two nonzero entries | plus and minus the i-th edge weight | at

locations corresponding to the two vertices of the edge. H is a k � n-matrix imposing k constraints

on n cell locations.

Let sj = Cjx, Then we can rewrite (16) as: �nd x which minimizes

mX
j=1

q
s2j + � s. t. Cjx� sj = 0 and Hx = b (17)

The Lagrangian for this problem is

L(x; s; z; �) =
mX
j=1

q
s2j + � +

mX
j=1

zj(Cjx� sj) + �(Hx� b)

where � and z are the Lagrange multipliers for x and s. The Karush-Kuhn-Tucker �rst order necessary

conditions are

@L

@x
=

Pm
j=1C

T
j zj +HT� = 0 (18)

@L

@sj
=

sjp
s2
j
+�

� zj = 0; j = 1; :::; m (19)

@L

@zj
= Cjx� sj = 0; j = 1; :::; m (20)

@L

@�
= Hx� b = 0 (21)

Using (20) to eliminate sj from (19) and rearranging slightly:

mX
j=1

CT
j zj +HT� = 0 (22)
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Cjx� (
q
(Cjx)2 + �)zj = 0; j = 1; :::; m (23)

Hx� b = 0 (24)

We can now apply Newton's method to this nonlinear system. Di�erentiating the left hand side of

Equation (22) with respect to z and writing the result as a matrix, we getCT (becauseCT is composed

of CT
j ). Di�erentiating the left hand side of Equation (23) with respect to x, we get (refer to (4))

Cj �
zj(x

TCT
j )Cjq

(Cjx)2 + �
; j = 1; :::; m (25)

which can be rewritten in matrix form as

I(z;x)C (26)

with I(z;x) = diag(1� zi(x
TC

T
i )

�i
), �j =

q
(Cjx)2 + �. We set E = diag(�i).

Finally, the Newton method gives the following linear system8 which we need to solve repeatedly:2
64 CT 0 HT

�E I(z;x)C 0
0 H 0

3
75
2
64 �z

�x
��

3
75 = �

2
64 CTz +HT�

Cx�Ez
Hx� b

3
75 (27)

To reduce the dimension of this system, we eliminate �z by substituting its second equation

�z = �z+ E(x)�1Cx+E(x)�1I(z;x)C�x (28)

into the �rst equation. After cancelation, we get

CTE�1I(z;x)C�x+HT�� = �(CTE�1Cx+HT�)

and together with the third equation of (27) this makes

 
CTE(x)

�1
I(z;x)C HT

H 0

! 
�x
��

!
= �

 
K(x; �)
Hx� b

!
(29)

where9

K(x; �) = CTE�1Cx+HT� =
mX
j=1

CT
j Cjx

�i
+HT� (30)

8Here dual variable z and matrices E, I are m-dimensional, x and b are n-dimensional while � is k-dimensional. H
and C have sizes k� n and m � n respectively.

9The second equality in (30) relies on Q = �CT0WC0, which expresses the Laplacian Q in terms of the pure (i.e.
having only 0, 1 and �1 entries) incidence matrix C and the weight matrixW. In the simple case where the edge weights

of the original graph are all 1,
Pm

j=1

C
T
i
Ci

�j
can be interpreted as the negative Laplacian of the graph with connectivity

matrix C and edge weights given by ��1
j . (Here, E =W.) The general case can be reduced to the simple case by writing

C =WC0.
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In the overall algorithm, �z gives an update direction for z, and we are free to use �z with any

factor we want. However, as noted in [2, p.9], for the matrix in (29) to be nonsingular one requires

k zk k1� 1. To ensure this, iterates zk of the dual variable are de�ned recursively with z0 = 0, and

updates computed at each iteration by (28) and the line search formula zk+1 = zk + S �z, where

S = minf0:9 supfSj k zk + S �z k1< 1g; 1g (31)

One computes the supremum by looping over coordinates and solving �1 � zk + S �z � 1 for S. (In

practice, S ! 1 as iterates converge, and we �nd that S = 1 for most iterates.) The variables x and

� are updated at each iteration using

x = x+ �x

� = �+ ��

Computationally, we deal with the system (29) just as with the Primal Newton method for the

linear objective in Section 5. To �nd an initial approximation close to the quadratic convergence

region, one can solve a few linear systems as if using the Weiszfeld algorithm, then switch to Primal-

Dual iterations. This may be applied as a possible speedup since (as the experimental results below

show) the Weiszfeld algorithm can �nd a rough approximation faster than Primal-Dual.

The right hand side of (29) goes to zero as top-level iterates converge. This means that all

convergence tests involving residual vectors should be formulated in terms of relative tolerance or

should otherwise depend on the right hand side of the system. We have observed in our experiments

that if for some reason (29) is not solved precisely enough, Newton top-level iterates can start to

diverge.

The remarks given for the Primal Newton method above also apply to Primal-Dual Newton (see

[2]); in particular, Primal-Dual Newton possesses quadratic convergence (see [12, 5.4.1]) and is prefer-

able to the linearly convergent Weiszfeld algorithm. Primal-Dual Newton converges quadratically in

strictly larger regions than Newton method and is only 30-50% more expensive in computation and

memory per iteration than the Weiszfeld method.

7 Experimental Validation

We now describe our experimental methodology and present experimental results which con�rm the

e�ciency of Primal-Dual Newton in comparison to the generalized Weiszfeld with �-regualarization.

Since the generalized Weiszfeld method is equivalent to the GORDIAN-L numerical engine for very

small values of �, our experiments show that Primal-Dual Newton is superior to the GORDIAN-L

solver for placement with a linear objective.
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7.1 Implementing the Low-Level Solver

We implemented the Weiszfeld and Primal-Dual Newton iterations within our own sparse-matrix

testbed; this testbed is coupled to a design database and partitioning and layout tools, with interfaces

via standard design interchange formats. Thus, we were able to verify our methods using standard

benchmarks from the literature (ftp to cbl.ncsu.edu).10

When implementing the Primal-Dual method, it is crucial to solve the linear system (29) precisely

enough that the top-level iterates will converge. One �nds that matrices arising in (29) are usually

much denser and more ill-conditioned than in analogous systems arising from denoising problems in

image processing or from numerical solution of partial di�erential equations. This makes it harder for

any low-level solver to �nd su�ciently precise approximate solutions. To avoid undue loss of sparsity

when O(p2) edges are introduced for some very large p-pin net, we represent any large net with > 100

pins by a random cycle through its cells11.

Since our implementation is designed to accommodate examples of any size, we use iterative solvers,

speci�cally, GMRES or BICGSTAB with ILU preconditioner12. Here, we must refer the reader to

[12, Chap 6], where usage of iterative (inexact) solvers is considered with special regard to Newton

methods. Our solver changes the values of relative tolerance according to the rule in (6.18) of [12],

using parameters  = 0:5 and �Max = 10�4 in that rule.

7.2 Convergence of Primal-Dual Newton and Weiszfeld Methods

We now give experimental evidence showing that the Primal-Dual Newton iteration achieves quadratic

convergence. Figure 5 compares its convergence behavior with that of Weiszfeld algorithm on standard

benchmarks (see Table 4) maintained by the CAD Benchmarking Laboratory. While our implemen-

tation is not yet optimized for speed, runtimes for the avq small test case are still only on the order of

7 CPU seconds per Weiszfeld iteration on a 140 MHz Sun Ultra-1. Note that iterations can be sped

10Our implementations are in part (e.g., for sparse-matrix BLAS) based on the PETSc (Portable, Extensible Toolkit
for Scienti�c computation) library; this is free software developed and maintained at Argonne National Laboratory [1].
Salient features of PETSc include the following. (1) PETSc is an object-oriented library which can be linked to Fortran, C
and C++ programs. It supports several sparse matrix formats, basic linear algebra for them, matrix factorization, matrix
reordering and various linear system solvers. (2) PETSc is designed for multiprocessors and uses the Message Passing
Interface (MPI); however, we mostly used it on uniprocessor workstations. (3) PETSc has error reporting and pro�ling
capabilities; it can also report performance and diagnostic information, such as memory usage and number of oating
point operations executed. It supports graphics, has several GUI tools for the X-window environment and is ported to
a variety of UNIX-like operating systems (we used it on SunOS, Solaris and Linux). (4) Thorough documentation is
available for PETSc and its solvers were the fastest of what we have tested.

11Note that the graph representation of the netlist must be connected, e.g., when using an ILU preconditioner.
12For better results with examples of small size (say, under 1000 cells), one can solve the linear systems (7) and (29)

directly; this limit can be increased if matrices are sparser. Also note that matrices arising from (29) and (7) are always
symmetric and semide�nite. Thus, other Krylov Subspace methods which can be used here are BICGSTAB, QMR,
SYMMLQ, etc.
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Test Case Pads Cells Nets

primary1 107 752 704

biomed 97 6417 6442

avq small 64 21854 21884

golem3 2767 100281 144949

Figure 4: VLSI benchmark circuits used in comparing the Weiszfeld and Primal-Dual New-
ton methods.

up considerably if we relax accuracy requirements in the solver and preconditioner. In general, many

control parameters allow tradeo�s between solution quality and runtime.

In all of our tests, the residual norm tends to converge linearly in the beginning, although not

always monotonically. However, when Primal-Dual iterates near the optimal solution, their residual

norm converges quadratically. At the same time, the Weiszfeld method shows linear convergence

everywhere. We stop the top-level iterations when the nonlinear residual has decreased by a prescribed

factor (10�13 in this experiment), or when the iteration count reaches 40. The �r value we used was

10�4.
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Figure 5: Comparison between convergence of Primal-Dual and Weiszfeld. We plot log10 of L2 norm
of the nonlinear residual against the number of top-level iterations.
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We discovered (Figure 6) that more iterations are needed to reach the quadratic convergence region

for smaller �r values. However, the di�erence in convergence behavior between the two algorithms is

more apparent for smaller �r values.
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Figure 6: Dependence of convergence (Primary1 benchmark) on the value of �r used (10�1; 10�2 and
10�3). We plot log10 of L2 norm of the nonlinear residual versus the number of top-level iterations.

8 Conclusions

As shown in the previous section, the Weiszfeld algorithm corresponding to GORDIAN-L is at best

linearly convergent, while Primal-Dual Newton provides robust quadratic convergence.

We note that the original Weiszfeld formulation is in fact much weaker than what we have devel-

oped (in the original work, only one point is placed and there is no concept of �-regularization). Our

generalization and underlying formulation have signi�cant theoretical value in that they allow deriva-

tion of a large family of e�ective global optimization methods in an uniform mathematical setting.

We have recently begun integration of the Primal-Dual Newton algorithm to address linear wirelength

minimization and a variety of alternate objectives within a standard-cell placement engine.
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