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h IT IS UNUSUAL to review a book published

18 years ago. However, some books are ahead of

their time, and some prospective readers may have

gotten behind the curve. To this end, the develop-

ment of commercial parallel software is clearly lag-

ging behind initial hopes and promises, perhaps

because known limits to parallel computation have

been overlooked.

The history of humankind includes several strik-

ing technological scenarios that seemed feasible

and admitted promising demonstrations, but could

not be applied in practice. One example was perpe-

tual motion, defined as ‘‘motion that continues inde-

finitely without any external source of energy’’. The

hope was to build a machine doing useful work

without being resupplied with fuel. Records of per-

petual motion trials date back to the seventeenth

century. It took two centuries to formulate the laws

of thermodynamics to show why perpetual motion

in an isolated system is not possible. A second ex-

ample is the mythical philosopher’s stone that trans-

muted base metals into gold through chemical

processes (in fact, published accounts with exper-

imental validation were as respected as modern-day

research publications). However, by the late

nineteenth century we understood that chemical

reactions do not alter chemical elements listed in

periodic tables. Both stories show that fundamental

limits were discovered, prohibiting initial scenarios.

However, this is not how these stories end. Perpetual

motion can be successfully emulated by tapping an

abundant energy source while the system remains

isolated for practical purposes, e.g., GPS navigation

satellites use solar energy to power their continual

transmissions. Another example is nuclear pro-

pulsion in ballistic missile submarines that remain

submerged and isolated for years. Even the transmu-

tation of cheap metals into gold has been demon-

strated in particle accelerators, and platinum-group

metals can be commercially extracted from spent

nuclear fuel. Once scientists develop an understand-

ing of fundamental limits, engineers circumvent

these limits by reformulating the challenge or by

other clever workarounds.

Today, the business value in many industries is

fueled by computation, just like it was driven by

steam engines during the industrial revolution and

backed up by precious metals during the tumultu-

ous Middle Ages. The need for faster computation

leads to significant investments into computing

hardware and software. Just like Chemistry and Phy-

sics were developed to study chemical reactions

and energy conversion, Computer Science was

developed in the last 60 years to study algorithms

and computation. In particular, Complexity theory

Reviewed in this issue
Limits to Parallel Computation: P-

Completeness Theory, by Raymond
Greenlaw, H. James Hoover, Walter
L. Ruzzo. (Oxford University Press,
1995, ISBN-10: 0195085914, ISBN-13:
978-0195085914.)

IEEE Design & Test2168-2356/13/$31.00 B 2013 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC78

Digital Object Identifier 10.1109/MDAT.2012.2237133

Date of current version: 11 April 2013.



studies the limits of computation, as illustrated by the

notion of NP -complete problems (a standard text-

book is Michael Sipser’s ‘‘Introduction to the Theory

of Computation’’). Current consensus is that these

problems cannot be solved in worst-case polyno-

mial time without major theoretical breakthroughs,

and the knowledge accumulated in the field allows

one to quickly evaluate and diagnose purported

breakthroughs. Even the least-informed funding

agencies would now recognize naBve attempts at

solving NP -complete problems in polynomial time.

On the other hand, the understanding of such limits

guided applied algorithm development to identify

and exploit useful features of problem instances. An

example end-to-end discussion can be found in the

DAC 1999 paper ‘‘Why is ATPG Easy?’’ by Prasad,

Chong, and Keutzer. Moreover, for optimization

problems, the notion of NP -hardness can sometimes

be circumvented by approximating optimal solu-

tions (typical for geometric tasks, such as the Travel-

ling Salesman Problem). As a result, the software

and hardware industries have been quite successful

in circumventing computational complexity limits

in applications ranging from formal verification to

large-scale interconnect routing. And chess-playing

computers go far beyond NP.

History does not repeat itself, but it often rhymes,

as Mark Twain noted. The latest craze in softwareV

parallel computingVhas given us hope to turn

silicon (predesigned processor cores) into compu-

tation without increasing clock speed and power

dissipation per core. As top-of-the-line integrated

circuits cost more than their weight in gold, the phi-

losopher’s stone pales in comparison to the value

proposition of turning not base metals, but sand into

something more expensive than gold. And we now

see academics, instigated by U.S. funding agencies

left unnamed (to protect the guilty!), claim fantastic

parallel speed-ups that do not survive scrutiny.

Those who attended the panel on parallel Electronic

Design Automation at ICCAD 2011 may recall that

I questioned claims of algorithmic ‘‘superlinear’’

speed-up (more than k times when using k pro-

cessors, for large k). If using k parallel threads of

execution consistently improves single-thread run-

time by more than a factor of k, then we could just

simulate k threads by time-slicing a single thread,

with a factor-of-k slowdown. This yields a better se-

quential algorithm. Thus, the original comparison

was to suboptimal sequential algorithms (using k

CPU caches can boost memory performance, but

only by a constant factor, and not entirely due to

parallel algorithms). Other signs that a claimed

speed-up is bogus can be subtle and ad hoc. For

fundamental problems, like Boolean SATand circuit

simulation, that have consistently defied paralleli-

zation efforts by sophisticated researchers, a spec-

tacular speed-up (e.g., 220 times claimed at ICCAD

2011 for SAT) better have a convincing and

unexpected explanation. Patrick Madden’s ASPDAC

2011 paper illustrates how academics often over-

simplify the challenge they are studying and ignore

best known techniques in their empirical compar-

isons. David Bailey’s SC 1992 paper ‘‘Misleading

Performance Claims in the Supercomputing Field’’

and its DAC 2009 reprise suggest that this phenom-

enon is not new.

The article ‘‘Parallel Logic Simulation: Myth or

Reality?’’ in the April 2012 issue of IEEE Computer

offers a great exposition of the promise and the

failure of parallel functional logic simulation (e.g.,

evaluating new circuit designs before silicon pro-

duction). Many people find it obvious that Boolean

circuit simulation should be easy to parallelize, and

academic papers claim such results. But imple-

menting this idea in successful commercial software

has been a losing proposition for many years (leav-

ing the market open to expensive hardware emula-

tors developed by IBM, EVE, Cadence, Synplicity/

Synopsys, and others). The authors of the IEEE

Computer article dissect many failed attempts and

the obstacles encountered. This is where careful

observers may suspect fundamental limits.

Enter the book Limits to Parallel Computation:

P-Completeness Theory by Greenlaw, Hoover, and

Ruzzo. Just like NP -complete problems defy worst-

case polynomial-time algorithms, P -complete prob-

lems defy significant speed-ups through parallel

computation. The Preface says:

This book is an introduction to the rapidly

growing theory of P -completenessVthe branch

of complexity theory that focuses on identifying

the ‘‘hardest’’ problems in the class P of prob-

lems solvable in polynomial time. P -complete

problems are of interest because they all appear

to lack highly parallel solutions. That is, algo-

rithm designers have failed to find NC algo-

rithms, feasible highly parallel solutions that

take time polynomial in the logarithm of the
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problem size while using only a polynomial

number of processors, for them. Consequently,

the promise of parallel computation, namely

that applying more processors to a problem can

greatly speed its solution, appears to be broken

by the entire class of P -complete problems.

Just like the well-known book ‘‘Computers

and Intractability: A Guide to the Theory of NP-

Completeness’’ by Garey and Johnson, this book

consists of two partsVan introduction to the

P -completeness theory, and a catalog of P -complete

problems. It starts with an anecdote about a com-

pany that was forced by its competitors to look into

parallel platforms and thus developed parallel sort-

ing of n elements using n2 processors in Oðlog nÞ
time. This example is used to motivate key concepts,

such as reductions and implied limits to parallel

computation (as in my earlier argument about the

maximal speed-up due to k processors). Similar to

the theory of NP -completeness, this leads to the no-

tion of P -complete problems to which many other

problems can be reduced. Thus, when looking for

effective parallel solutions to a particular problem,

one must first check for reductions to known P -

complete problems. For example, Linear Program-

ming and Maximum Flow (Problems A.4.3 and A.4.4

in the catalog) are P -complete, while Maximum

Matching (Problem B.9.7) admits a highly-parallel

probabilistic algorithm. This catalog is substantial. It

contains multiple variants of problems including re-

stricted versions. For example, Linear Programming

with Two Variables per Constraint (Problem B.2.2)

and 0-1 Maximum Flow (B.9.6) admit highly-parallel

algorithms. Another quote

Additionally, P -completeness theory can

guide algorithm designers in cases where a par-

ticular function has a highly parallel solution,

but certain algorithmic approaches to its com-

putation are not amenable to such solutions.

Computing breadth-first level numbers via

queue- versus stack-based algorithms is an ex-

ample (see Chapter 8 for more details).

The two main models of parallel computation

are combinational Boolean circuits and shared-

memory multi-processors. Here, a key issue is the

efficiency of parallel simulation of a Boolean cir-

cuit on a multiprocessor and simulating a multi-

processor by unrolled combinational circuits.

Further analysis is based on formal notions of a

computational problem, reducibility and complete-

ness. These notions lead to complexity classes,

such as P (problems solvable in polynomial time)

and NC (problems solvable by poly-sized circuits of

polylogarithmic depth/delay, named ‘‘Nick’s class’’

after Nicholas Pippenger). Clearly, NC is contained

in P , but is believed to be smaller than P (just like

P is believed to be smaller than NP). Because

any problem in P can be efficiently reduced

(NC-reduced) to any P -complete problem, finding a

P -complete problem inside NC would contradict

P 6¼ NC (Theorem 3.5.4). So, if you are comfortable

interpreting NP -complete as ‘‘likely not solvable in

polynomial time,’’ you should be comfortable in-

terpreting P -complete as ‘‘likely not executable

efficiently in parallel.’’ The prototypical P -complete

problems are circuit and program simulation.

P -complete problems are ‘‘inherently sequential’’

in the sense that P ¼ NC is unlikely. The reasons

have to do with the efficiency of highly parallel sim-

ulation and can be summarized as follows: (i) gene-

ric simulation is slow, regardless of the algorithm

used, (ii) fast special-case simulation techniques are

not general enough, (iii) straightforward simulation

techniques are provably slow. An additional rule of

thumb is that efficiently parallelizable problems can

usually be solved in polylog space (in addition to

having access to the input). Details can be found in

David Johnson’s April 1983 Journal of Algorithms

column.

Focusing entirely on problems solvable in poly-

nomial time would have excluded tasks in formal

verification and logic synthesis, which sometimes

venture far beyond NP . There is no hope that using

polynomially many processors can make even

NP-complete problems poly-time solvable, which is

consistent with empirical results on Boolean Satis-

fiability seen today. However, if we are interested in

polynomial-time heuristics for problems beyond P

(which is how most practical work is done), we

might first try to parallelize tried-and-true sequential

heuristics. To this end, Greenlaw, Hoover, and Ruzzo

show that sequential greedy algorithms frequently

lead to solutions that are inherently sequential, i.e.,

cannot be duplicated rapidly in parallel, unless

NC ¼ P. But sometimes equally good solutions can

be produced by parallel algorithms. To this end,

P -complete algorithms are discussed through the
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proxy of tasks to reproduce the output of a particular

algorithm. For example, conventional algorithms for

Gaussian elimination (with partial pivoting) appear

inherently sequential, but other, highly parallel

algorithms exist for the same problem. This partic-

ular example can be useful in SPICE-like accurate

electrical circuit simulation. More generally, such

examples motivate pessimism about automatic pa-

rallelization by compilers given that compilers

generally do not invent entirely new algorithms.

Section 9.2 shows some loopholes in dealing with

P -complete problems and briefly discusses poly-

nomial speed-up in parallelizing special cases of

the Circuit Value Problem, Depth-first Search, etc. It

also shows how to upper-bound such speed-ups.

Another loophole is analogous to that in the

NP -completeness theory and relies on quick (pa-

rallel) approximations that bypass exact algorithms

(Chapter 10). Unfortunately, this helps only in rare

cases (Section 10.2). Such logic seems more promis-

ing in parallelizing approximate sequential solutions

to NP -complete problems (Section 10.3), such as bin

packing, 0-1 knapsack and schedulingVproblems

inherent in load-balancing on parallel platforms.

David Johnson’s April 1983 J. Algorithms column

reviews such results.

Appendices list problems whose status

(P -complete or not) is known, as well as open prob-

lems. Each problem is defined in a self-contained

way, and relevant problem reductions are outlined.

Circuit-related P -complete tasks include Problem

A.1.9 Min-Plus Circuit Value Problem, which can be

viewed as a narrow form of Static Timing Analysis

with rational values. Problem A.10.1 is a sweeping

generalization with real-valued numbers. Other

problems of relevance to Computer Engineering in-

clude Graph Partitioning, List Scheduling, Linear

Programming, Network Flow problems, certain ap-

proximations to Max-SAT and Min Set-Cover, and

even Two-Layer Channel Routing. Section A.7 lists

problems dealing with formal languages (push-

down automata, context-free grammars, etc.), and

captures various tasks performed by parsersVa

common bottleneck in parallel software. Later sec-

tions include Gaussian elimination, various geom-

etry problems (triangulation, convex hulls, etc.),

several numerical analysis problems, as well as

Lempel-Ziv (LZ) compression. Fortunately, LZ is not

an obstacle to parallel I/O because it is applied to

small blocks, not to entire files.

Computer engineers have been ignoring funda-

mental limits to parallel computation for years. For

example, the 2006 manifesto ‘‘The Landscape of

Parallel Computing Research: AView from Berkeley’’

does not mention complexity limits to parallel algo-

rithms and the concept of P -completeness. The

Berkeley engineering professors who authored the

manifesto represented key parallel applications by

‘‘13 dwarfs’’Vpatterns of computation and commu-

nication (extending the seven dwarfs defined by

Phil Collela). But we are not told that some of these

dwarfs are in NC (easy to parallelize), some harbor

P -complete problems (combinational logic, certain

graph traversals), some are beyond P (branch-and-

bound) and some are too broad for generic analysis

(dynamic programming). Clearly, this classification

is missing an important dimension. Not appreciating

computational complexity, computer engineers

have been cranking out papers on parallel algo-

rithms for P-complete problems without realizing

this (students can find those papers and match them

to problems in Appendix A). David Bailey’s 1991

note ‘‘Twelve Ways to Fool the Masses when Giving

Performance Results on Parallel Computers’’ illus-

trates what many of these papers do. On the other

hand, efforts at parallelizing hard problems can be

useful, just like ongoing efforts on practical sequen-

tial algorithms for NP-hard and NP -complete pro-

blems through approximation and exploiting

instance structure. In any case, researchers must

clearly understand the fundamental limits they are

up against, and a summary of known results in

parallel algorithms clarifies what is achievable. For

example, most highly parallelizable problems can

be solved in polylogarithmic parallel time with a

(close-to-) linear number of processors (in terms of

input size), but sorting and biconnected compo-

nents need n2 processors.

Given that the book under review was published

18 years ago, one may wonder if its conclusions re-

main valid today. To this end, proven theorems are in

no danger of becoming outdated, and the ‘‘P versus

NC’’ challenge remains unresolved, just like its close

relative ‘‘P versus NP ’’. However, a few years after the

book was published, Ketan Mulmuley proved that

the P -complete max-flow problem cannot be solved

in polylogarithmic time using polynomially many

processors in the PRAM model under certain as-

sumptions. In case of future breakthroughs on this

topic, updates should promptly appear on the
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Wikipedia pages for the NC and NP classes. Modern

formal treatment of multicore computing is avail-

able in Leslie Vailant’s ESA 2008 paper ‘‘A Bridging

Model for Multi-Core Computing,’’ which discusses

algorithms that are optimal for all combinations of

machine parameters including the number of cores

and the shape of the memory hierarchy. Other prac-

tical aspects of parallel algorithms are explored in

the 1997 volume ‘‘Parallel Algorithms: Third DIMACS

Implementation Challenge.’’ For example, a chapter

by Papaefthymiou and Rodrigue points out that the

Bellman-Ford algorithm runs faster in parallel on

dense graphs, but not on sparse graphs.

A major technological change in parallel com-

puting is the increasing dominance of communica-

tion over computation. It is not explicitly addressed

by the theory of P -completeness, but computation

costs remain valid lower bounds and determine how

much communication is needed. Thus, classical im-

possibility results and lower bounds on computa-

tion can still be trusted, but may be optimistic in

practice. To this end, the 1998 IEEE Transactions on

Computers paper ‘‘Your Favorite Parallel Algorithms

Might Not Be as Fast as You Think’’ by David Fisher

accounts for the finite density of processing ele-

ments in space, the (low) dimension d of the space

in which parallel computation is performed, the fi-

nite speed of communication, and the linear growth

of communication delay with distance. Neglected in

most publications, these four factors limit parallel

speed-up to power ðd þ 1Þ. Considering matrix

multiplication as an example where exponential

speed-up is possible in theory, a two-dimensional

computing system (a planar circuit, a modern GPU,

etc.) can offer at most a cubic speed-up. Given that

the general result is asymptotic, it is significant only

for large numbers of processing elements that

communicate with each other. In particular, for

circuits and FPGAs, it limits the benefits of three-

dimensional integration to power 4/3 (optimistically

assuming a fully isotropic system). For two-

dimensional GPUs, at most a cubic speed-up over

sequential computation is possible. To this end, a

2012 report by the Oak Ridge Leadership Computing

Facility analyzed widely used simulation applica-

tions (turbulent combustion; molecular, fluid and

plasma dynamics; seismology; atmospheric science;

nuclear reactors, etc.). GPU-based speed-ups

ranged from 1.4 to 3.3 times for ten applications

and 6.1 times for the eleventh (quantum chromo-

dynamics). These mediocre speed-ups likely reflect

flaws in prevailing computer organization, where

heavy reliance on shared memories dramatically

increases communication costs, but alternatives

would drastically complicate programming.

AS IN HISTORICAL examples at the beginning of the

review, the last word on parallel algorithms seems to

be with loopholes. Even the core concepts we’ve

discussed exhibit subtle flaws. For example, binary

search is obviously in NC, but cannot be parallelized

efficiently. The 1998 result of David Fisher questions

the very relevance of the NC class in the physical

world, as no exponential worst-case parallel speed-up

can be achieved in three (or any finite number of)

dimensions, even if all interconnects can be routed

with smallest possible lengths. Effective loopholes

here hide communication latencies by connecting

slow processor with fast interconnect, exploiting

better-than-worst-case data patterns (through pipe-

lining and trading communication for computa-

tion), and scaling semiconductor technologies by

using repeaters and electric tuning. The most pop-

ular loophole is to use an identical interconnect

network for all input sets (up to 4 GB or, perhaps,

256 GB) and pretend that interconnect latencies

remain constant as problem size grows. But even

zero-latency communication would not help with

obstacles related to P -completeness. In particular,

the P -completeness of circuit and processor simula-

tion problems explains the difficulties encountered

by computer engineers when simulating new hard-

ware designs on parallel systems (here an important

loophole is hardware emulation). Thus, by warning

about important pitfalls, keen understanding of

obstacles to parallelism can guide toward more ef-

fective solutions, clever ways to reformulate the

problem, and applications where speed-up is easier

to achieve (data-distributed tasks such as digital

cinematography, computational astronomy and Web

search). In summary, I am convinced that the book

under review can intellectually enrich Computer

Engineering research and enhance the level of dis-

course in the scholarly literature. h
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