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Modermn physical-synthesis flows operate on very large designs and perform in-
creasingly aggressive timing optimizations. Traditional incremental timing anal-
ysis now represents the single greatest bottleneck in such optimizations and
lacks the features necessary to support them efficiently. This article describes
a paradigm of transactional timing analysis, which, together with incremental
updates, offers an efficient, nested undo functionality that avoids significant tim-

ing calculations.
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Il AcHIEVING TIMING cLOSURE for large modern ASIC
designs requires the use of physical synthesis—a se-
ries of performance-driven optimizations that simul-
taneously alter the layout, the netlist, and the
electrical parameters of logic gates. Physical synthe-
sis tightly couples analysis with optimization in an
automated flow that iteratively improves design
parameters. Such flows rely on static timing analysis
(STA) in two essential ways. First, STA identifies the
sections of the design that are most critical to overall
performance. Second, STA assesses the impact of
every potential change on circuit performance
before the change is committed. Circuit optimiza-
tions are bundled into transforms that implement
common operations such as relocating a gate and
buffering a net.! State-of-the-art physical design
tools use compound transforms that simultaneously
perform many simpler transforms that would not
have improved overall performance if applied
individually?

Advanced technology nodes require complex
timing models that cannot be captured analytically
with sufficient accuracy, often making timing

0740-7475/10/$26.00 © 2010 IEEE

Copublished by the IEEE CS and the IEEE CASS

University of Michigan, Ann Arbor

analysis the single major bottleneck
in physical synthesis. Therefore, we
take a closer look at the conceptual
role of STA and its interfaces with opti-
mization. Mathematically, circuit opti-
mizations often interact with STA by
obtaining arrival times and required
arrival times at timing points through-
out the design.> However, running
STA on the entire design to evaluate each potential
change is impractical. Therefore, STA can be used

m in batch mode to evaluate the compound impact
of many changes;

m in incremental mode, where the impact of a single
change is efficiently propagated through the net-
list; and

m with lazy updates, where timing data are pro-
pagated only in response to queries, essen-
tially batching the changes that occur between
queries.

Multiobjective optimizations now increasingly rely
on do-no-harm methodologies that carefully evaluate
each change and commit only those that provide tan-
gible improvements.*® The more aggressive algo-
rithms have very high rejection rates in this loop,
making the speed of incremental STA a major factor
in improving physical synthesis. However, batched
mode and lazy updates are of limited use when eval-
uating the individual impact of multiple candidate
changes.
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The major impact of STA on overall runtime
tempts physical-synthesis developers to assume the
responsibility for some aspects of timing analysis
and to use handcrafted local-delay models instead
of STA engines, which offer significant opportunities
for runtime improvement. However, this practice
risks subtle timing mistakes and also increases the de-
velopment effort by lowering reuse. Therefore, we
propose improvements to reusable STA engines that
better account for the bounded scope of physical-
synthesis transforms.

We present an extension to the interface of STA
to accommodate transactioning. Our technique
employs a timing-change-history data structure that
stores changes to the state of the timing graph so
that it can be efficiently restored to a previous state
in the event of a retraction. This experimental
approach has been specifically designed to allow
nesting events that spur timing changes. To further im-
prove worst-case complexity, we have limited changes
to the timing graph by way of bounded timing analy-
sis, an enhancement that works in conjunction with
transactional timing analysis to allow for the rapid ex-
ploration of circuit search space. Finally, we provide
an empirical evaluation of bounded transactioning
for both classical and lazy STA, demonstrating an im-
provement in performance by up to two orders of
magnitude.

Background

Timing analysis and its integration into the physical-
design flow have long been key topics in design
automation. Modern STA engines are products of so-
phisticated engineering, and they have evolved sub-
stantially over recent decades. Yet, dramatic
changes to basic timing models continue to drive
the need for further innovation. For instance, multi-
mode timing—wherein several timing points are
maintained at each node of the global-timing graph,
each corresponding to a different corner of design
operation—has become increasingly popular. Al-
though these corners enable modern optimization
techniques to evaluate the effect of their actions on
many scenarios at once, they also serve as a multi-
plier of basic computations that the timing engine
must perform. Statistical STA engines that reflect the
variance of design performance require the mainte-
nance of complex distribution models that also signif-
icantly expand the amount of work placed on
the timing engine. These elaborate models, in
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conjunction with a stronger emphasis on local
transform-driven operations, have increased the
responsibility of timing engines to provide a much
higher degree of incremental maintenance of internal
timing state.

Previous work

Drumm et al. explored the problem of updating
only a subset of timing-analysis values in response to
a local change.” In this approach, a depth-first propa-
gation of timing values is executed until no change is
observed. To reduce the amount of incremental recal-
culation needed, this process was later refined.® Lee
and Tang presented a distinction between the propa-
gation cost of positive and negative delay changes,’
demonstrating that the expense of executing an oper-
ation is distinct from the execution of its inverse. The
algorithm, described by Sapatnekar,lo avoids exces-
sive computation by propagating only along paths
that are influenced by altered inputs. Mondal and
Mandal proposed a query language based on tempo-
ral logic,'! along with an algorithm to efficiently re-
trieve answers to those queries. Das et al. explored
the application of STA for coupling and exploited cir-
cuit structure to determine an effective node ordering
during incremental iterative analysis.'®

Relatively little attention has been given to the ex-
plicit support for the retraction of local design
changes, though some exceptions exist. Recent
work by Kazda et al.,'? for instance, provides support
for transactional operations such as begin, commit,
and undo. However, these operations are restricted
only to the restoration of previously cached routing
data, and are not communicated to the timing en-
gine. Indeed, the decision to revert one or more tim-
ing properties to their original state is typically cast as
just another sequence of incremental changes to the
system; this forces the wasteful recomputation of tim-
ing data, which may be exacerbated due to the differ-
ence in expense between executing an operation and
executing its inverse.” Other choices in the design
flow—such as the decision to compute Steiner
trees for delay estimation—also compound the effort
required to restore timing information to a previously
known state. The savings that can be achieved by ef-
ficiently rolling back recent changes are likely to esca-
late in coming years, as compound transforms
become increasingly important in physical synthesis
and routinely thrash the timer with multiple hypothet-
ical changes.
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Incremental STA

Early STA engines always processed an entire de-
sign, which is impractically expensive for evaluating
optimization transforms. This expense can be avoided
by using stale timing information or crude estima-
tions, neither of which are acceptable in modern
high-precision physical synthesis.> Another alternative
is to maintain accurate timing information throughout
the automated flow, but to do so in an incremental
fashion. Research in incremental STA aims to provide
efficient techniques for updating values within a tim-
ing network in response to local and partial modifica-
tions. Several varieties of incremental STA have
appeared over the past decade, and they are respon-
sible for decreasing timing runtime from hours to
minutes.' Further extensions to incremental analysis
include level- and dominance-limited schemes to re-
duce the amount of work performed."®Lazy evalua-
tion,? in which propagation is delayed until triggered
by a relevant query, represents a particularly impor-
tant improvement in throughput from STA engines.

The boost in throughput offered by incremental
analysis allows an optimization algorithm (as well
as a designer) to explore several hypothetical (or
what-if) scenarios, a task unaffordable in earlier
tools.'* Such hypothetical scenarios are typically
communicated to the timing engine as if committing
changes. If the results are unacceptable and the sce-
narios are rejected, another set of changes must be
committed. This requires new timing calculations,
even though the needed timing values have previ-
ously been known. Although a single layer of what-
if support can be added to STA easily, it is insufficient
for handling the evaluation of multiple nested scenar-
ios and their retraction, which we will discuss in this
article with detailed use cases.

Transform-driven optimization

Timing optimization during physical synthesis is
typically accomplished, as Figure 1 illustrates, by
gradually modifying and refining an initial netlist
and placement image.'® It is useful to distinguish be-
tween drivers and transforms; a driver selects (and
orders) a sequence of nets or gates to refine, whereas
a transform applies a given local optimization to the
objects specified by the driver. For instance, IBM’s
Placement Driven Synthesis tool makes use of several
transform templates, including buffering, connection
reordering, and cloning (in addition to traditional
techniques such as movement and repowering).’

The ultimate goal of timing-driven placement and
synthesis is to obtain a set of nonoverlapping loca-
tions for all cells such that the performance of the de-
sign meets objectives. Not surprisingly, each transform
typically makes several queries to the timer, not only
to construct a basic model of the neighboring region
(with appropriate arrival times and delays), but also
to issue a query after optimization is complete to ver
ify that an improvement in timing has been realized.
Incremental propagation and lazy evaluation are
well-known techniques that avoid work in some com-
mon use cases, thus saving considerable runtime.
However, more sophisticated optimization tech-
niques highlight use cases in which the timer per-
forms unnecessary computations in the runtime
bottleneck.

Table 1 summarizes several notable use cases.
These cases are not meant to be mutually exclusive,
but rather represent common strategies employed
by physical-synthesis transforms. In this article, we
focus on the use of retraction by these strategies.

Case 1: Fallible transforms

The simplest transforms rely exclusively on the
timer to analyze the quality of their results. For exam-
ple, a movement transform may blindly attempt sev-
eral nearby locations for a critical latch, or a
repowering transform may bind a critical gate to
every possible power level. In either case, a timing
query must be executed for each solution, so that
the transform may keep the location (or power
level) that exhibits the best slack. We refer to such
techniques as bind-and-test transforms.

Alternatively, some transforms may attempt to pre-
dict the impact of their changes in advance, and then
use the timer only to verify improvement. In the case
of a repowering transform, the slew of input pins and
the capacitance of output nets and sink pins (all
known quantities) are enough information to deter-
mine a rough estimate of the slack on the output
pin for each power level. Such a transform could
compute the best power level, bind it, then verify
that the new slack is better than the old one. Clearly,
an approximation-based repowering transform may
calculate a new power level that is inferior to the
existing one, requiring it to restore the original
power level to prevent degrading the circuit perfor-
mance. In other words, such transforms are frequently
fallible (i.e., prone to failure), and as a result, undo is
often needed for error correction.

1IEEE Design & Test of Computers
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Figure 1. A physical synthesis transform improves the subcircuit (a) by resynthesizing the logic,
resulting in the circuit shown in (b). The traditional way of evaluating the timing impact of such

transforms can be improved considerably.

Table 1. Types of transforms with embedded retraction, the reasons they need retraction, and in what situations
a retraction is applied. Representative values of undo frequency shown here are the expected number of
retractions per transform application, and illustrate order-of-magnitude differences between successive cases.

Transform type Undo purpose

Undo frequency per

Undo context transform application

Fallible Error correction Upon degradation 0.1

Candidate Measure independent For each candi- 1
changes date

Compound Model nested changes Search backtrack 10

Though simple, both fallible and bind-and-test
transforms are inherently slow because of the prop-
agation required to accommodate their repeated
changes and timing queries. In the example of
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our bind-and-test repowering algorithm, each
power level triggers timing updates for the fan-in
and fan-out cones of the gate. Admittedly, much
of this propagation could be deferred if the timing

17



18

Physical Synthesis

(a)

::)—L ;Z>I
D

(b)

v
’
?

ZWJ

'

’

'

:

'

Figure 2. Evaluating the timing impact of the physical-synthesis transform in Figure 1b. Traditional

STA with lazy evaluation will mark the fan-out cone of the change “dirty” (a). If the change is found to

have a negative impact on timing, it will be reversed (b). This reversion will be treated as another

change, and the fan-out cone will be marked “dirty” for a second time.

engine adopts a philosophy of lazy evaluation, as
do many STA engines. In such a system, the arrival
times of the nodes in the fan-out cone would re-
main uncomputed, but would instead be marked
as “dirty” to indicate their staleness. Timing propa-
gation would be invoked only in the event of a
query (and even then, only to the portion of logic
needed to answer the query). However, if the orig-
inal location (or power level) is optimal—as it is
likely to be if detailed placement has done its job
properly—the demarcation of these cones as dirty
is unnecessary because the original arrival times
stored within these cones are in fact a correct rep-
resentation of the current state. Figure 2 illustrates
the amount of work performed by traditional STA

with lazy evaluation when a circuit transform is
retracted.

Case 2: Candidate selection transforms
Candidate selection transforms are those that em-
ploy multiple strategies to generate several alterna-
tives, or candidate solutions, for a given gate. In so
doing, they run each optimization and select the
best candidate. Such transforms leverage the fact
that different strategies work well in different con-
texts. For example, consider a transform that generates
candidates by repowering as well as moving a gate.
Typically, moving a gate can have a higher impact,
but if the design has too little white space, there
may be no open location where the gate can move
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to improve timing. Instead, a higher power level may
be available for the same footprint, or white space
may be available nearby to increase the footprint.
Although fallible transforms may occasionally en-
counter undo for correction (e.g., when they degrade
circuit performance due to approximation inaccu-
racy), a candidate selection transform requires undo
by construction; after each candidate is computed,
the initial state must be restored so that the next can-
didate can be generated independently on the basis
of the initial conditions. In the example of repowering
or moving a gate, retraction must restore the gate to
its original power level after repowering so that the
movement decision can be based on the timing of
the initial power level. Timing queries for interrogat-
ing initial conditions of each candidate generation
strategy can avoid the unnecessary work of timing
updates if undo can restore the initial timing state.

Case 3: Compound transforms

Compound transforms not only consider multiple
strategies for generating candidates but also do so
for multiple objects. Such transforms may even con-
sider composing optimizations to generate a single
candidate. For example, they may consider simulta-
neously moving and/or repowering two connected
gates in a discrete domain.®” In this situation, there
is a combinatorial number of solutions to evaluate,
where each successive decision may depend on the
previous.

Compound transforms stress timing analysis tools
much more heavily than other use cases, in that the
construction of a local model requires the search of
a large, conditional solution space. Modifications
are typically made in nested sequences to generate
appropriate timing arcs; indeed, Moffitt et al.
observed that the expense of generating their disjunc-
tive timing graph is often more costly than the branch-
and-bound search used to solve it optimally’—a con-
sequence of the propagation incurred by the timer.
When undo can efficiently restore the previous timing
state, combinatorially many timing updates can be
saved in compound transforms.

Transactional timing analysis

In the presence of retractions, state-of-the-art tim-
ing analysis performs a large amount of unnecessary
work, as we have argued thus far. We now take a look
at the details of bounded transactional timing anal-
ysis, which serves to substantially reduce the
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computation needed to support undo. We consider
its application to both classical STA and the more
popular version that supports lazy evaluation.

Incorporation of transactions

By definition, a retraction restores the design to a
previously known state. Current techniques (which
view retraction as nothing other than a separate incre-
mental change) discard the original timing values
during propagation. In transactional timing analysis,
the key is to cache all timing data that becomes inva-
lidated during the execution of a change.

Specifically, when a modification is made to the
design, the timer is notified through a monitoring
mechanism that the delay at a particular timing
point has changed. That notification triggers a corre-
sponding propagation to the transitive fan-in and
fan-out cones. During transactional-timing-analysis
propagation, prior values are not simply overwritten
(as is commonly done within STA engines), but are
rather stored in a change stack as new values are writ-
ten in their place. Therefore, if and when change is
retracted, the old values may be restored by replaying
the timing updates in reverse.

If a sequence of nested transactions are executed
(as may occur with compound transforms), each in-
dividual change stack serves as a distinct checkpoint
of the design state. These checkpoints are themselves
stored on a transaction stack of all change stacks. A
new change stack is pushed onto the transaction
stack when a transform requests a new checkpoint.
The current state of timing is stored in the timing
graph as usual. When a transform backtracks and
retracts its circuit modifications, changes to the tim-
ing graph may be rolled back to the most recent
checkpoint by copying all values in the current
head of the transaction stack back into the timing
graph. Changes may be committed simply by clearing
the transaction stack.

Figure 3 shows one possible implementation of
transactional timing analysis. We stress that many var
iations on this code are possible; for instance, if a
change is likely to have significant impact on the
state of the design, the caching of old timing values
could be performed once prior to (rather than dur-
ing) propagation. To facilitate integration, a more
complex interface must exist between transforms
and timing engines. Transforms are required to com-
municate their intent (e.g., whether their modifica-
tion imposes a new condition oy, instead, reflects a
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Changed-Delay

> Input: arc — timing arc that changed
1. Propagate-Forward (arc.input)
2. Propagate-Forward (arc.input)

Undo-Changes

AATStack = ChangeHistory.top() .AATStack

WHILE NOT AATStack.empty ()
AATStack.top () .node.aat = AATStack.top() .aat
AATStack.pop ()

RATStack = ChangeHistory.top() .RATStack

WHILE NOT RATStack.empty ()
RATStack.top() .node.aat = RATStack.top () .aat
RATStack.pop ()

ChangeHistory.pop ()

W 0w J o U1 i W N

Commit-Changes
> Existing changes no longer need to be tracked
1. ChangeHistory.clear ()

Propagate-Forward
> Input: timing-point

1. FOREACH successor succ of timing-point
2. IF Update-AAT (timing-point, succ)
3. Propagate-Forward (succ)

Push-Changes
1. ChangeHistory.push_new_ layer ()

Update-AAT
> Input: pred, succ timing points
delay = compute-delay (pred, succ)

2. IF (succ.aat < pred.aat + delay)

3. ChangeHistory.top() .AATStack.push (TC (succ,
succ.aat))

4. succ.aat = pred.aat + delay

RETURN TRUE
RETURN FALSE

Propagate-Backward
> Input: timing-point

1. FOREACH predecessor pred of timing-point
2. IF Update-RAT (pred, timing-point)
3. Propagate-Backward (pred)

Update-RAT
> Input: pred, succ timing points

=

delay = compute-delay (pred, succ)

2. IF (pred.rat > succ.rat - delay)
3. ChangeHistory.top () .RATStack.push (TC (pred,
pred.rat))

pred.rat = succ.rat - delay
. RETURN TRUE
6. RETURN FALSE

Figure 3. One possible implementation of transactional timing
analysis. The functions Propagate-Forward and Propagate-
Backward, shown here using recursion for brevity, are best
implemented without recursion. 2AT and RAT refer to actual
arrival time and required arrival time respectively.
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restoration), so that the appropriate action is taken on
behalf of the timing engine.

Extensions

As noted earlier, it is common for STA engines to
defer timing updates until needed by a relevant tim-
ing query. In many cases, this avoids work when tim-
ing values are invalidated multiple times before they
are actually used. The notification of a change in
delay during such lazy execution will not trigger tim-
ing propagation. Instead, the fan-in and fan-out cones
of a modified edge are simply marked dirty, indicating
that they must be recomputed.

To accommodate transactional timing analysis
with lazy execution, dirty bits must also be consid-
ered as part of a timing point’s state. In the event of
a retraction, traditional STA engines allow the af-
fected nodes to remain dirty, whereas bounded tim-
ing analysis will revert them back to their state prior
to the change. Though not shown in Figure 3, the ex-
tension is relatively straightforward: all actions that
alter the dirty bit of a timing point are recorded
and are subsequently restored if the transform issues
a retraction.

Finally, support for transactioning in the presence
of logic changes (such as the pin swapping of our
original example) requires careful caching of topo-
logical modifications to the graph itself (in addition
to the timing values associated with these elements).
The creation, deletion, and modification of graph
connectivity can be achieved through a reference
labeling of timing points; changes to structural ele-
ments, such as edges and nodes, are recorded with
respect to these unique identifiers and thus may sub-
sequently be restored. Although the implementation
required to properly maintain this bookkeeping is
complex and nuanced, it introduces no substantial
intellectual novelties beyond the original framework.

Bounded timing windows

When evaluating the impact of a transform, it is
common to query timing at specific relative loca-
tions to the change. For example, we can query
the slack of a gate’s output pin after repowering, or
the slack of an input pin at the next circuit level
after moving a gate. When it is known beforehand
how far the scope of a change extends, we can
limit timing analysis (and, for our application, the
amount of data stored per transaction) to be correct
only within that range. We call this local region a

1IEEE Design & Test of Computers
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Figure 4. Evaluating the timing impact of the physical-synthesis transform in Figure 1b. Bounded

transactional timing analysis will not propagate the change outside of a specified window (a). In the

event of a reversion, gates with dirty timing will have their timing data restored (b).

bounded timing window. (Some STA engines—such
as IBM’s EinsTimer—provide similar level-limiting
features that serve to circumscribe the scope of
local changes; they are not, however, integrated
with any form of transaction management.) Limiting
propagation to such windows provides runtime sav-
ings, as it is only necessary to propagate arrival times
(and/or dirty bits, in the case of lazy evaluation) to
the window boundaries. Likewise, in the event of a
rollback, the data required to restore the graph to
its original state is also reduced. Since immediate
timing queries are assumed to be made within the
timing window, all values outside the region are con-
sidered to be fixed timing endpoints. Figure 4 shows
bounded transactional timing analysis for an exam-
ple transform.
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Selecting an appropriate window size for a partic-
ular transform can require some care. The effect on
timing of an optimization depends on the nature of
the optimization; therefore, choosing a static-window
size is best done when the transform is designed and
tested. In particular, differences in slew can greatly af-
fect timing for the whole path in ways that are difficult
to predict while considering only slack.!” For this rea-
son, timing-analysis tools support a mode to limit slew
propagation to a constant number of levels. This
mode provides a convenient way to limit the scope
of timing changes and improves the speed of timing
analysis in physical-synthesis tools. Any window
larger than the scope of slew propagation can pro-
vide faster queries with no accuracy loss. Further-

more, in the context of bounded transactional
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timing analysis, timing queries are required only to
decide if a retraction is necessary. Typically, the effect
of an optimization on a path’s timing is known with
enough accuracy to make a decision whether or
not to retract after a signal is propagated through
only a few levels of logic. An additional dynamic
approach runs a few trial transform applications
and samples several window sizes to determine
how much accuracy is lost for various window
sizes. Such an approach then chooses the smallest
window size with tolerable error to be used on the
majority of transform applications.

Facilitating parallelism

Because a bounded timing window delimits the
scope of a local change, it also provides a guarantee
on the mutual independence of disjoint timing
islands. This independence meets the requirements
set forth for distributed STA,'® and it could, in theory,
be exploited to easily decompose timing optimization
into several parallel processes.

Although we did not evaluate such a parallel archi-
tecture in our experimental setup, we stress that signif-
icant computational savings could be gained if
properly implemented and integrated with other com-
ponents of the automated flow (e.g., the placement
engine, the data model, etc.).

Empirical results

To evaluate the computational benefits of bounded
transactional timing analysis, we implemented the
aforementioned techniques in a new STA tool that
supports both classical STA (i.e., the academic variety
that immediately performs propagation of modified
timing values) and lazy evaluation (e.g., the more pop-
ular variety that performs propagation only on de-
mand). For evaluation of the former, we discounted
the runtime required for initial propagation of a
change, as that time is shared by “with-transaction”
and “without-transaction” runs. All incarnations of
our timing engine employ some form of incremental
propagation.

We modified a simple timing-driven gate move-
ment transformation within a state-of-the-art industrial
physical-synthesis flow to query our static-timing ana-
lyzer when deciding whether or not to retract the
change. Changes to delay values in the timing graph
of an actual 65-nm design were simulated and pro-
filed to determine the runtime incurred by STA. Two
parameters were adjusted in these experiments:

the probability that a delay change is retracted
(P(undo)) and the size of our bounded timing win-
dow (where a size of oo indicates the absence
of this technique). Because the frequency of finding
timing-driven placement improvements strongly
depends on the circuit and the state of optimization,
our experimental transform used the P(undo) param-
eter to determine if and when to retract the change.
Thus, we could vary P(undo) independently to study
the impact on runtime of any frequency of retraction.

Table 2 presents the results of these tests. As would
be expected, no benefit is observed when retractions
are never performed; in fact, the overhead involved
in recording transaction state puts transactioning at
a slight disadvantage. However, even with a moderate
amount of undo, the computational savings can be
substantial. For classical STA, an improvement in
retraction speed of over 200x is observed. For lazy
evaluation, a factor of up to 5.2x is achieved, con-
firming that although lazy evaluation alone does in-
deed prevent a fair amount of thrashing, it can be
further improved by transactioning.

It can also be observed that bounded timing win-
dows (which can be exploited independently of
transactioning) are generally effective at reducing
runtime. We expect that most automated flows
should be able to make use of the combined benefits
of lazy evaluation, transactioning, and bounded tim-
ing windows.

IN THE sYSTEM we have described, our work was moti-
vated primarily by deficiencies in STA that cause it
to behave poorly for a wide range of physical-
synthesis operations. The incremental-timing con-
cepts we have presented are not unique to physical
synthesis; they are equally applicable to the efficient
support of logic synthesis transforms, and some of
them may have been in use for this purpose since
the mid-1990s. However, conventional logic synthesis
does not stress timing infrastructure as much as mod-
ern physical synthesis does; therefore, relevant tech-
niques were not given as much attention in timing
analysis literature—and, to this day, remain poorly
documented. As transform-driven optimizations in
physical synthesis continue to increase in complexity,
the need to efficiently accommodate hypothetical
timing queries is likely to grow. Our future work per-
tains to researching and developing new compound
transformations that leverage the timing analysis tech-
niques we have described in this article. |
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Table 2. Empirical results of bounded transactional timing analysis with classical STA and with lazy STA.
Nodes expanded Runtime (seconds)
Classical STA Lazy STA Classical STA Lazy STA
Window Without With Without With Without With Without With
P(undo) size trans.* trans. trans. trans. trans. trans. trans. trans.
00 12,638 12,638 22,905 22,905 0.28 0.33  (0.8x) 2.09 2.36 (0.8x)
0% 40 12,638 12,638 19,356 19,356 0.32 0.33  (0.9x) 1.65 1.86 (0.8x)
20 10,186 10,186 7,400 7,400 0.25 0.26  (0.9x) 0.41 0.47 (0.8x)
10 3,641 3,641 1,967 1,967 0.08 0.08 (1.0x) 0.10 0.11 (0.9x)
00 346,170 12,646 22,895 22,605 14.5 0.32 (45.3x) 2.07 2.29 (0.9x)
10% 40 202,821 12,646 19,346 19,056 6.65 0.32 (20.7x) 1.69 1.82 (0.9x)
20 41,251 10,194 7,380 7,013 1.3 025 (5.2x) 0.41 0.43 (0.9x)
10 5,957 3,649 1,955 1,793 0.14 0.07 (2.0x) 0.09 0.10 (0.9x)
00 1,124,067 12,693 22,888 21,960 46.66 0.32 (145.8x) 1.98 2.28 (0.8x)
30% 40 510,642 12,693 19,339 18,320 14.84 0.32 (46.3x) 1.63 1.76 (0.9x)
20 75,128 10,233 7,353 6,282 213 0.25 (8.5x) 0.39 0.37 (1.0x)
10 8,716 3,649 1,948 1,599 0.19 0.07 (2.7x) 0.10 0.09 (1.1x)
00 1,733,287 12,693 22,886 9,939 73.11 0.32 (228.4x) 2 0.67 (2.9x)
50% 40 799,207 12,693 19,335 9,405 24.50 0.32 (76.5x) 1.62 0.63 (2.5x)
20 105,003 10,233 7,351 4,012 3.12 0.25 (12.4x) 0.41 0.25 (1.6x)
10 11,570 3,649 1,944 1,085 0.26 0.08 (3.2x) 0.09 0.06 (1.5x)
00 1,855,924 12,705 22,872 6,483 76.47 0.31 (246.6x) 2.02 0.48 (4.2x)
70% 40 913,461 12,705 19,321 5,848 27.52 0.32 (86.0x) 1.65 0.44 (3.7x)
20 133,800 10,245 7,339 1,882 412 0.25 (16.4x) 0.40 0.14 (2.8x)
10 15,257 3,661 1,932 397 0.34 0.07 (4.8x) 0.10 0.03 (3.3x)
00 1,947,548 12,705 22,850 5,551 76.81 0.33 (232.7x) 2.11 0.40 (5.2x)
90% 40 995,711 12,705 19,299 4,769 29.02 0.33 (87.9x) 1.62 0.36 (4.5x)
20 157,328 10,245 7,315 1,078 4.51 0.25 (18.0x) 0.40 0.07 (5.7x)
10 17,019 3,661 1,910 173 0.37 0.07  (5.2x) 0.09 0.02 (4.5x)
* trans. = transactioning
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