Broadening the Scope of Multi-Objective
Optimizations in Physical Synthesis
of Integrated Circuits

by
David Anthony Papa

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2010

Doctoral Committee:

Associate Professor Igor L. Markov, Chair
Professor David T. Blaauw

Professor Karem A. Sakallah

Professor Dennis M. Sylvester

Charles J. Alpert, International Business Machines Ceafpan

© David Anthony Papa 2010
All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation would not have been possible withoutrtira@asurable self-sacrifice
of my perfect wife, Amy. She has worked day and night by my $ileears to make our
home and family prosperous. | love you very much. Our two badisons George and
Victor have brought me indescribable joy and gave me hopthéfuture when it seemed
all was lost. I love you two in ways | never thought possiblam eternally grateful to her
for the faith she has placed in me. I will do everything | camevard her investment.

| am also deeply indebted to her parents Ren Fang Zhang andiai{@ong who have
come from their home in China to live with us and help raiselmalies. Without them,
| don’t know how it would be possible for me to balance gradusathool, a full-time job,
and a new family. | will be sorry when they return home.

My advisor, Professor Igor Markov, has also poured an inbteémount of work into
training me to be capable of writing this dissertation. He dafended me when it was
not convenient, supported me when it seemed hopeless, aadgea/e up on me until the
task was complete. | am grateful for all of his efforts as vaslhll of the opportunities and
second chances he has given me. | truly hope it has been dsitforthim as it has been
for me.

| also want to thank all of the people at IBM Austin Research,Laespecially my
manager Chuck Alpert and my mentor Gi-Joon Nam. Chuck’s Gaagr to industrial
research is truly unique and | feel very fortunate to havekedmith him during graduate

school. Gi-Joon has seen my value from the very start an siscmeck out for me when

it mattered most. | hope he feels proud of his judgment. | lsds@made many friendships
here, and this research group is an amazing place to worko Ehdarrod Roy, Cliff Sze,
Natarajan Viswanathan, Mehmet Yildiz and Nancy Zhou ar#idmmt people who have
all had their impact on this dissertation. Working with thgeople on a topic | love has
truly made it a pleasure to come to work each day. | also watitdok Anne Gattiker
for accompanying me on so many occasions while | burned tieigtit oil to finish this
thesis. John Keane and Vipin Sachdeva have also been diessédithat enriched my life
a lot during our time together at IBM.

| also have to thank all of my friends from igroup who have sthglose despite long
distances and made life bearable. Jarrod Roy has been anatlypeose friend, and he
is not so far away today. Smita Krishnaswamy has been mydrieneven longer, and
still brainstorms with me daily. Aaron may have left igroufmag time ago, but he is still
making me laugh every day. George Viamontes has moved oreémgr pastures, but he
is always willing to lend good advice when its needed. Eshahfiaswamy was never
a member of igroup, but she has been there for moral supp@am Wwivanted it. Jin Hu
has been a good friend and helped me with this thesis and bgdoats on the ground
in Michigan. And while | haven’'t been in Michigan for the cant group of graduate
students, Myung-Chul Kim, and Dong-Jin Lee, and Hector Gahave all been good
friends during my visits.

| also want to thank the other friends | have managed to keep thve years despite
everyone being spread all over the country. Brandon Hanasé&en by my side through
a lot of interesting adventures, and would be there againeelded him. Jason Feyers has
been areally close friend and showed me a lot about life. $itbiBhs and his family have
always been good to me, and he is a really great guy. Max Magétane a lot of things

and | have to thank him for that. Ryan Park has always beenrdn aish | stayed in

better touch with him now.

Last but not least, | want to thank my parents George and Maundo gave every-
thing they had to support me, as well as my sister and bro@wyrstal, Mitchell and Evan,
who look up to me and give me motivation to carry on. | love ybwary much. | could
not have been successful without the foundation they dwbtpect my family’s future to

be bright thanks to their support and sacrifices.

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LISTOFFIGURES e

LISTOFTABLES e

ABSTRACT . . . e

PART | Introduction and Prior Art

Chapter I. Timing Closure for Multi-Million-Gate Integrat ed Circuits

1.1 Challenges in Physical Synthesis

1.2 OurContributions
1.3 Organization of the Dissertation

Chapter Il. State of the Art in Physical Synthesis

2.1 Progression of a Modern Physical-Synthesis Flow
2.2 The Controller / Transformation Approach

2.3 Circuit Delay Estimation

2.4 Current Trends in Physical Synthesis

PART Il Local Physical Synthesis and Necessary Analysis Téaiques

57

Chapter Ill. Buffer Insertion During Timing-Driven Placem ent

3.1 Introduction

3.2 Background

3.3 The RUMBLE TimingModel
3.4 Timing-Driven Placement with Buffering.
3.5 The RUMBLE Algorithm
3.6 Empirical Validation
3.7 Conclusions

Chapter IV. Bounded Transactional Timing Analysis 58

4.1 Introduction 59
4.2 Background 62
4.3 Transactional Timing Analysis 70
4.4 Empirical Validation 77
4.5 Conclusions 80
Chapter V. Gate Sizing During Timing-Driven Placement. 82
5.1 Introduction 83
5.2 Background 87
5.3 Problem Formulation 88
5.4 Our Simultaneous Placement and Gate-Sizing Algorithm. 93
5.5 Empirical Validation 101
56 Conclusions 101

PART Il Broadening the Scope of Circuit Transformations

Chapter VI. Physically-Driven Logic Restructuring 103
6.1 Introduction 104
6.2 Background and Preliminaries 091
6.3 Fast Timing-DrivenGateCloning. 112
6.4 Empirical Validation 127
6.5 EXtensions 130
6.6 Conclusions 132

Chapter VII. Logic Restructuring as an Aid to Physical Retiming 135
7.1 Introduction 135
7.2 Background, Notation and Objectives 139
7.3 Joint Optimization for Physical Synthesis 143
7.4 Empirical Validation 155
7.5 EXIENSIONS 159
7.6 Conclusions 160

Chapter VIII. Broadening the Scope of Optimization using Patitioning . 161

8.1 Introduction 161
8.2 Background 163
8.3 Forming Subcircuits using Top-Down Netlist Partitiogni 165
8.4 Trade-offsin Window Selection. 167
8.5 Empirical Validation 171
8.6 Conclusions 175

Vi

Chapter IX. Co-Optimization of Latches and Clock Networks 176

9.1 Introduction 177

9.2 Background 180
9.3 Disruptive Changes in Physical Synthesis 183
9.4 A Graceful Physical-SynthesisFlow 186

9.5 Empirical Validation 194

9.6 Conclusions 198
Chapter X. Conclusions and Future Work 199

10.1 SummaryofResults 200

10.2 Future Work 205
BIBLIOGRAPHY 209

Vil

Figure

2.1

2.2

2.3

3.1

3.2

LIST OF FIGURES

Major stages of physical design include floorplanning lagic synthe-
sis, followed by physical synthesis beginning with globalgement, and
finishing with routing and design for manufacturing. Phgsgynthesis
can be iterated with modified parameters to improve the tdsavever,
this flow does not always converge to an acceptable solution. . . . 12

During physical synthesis refinement, optimization iist fapplied to
most-critical paths, then different optimizations aredis@ reduce the
total number of critical paths. 0oL 14

In physical synthesis flows, the amount of change to tegdés large in

early phases and reduces quickly in later phases. Timinglabeécome
more accurate as the flow progresses. This trade-off is sa@gelsecause
using the highest accuracy of analysis while making largeangks to

the design is too expensive. (a) An ideal physical synthiésis that
gradually reduces the size of changes as it increases agc(ithA more
realistic example flow with two global placement steps thavenevery

gate in the design, and refinement stages that apply locahizgtions

to one object at a time. Accuracy is increased in discrefesste 15

The contributions in this chapter improve the state efatlt in critical
path optimization and timing-driven detailed placement.. 23

The placement of a pipeline latch impacts the slacks tf bgut and

output paths. A wirelength objective does not capture thety effects

of this situation, and with equal net weights a placer mayskdhe con-
figuration in (a). In trying to fix this path, timing-driven neeighting

would increase the weight on net, and placement would then choose

the configuration in (b). Placing the latch in the center a&)nis also

not an optimal approach. There may be only a single optintaltion as
shownin(d). 25

viii

3.3

3.4

3.5

3.6

3.7

3.8

3.9

A poorly-placed latch with buffered interconnect. listbase, the buffer
must be moved or removed in order to have the freedom to mare th
latch far enough to fix thepath. 29

The layout in (a) has a poorly-placed latch, and existiitical path
optimizations do not solve the problem. Repowering thegatay im-
prove the timing some in (b), but if it cannot fix the probleime tatch
must be moved. Moving the latch up to the next buffer, show(t)n
does not give optimization enough freedom. If we move thehlaut do
not re-buffer in (d), timing may degrade. Figure 3.12(d)wsohe ideal
solutionto this problem., 30

(a) A model for buffered interconnedt.describes the optimal distance
between buffers on a two-pin net. (b) A corresponditig-network of

a single buffer driving a wire segmenk, andC', represent the intrinsic
resistance and gate capacitance of the buffer wRikend C' represent

the per-unit resistance and capacitance of a metalwire. 31

(&) An example subcircuit and (b) corresponding timirgpd used in
RUMBLE. The AATs or RATs of unmovable objects (squares) ane-c
sidered known. STA is performed on movable objects (roumghek). . 33

In many subcircuits there are multiple slack-optimacpments. In
RUMBLE we add a secondary objective to minimize the displaeet
from the original placement. This helps to maintain the tignassump-
tions made initially and reduces legalization issues. lf@aps the initial
state of and example subcircuit, (b) a slack-optimal solutommonly
returned by LP solvers, all optimal solutions lie on the édtline and
(c) a solution given by RUMBLE that maximizes worst-slackrimin-
imizesdisplacement. 34

(a) A timing arcn,,,, connecting an arbitrary gateto an arbitrary gate
v. (b) The RAT of a gateg is the minimum of RATs of the outputs gf
(c) The AAT of a gatg is the maximum of AATs of the inputsaf. . . 35

(&) An example subcircuit with an imbalanced latch whesest-slack
cannot be improved. Nevertheless, it is possible to imptowang of

the latch while maintaining slack-optimality. By includjm TNS com-
ponent in the objective, the total negative slack can beaedluas shown

iN(b). . . . 38

3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

Modeling feedback paths within logic requires a nevetygpgate. Pseu-
domovable gates have timing values that depend on the tinahges
of neighboring gates, but they cannot be moved. (a) Ignahegres-
ence of feedback paths is overly pessimistic, and it appbatghe tim-
ing of the latch cannot meet its constraints. (b) Making tRedigates
along a feedback path pseudomovable allows the latch to mset@n-
ing constraints, but doing only this can lead to the wrongetaent. (c)
Including all gates connected to pseudomovables as fixaddipoints
properly models the problem as a convex subcircuit.

Subcircuit selection transparently skips buffers mheilding a neigh-
borhood of movable gates, and requires detectiggsefidomovables.

The RUMBLE algorithm proceeds by (a) selecting a sabdito work
on. An LP is formulated and solved, with movable gates bedhgcated
as shown in (b). Existing repeater trees are no longer apiptepand are
subsequently removed in (c). Finally, the nets are re-bedfeforming

the final subcircuitshownin(d).

The RUMBLE algorithm for moving one latch.

The contributions in this chapter improve the resultsroing analysis
asitisused in physical synthesis.

A physical synthesis transformation improves the schbtiin (a) by
resynthesizing the logic, resulting in the circuit showrgbip The tradi-
tional way of evaluating the timing impact of such transfations can

be improved considerably. o oo

Evaluating the timing impact of the physical synthesiagformation in
Figure 4.2 (output side only). (a) Traditional static timianalysis with
lazy evaluation will mark the fanout cone of the change dity If the
change is found to have a negative impact on timing, it wiltéesrsed.
This reversal will be treated as another change, and theifaone will

be marked dirty fora secondtime.

Evaluating the timing impact of the physical synthesiagformation in
Figure 4.2 (output side only). (a) Bounded transactiomairtg analysis
will not propagate the change outside of a specified wind@yvIir(the
event of a reversion, gates with dirty timing will have thiming data

restored. L,

43

44

4.5

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

One possible implementation of transactional timingysis. The func-
tions FROPAGATE-FORWARD and FRROPAGATE-BACKWARD shown here
using recursion for brevity are best implemented withoatirsion. . . 74

The contributions in this chapter improve the resulttefcritical path
optimization and slack-histogram compression stages p$ipal syn-
thesis. 83

Gatesa andg are fixed. Alternate candidate locations for movable gates
b, ¢, d, e, andf have been determined. Gdtalso has two candidate
powerlevels. 88

Thedisjunctive timing graptior our running example. Each timing arc
between a pair of candidate assignments has a distinct;waki@ctual

arc between any two meta-nodes in a complete solution dspmnthe
candidateschosen.. L oo 92

Branch-and-boundomputes an upper bound on the worst negative slack
at every node in search. Any partial solution that cannotrawe upon
the bestknownispruned. oL 94

The delay functiong(c, d) anddi(e, f). Here we show the case where

the partial solutiorf includes the decisiong < d;) and(e < e;). The
weakened delay values afg(c, d) = 3 ps ands(e, f) =2ps. 96
Pseudocode for thesRHeT algorithm. 97
Example of interconnect-driven cloning. The arrivalés of /7 and F,

are 0. The required arrival times 8f and S, are 5. For simplicity, this

example uses gatedelaysof 0. 106
An example oérrival time arcK(F). dis(Fy, K(F)) = 4, dis(F,, K(F)) =

Examples of the regiof. (a) BothK (F') and K (S) are—45° line seg-
ments; (b)K (F) is a45° line segment an& (5) is a—45° line segment;

(c) K(F)is a45° line segment and (S) is a single point. 116
The region division for tharrival time arc K (F'). 118
The slack vsK (F') curves for eachregion. 119
Examples of Best Slack Segment. 20 1

Xi

6.7

6.8

6.9

6.10

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Examples of slack curves versus locations: (a) an exathpt needs
gate duplication; (b) an example in which the rightmost agftihiost
segments do not intersect; (c) an example that does not ra¢edigpli-
cation. L e 122

Our simultaneous cloning and placement algorithm foogsahle gate. 125
Our simultaneous cloning and placement algorithm foxedfgate. . . 126

Examples of different optimizations, including buiifgy, RUMBLE and
cloning. 7 and F;, are fan-ins with same arrival time arsd and.S, are
fan-outs with same required arrival timé&. is the original gate, ané”’
is the new duplicatedgate. 133

Interactions in SPIRE’s joint optimization. 137

Retiming and gate cloning to improve slack: (a) Regigterannot be
moved past gaté’ because of fanout-F'. (b) If the NAND gateC' is

cloned, creating a new gate to drive its two sinks, it is possible to
retime the top register without changing the logic functi@r) The final

result with registe retimed. 140

A circuit (a) and its timing graph (a). The square objdwse fixed
AATs or RATs. STA is performed only on circular movable oltgec . . 140

An LP for minimum-arearetiming. 142
An LP for min-area, period-constrained retiming. 142

Advantages of performance-driven retiming with sirmanéous re-placement.
Timing values of labeled pins are given, and physical lacetiof gates

and ports are shown as (x, y) pairs. In the original circyittfze timing

path feeding the input of the register has negative slackiithe gate

and register in (b) improves the slack, but movement aloms dot al-

low the path to meet timing constraints. Only by retiming amazement

can all timing constraints be metin(c). 144
Finding minimum slack usingLP., 461
Max-slack retiming with STA embedded. 149
Optimal register location relative to adjacentgates. 150
Max-slack retiming with relocation of registers. 151

Xii

7.11

7.12

8.1

8.2

8.3

8.4

Gate cloning in max-slack retiming. 152

Our SPIRE flow proceeds in phases. First the MILP thaessmts only

static timing analysis is solved without design changese Vdlues of
relevant variables are saved and passed to the next stagle winis an

MILP that incorporates retiming and cloning. The retimirgyiables

are saved and fixed in an MILP that allows latches to move. llgina

with known values for latch locations and retiming variablee run the
complete linear program. 156

A generic iterative improvement physical synthesi®atm that ap-

plies a transformation to a window based on bottom-up cturgje The
performance of this algorithm can be tuned through the ehoifclus-
tering strategy, the selection of a controller and trams&dion pair, and
through the runtime solution quality trade-off controlleg S. Chap-

ter 1l explores using am-hop clustering strategy and Chapter V was
applied to windows selected in most-critical-firstorder. 163

Venn diagrams illustrating different window selectiechniques. The
outer rectangle in each image represents the entire desige shaded
regions inside represent clusters or partitions. (a) €hus grows win-
dows around a seed object and typically creates overlappindows
that do not cover the circuit. (b) Partitioning divides thdiee circuit
into windows of approximately equal size that do not overléy The
windows formed by partitioning can be expanded to deliledyatreate
overlaps between adjacent partitions. (d) Partitioning lwa performed
multiple times to find orthogonal partitioning solutions.(H) two inde-
pendent 4-way partitioning solutions are overlaid, theisoh from (b)
is augmented by an additional one with dashed cutlines. 169

An illustration of SPIRE’s effect off (TNS) versus the number of ap-
proximately equal-size partitions of three industrial rojorocessor de-

sign blocks generated by the hMETIS patrtitioner [43]. (2)ra@8 (b)
azure09 (c) azurel0. The horizontal axis indicates the eumbparti-

tionsk. The vertical bars extend to +/- one standard deviation fifoen

mean value off . The wicks of candlesticks extend from the min to the
max value of7 . The baseline indicates the valueDbfwithout changes
tothecircuit. 172

A histogram of TNS improvement in partitions of a largel@S 174

Xiii

9.1

9.2

9.3

9.4

The locations of cells during force-directed placenanie clockopt
placement stage. (a) After one iteration of quadratic mogning fol-
lowed by cell spreading, a graceful spreading of cells canlbserved.
(b) The final placement resulting from repeating thesetitna to con-
vergence, followed by detailed placement and legalization

The preexisting clock optimization flow exhibits seVeliaruptive fea-
tures. During Unhidel, the last level of the clock networlexposed
to timing analysis, but the latches are not yet optimized BLdlbning
creates additional LCBs to limit the fanout of each LCB artdHeclus-
tering determines which LCB will drive each latch. Globabakopt
placement ignores existing locations when determiningva loeation
for each gate. Timing is reasserted after placement in Wzhiéinally,
additional coarse optimization is performed based on newng condi-

Our next-generation clock optimization flow uses cdrefdering of
steps to avoid the largest degradations. LCB cloning cseadéitional
LCBs to limit the fanout of each LCB and latch clustering detimes
which LCB will drive each latch, this is now done before cldaking

is exposed. After many new LCBs are inserted, the controladggthat
drive them are traveling over an unoptimized high-fanout kée opti-
mize these control signals paths in LCB fanin opt. Incremaletibckopt
placement moves gates as little as possible when ensurmtdatiches
are placed close to LCBs. Clocks timing is only exposed dlftel.CB

to latch load is reduced to acceptable levels. Finally, smaptimization
based on mercury is performed. 0L,

An illustration of the flow in Figure 9.3. At the beginnin§clock opti-
mization in (a) the clock is still idealized and latches alacpd around
the chip. In (b) local clock buffers (LCBs) are cloned anddugedrive
several latches each. To accommodate the timing impact tifeahew
LCBs, LCB control signals are optimized in (c). Global plasnt then
moves latches close to LCBs in (d). Finally, leaf-level &aetworks
are inserted and clocks are unidealized.

Xiv

180

.188

9.5

9.6

9.7

10.1

Adding LCBs (shown by vertical bars) reduces the maxintatech dis-
placement (thin lines). This behavior is controlled by tvemgmeters:)
maximum increase in the number of LCBs, as a percentage ohitne

imum number(ii) maximum latch displacement, with) taking prece-
dence ove(ii). (a) The minimum number of LCBs is 56 and the maxi-
mum latch displacement is high. (b) By limiting parameterto 12.5%

we get a maximum of 63 LCBs, and this noticeably reduces tha-ma
mum latch displacement. (c) We limit the maximum latch daispiment

to a tight limit using parametefii) but relax parametefi) and end up

with low latch displacementand 100LCBs. 901

An algorithm for length-constrained latch clustering.. 191

Using incremental clockopt placement significantlyuess the disrup-

tion of the clockopt placement step. In each plot, a vectdicates the
movement of a cell during the clockopt phase. Red vectolisae dis-
placements by over 500 tracks. Yellow, green and blue inel2@0, 100

and 50 tracks respectively. (a) Displacement vectors faredlls result-

ing from traditional force-directed placement. (b) Incertal placement
reduces the number of red vectors drastically. Nearly alhefred vec-

tors in this plot are due to latches which must be moved faetdgthe
nearestLCB. 192

The optimizations in this dissertation improve neangry stage of a
state-of-the-art physical synthesis flow. For example, lstrate that
Chapter 1V deals with Timing Analysis by a adding a circledo4hat
stepintheflow. 205

XV

Table

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

5.1
5.2

6.1

LIST OF TABLES

Keeping buffers instead of removing and reinsertingtbdegrades RUM-
BLE'sperformance. 49

The RUMBLE model accurately predicts the solution gyainprove-
ments in the reference timingmodel. 05

Comparison of RUMBLE's LP to a slack-weighted centegtdvity tech-
NIQUE. . . o o e e e e e 52

RUMBLE simultaneously moving@ne-homeighborhood compared to
iteratively moving the same gates individually. 52

RUMBLE simultaneously movingtavo-hopneighborhood compared to
iteratively moving the same gates individually. 53

RUMBLE deployed in a physical design flow on circuits thate pipeline

latch placement problems. cktl has 2.92M objects and 628kda and

ckt2 has 4.74M objects and 247k latches. “old” reports \aloefore
RUMBLE “new” reports results after and “diff” reports thelifference.

FOM isreported in nanoseconds. 55

Types of transformations with embedded retractiorusttative values
in the “Undo frequency” column suggest that some cases requany
more retractions that othercases. 0 7

Empirical results of bounded transactional timing gsial with and

without lazy evaluation. 77
Path Smoothing Benchmarks 0 10
Experimental Results on a large industrial design wtPas clock. . . 100

Experimental results comparing cloning to other optation techniques
for the circuit shown in Figure 6.10. 291

XVi

6.2

7.1

7.2

8.1

8.2

9.1

9.2

9.3

Experimental results comparing cloning to other optation techniques

for 100 circuits. Buffering refers to timing-driven buffeg. RUMBLE
refers to timing-driven gate placement followed by buffgri Clonel
refers to gate duplication with the original gate fixed. @Bmefers to

gate duplication with the original gate movable. 134

Minimum slack(M) andtotal negative slack7’) improvement during
simultaneous retiming+placement on macros é$@am microprocessor
(see Egns. VII.1-VIL.2). Maximall' improvement (100%) is reached
when design closes on timing. These cases are indicateddn %o\

is computed as described in Equation VII.14 wRh= 174ps. 158

Total thresholded slack©) improvement through simultaneous retim-
ing, cloning and placement (see Eqn. VII.3). Cloning alsprioved M
on azure6 bys.5%, while on remaining testcases the most-critical paths

were notaffected. 158

Previously reported transformations and the maximysorted size of
subcircuit to which they are applied. 162

A comparison between window selection techniques. 170

Large-block synthesis benchmark characteristics. HHkaL #GATES
column shows the range of possible gate counts using datadxperi-
ments presented in Tables9.2and9.3. 94

The impact of individual components in the graceful flGuME is the
runtime of physical synthesis in secondsORETSLACK is slack of the
worst path in the circuit in picoseconds. is calculated as in Equation
IX.1 and is expressed in picoseconds. WL is the sum of hailfyper
wirelengths and is expressed in routing tracks. 196

The impact of our graceful flow on key design parametersieTs the
runtime of physical synthesis in secondsORETSLACK is slack of the
worst path in the circuit in picoseconds. is calculated as in Equation
IX.1 and is expressed in picoseconds. WL is the sum of halfyper
wirelengths and is expressed in routing tracks. 197

XVil

ABSTRACT

Broadening the Scope of Multi-Objective Optimizations
in Physical Synthesis of Integrated Circuits

by
David Anthony Papa

Chair: lgor L. Markov

In modern VLSI design, physical synthesis tools are prilpaesponsible for satisfy-
ing chip-performance constraints by invoking a broad rasfggrcuit optimizations, such
as buffer insertion, logic restructuring, gate sizing agldcation. This process is known
astiming closure Our research seeks more powerful and efficient optimiratio im-
prove the state of the art in modern chip design. In particwa integrate timing-driven
relocation, retiming, logic cloning, buffer insertion agdte sizing in novel ways to create
powerful circuit transformations that help satisfy setumpe constraints.

State-of-the-art physical synthesis optimizations apéclly applied at two scales: i)
global algorithms that affect the entire netlist and ii)dbtransformations that focus on
a handful of gates or interconnections. The scale of modeim @esigns dictates that
only near-linear-time optimization algorithms can be aggphkt the global scope — typi-
cally limited to wirelength-driven placement and legafiaa. Localized transformations
can rely on more time-consuming optimizations with acaidglay models. Few tech-

niques bridge the gap between fully-global and localizetthmpations. This dissertation

Xvili

broadens the scope of physical synthesis optimizationdade accurate transformations
operating between the global and local scales. In particula integrate groups of re-
lated transformations to break circular dependencies acre¢ase the number of circuit
elements that can be jointly optimized to escape local manim

Integrated transformations in this dissertation are dgesd by identifying and re-
moving obstacles to successful optimizations. Integnaisoachieved through mapping
multiple operations to rigorous mathematical optimizatpyroblems that can be solved
simultaneously. We achieve computational scalabilityuntechniques by leveraging an-
alytical delay models and focusing optimization effortsaamefully selected regions of
the chip. In this regard, we make extensive use of a linearénohnect-delay model that
accounts for the impact of subsequent repeated insertianin@egrated transformations
are evaluated on high-performance circuits with over 100 ghates.

Integrated optimization techniques described in thisaitasion ensure graceful timing-
closure process and impact nearly every aspect of a typigaigal synthesis flow. They
have been validated in EDA tools used at IBM for physical Bgsts of high-performance

CPU and ASIC designs, where they significantly improved g@gormance.

Xix

PART |

Introduction and Prior Art

CHAPTER|

Timing Closure for Multi-Million-Gate Integrated
Circuits

Sophisticated integrated circuits (ICs) can be classiiqgutacessors (CPUSs), application-
specific integrated circuits (ASICs) or systems-on-a-¢8ipCs), which embed CPUs and
intellectual property blocks into ASICs. Mass-producedsditon chips, these circuits
fuel consumer and industrial electronics, maintain naticand international computer
networks, coordinate transportation and power grids, arsdire the competitiveness of
military systems. The design of new integrated circuitaunexs sophisticated optimiza-
tion algorithms, software and methodologies — collectiveglled Electronic Design Au-
tomation (EDA) — which leverage synergies between CompBteence, Computer En-
gineering and Electrical Engineering. From the algorithperspective, a number of NP-

hard problems need to be solved quickly in practice, whiggrtimstances grow year after

year with Moore’s law. From the software perspective, nplétioptimizations must op-
erate on sophisticated design databases and coordinatsureeconsistent results over a
large variety of chip designs. Electrical-engineeringeasp of EDA emphasize physical
characteristics of integrated circuits, such as speddyboflimitations observed in large,

high-speed chips manufactured at sub-65nm technologysnode

1.1 Challenges in Physical Synthesis

State-of-the-art automated IC design flows begin at a ptensiage with rough esti-
mates of chip performance and cost. During this stage, &iév@l layout orfloorplan
of the chip is determined. Next, designers describe thetimmof the chip using a hard-
ware description language (HDL), such as Verilog or VHDL. @it synthesis tool is
run on the HDL code to create a mapped netlist that implentaetslesign in the target
standard-cell library. Timing analysis can then calculeaade, optimistic estimates of
chip performance, and the HDL code can be improved untilsspa this sanity check.

The physical synthesis stagbegins after logic synthesis produces a gate-level netlist
that meets agreed performance targets under optimistiegioonditions. A physical syn-
thesis tool reads the netlist, creates an overlap-freeepiant of gates, and proceeds to
optimize circuit performance. During physical synthesig, availability of gate locations
enables more accurate interconnect-delay modeling imgranalysis. Common physical
synthesis operations include inserting or removing baftard inverters, resynthesizing
small windows, increasing and decreasing gate sizes, assvetlocating gates. When a
design meets its performance constraints, it is salthiee closed on timingVhen physi-

cal synthesis is unable to achieve timing closure, desggmeist study the tool’s logs and

the optimized circuit then manually generate additionalstiaints to guide the optimiza-
tion process. More substantial timing-closure difficidtean cause an expensive return to
the logic synthesis stage, necessitate floorplanning @samgeven require changes in the
HDL code.

Designs that have passed timing checks during physicahegi#, transition into the
routing stage, where more accurate timing models are &kaiend new timing-closure
problems may arise. Failure to route or meet timing consisaat this stage can again
cause a return to earlier stages and further iterationslliinpost-routing optimizations
address any timing-closure issues that remain after rgusimch as changing wire layers
to reduce variability, moving detailed routes to reducessttalk, or adding redundant vias
to improve manufacturing yield.

Challenges. Aggressive scaling of transistor dimensions according tmid's Law
has historically driven performance improvements of CM@Sed integrated circuits (ICs).
This trend has been so successful that now the greater paritichl path delay is no
longer in the transistors that compose logic gates — deleyuth signal nets and re-
peaters now dominates [101]. As a result, logic synthesisncalonger estimate design
performance effectively without physical information. éatively recent solution, phys-
ical synthesis optimization algorithms employ a complex)tirphase process that com-
bines netlist optimization, placement, routing and timamglysis [7,8,112]. Physical syn-
thesis optimization algorithms are primarily designedabiave timing closure, but there
are other important objectives such as reducing wireleragba and power consumption

while maintaining routability.

Another consequence of technology scaling trends give®fyders more transistors
at their disposal, which leads to increased design size amgblexity. Today’s ICs have
tens of millions of gates and each design has its own perfoceeequirements, which in-
clude reducing power consumption, satisfying area boundsrecreasing manufacturing
yield. A physical synthesis tool must accommodate theseirements as well as ensure
that basic physical constraints are met, such as produdeggé routable placement. As
a result, throughout the physical synthesis flowitiple objectivesire always present and
must be optimized simultaneously.

Several prior publications formulate non-linear, mubi@ctive optimization problems
and solve them with some success [109], but these algoritiypisally exhibit super-
linear runtime complexity and do not scale well enough tdrojze an entire modern
VLSI design at once. Other approaches focus on a handfultesgand apply more time-
consuming algorithms to relocate several gates at onceedse drive strength, or insert
buffers to improve performance [10,112, 114]. Howeverséhapproaches are limited in
scope and only near-linear-time algorithms suchwaslength-driven placemerttan be
applied at a truly global scope. For example, the scog@ing-driven gate relocatiors
typically limited to finding new positions for a handful oftga so as to improve the delay
of incident paths. Few techniques are available between the global and loogksg but
resynthesis is a notable exception. While logic synthesibriiques are applied to more
than a few gates at once, the delay estimations considerth@tascale do not typically

utilize all of the physical information available and aretéfore less accurate [87]. Con-

1This is in contrast tdiming-driven placementhich in previous literature usually refers to the appli-
cation of net weights during placement that are based omgjnmformation. Here we are referring to the
detailed placement of a small number of gates while intergétcrementally with a timing analysis engine.

sequently, in state-of-the-art physical synthesis tdwsd is a large gap between the scope
of accurate, local transformations and coarse, globasteamations.

More recently, a trend toward integration of symbint optimizationss repowering,
buffering, and timing-driven detailed placement has gaisteength. Increasing the scope
of suchcompound transformatioris close the aforementioned gap while maintaining ac-
ceptable runtime and accuracy remains a challenging @sgaoblem. It is uncleaa
priori if established techniques based on static timing analysissangle-objective opti-
mizations remain sufficient in the context of physical sysik for sub-45nm ICs. To this

end, Chapter IX reports successful experiments with 32rar2&nm designs.

1.2 Our Contributions

In this dissertation, we make several contributions thesaade the capabilities and strength
of modern software tools for physical synthesis, with thigmdte goal to improve the
guality of leading-edge semiconductor products. In so gloiwe broaden the scope of
physical synthesis optimization in two distinct ways) we integrate related transforma-
tions to break circular dependencies and find optimizatjoresyies andii) we increase
the number of objects that can be jointly optimized to es¢aga minima.

Integrated transformations in this dissertation are aged by first considering a suc-
cessful optimization and identifying obstacles to its liert application. We then derive
methods to overcome those obstacles that call for integratintegration is achieved
through mapping multiple operations to rigorous mathecaatiptimization problems and
solving them simultaneously. We achieve scalability in @ehniques by leveraging ana-

lytical delay models and restricting consideration to idhg selected regions of the chip.

In particular, we make extensive use of a linear intercotidetay model that accounts
for the impact of subsequent repeated insertion. We als@dstrate that bottom-up clus-
tering and top-down partitioning can be used to select smglbns of large circuits on

which our optimizations have a large impact.

Simultaneous placement and buffering. At advanced technology nodes multiple
cycles are required for signals to cross the chip, makirnghlatacement critical to tim-
ing closure. The problem is intertwined with buffer inserntibecause the placement of
such latches depends on the location of buffers on adjan&rconnect. In Chapter Il
we broaden the scope of timing-driven latch placement bggirating it with buffer in-
sertion. We enhance computational scalability by emplgwnalytical delay models and

optimizing delay using state-of-the-art linear programgsoftware.

Bounded transactional timing analysis. As local circuit optimizations become in-
creasingly multi-objective in modern physical synthestsvl, a tighter interaction be-
tween optimization algorithms and timing analysis is neaeg Such optimizations must
employ heuristics to search for good implementations ofsabits, but many main stream
timing analysis tools offer no support for retracting citanodifications. In Chapter IV
we describe an extension to traditional static timing asialyhat records a history of in-
cremental network delay computations in a stack-basedstiateture, so that the timing
can be returned to a previously-known state upon retractiancircuit modification. It
also explicitlyboundsthe scope of propagation to a local window in anticipatiomesf

traction. These extensions form a necessary infrastei¢turmodern physical synthesis

optimizations and greatly improve the performance of statiing analysis for local cir-

cuit modifications in the presence of retraction.

Simultaneous placement and gate sizing in a discrete domain Gate locations that
optimize timing depend on boundary timing conditions in i@l subcircuit. Similarly,
the optimal drive strength of a gate depends on the inputisleswand output capacitance.
But these two problems are related because the output tapeeiof a gate depends upon
the length of interconnect it drives. In Chapter V we deseir pairwise delay model
that allows us to analyze the impact of these optimizatiomailsaneously. Integrating
gate sizing as well as threshold voltage assignment witimgrdriven detailed placement
allows our algorithm to explore a broader range of solutiand ultimately improve the

most critical paths in the circuit.

Timing-driven gate cloning for interconnect optimization. In a complete physi-
cal synthesis flow, optimization transformations that aaprove the timing on critical
paths that are already well-optimized by a series of powereunsformations (timing
driven placement, buffering and gate sizing) are invaleablVe develop an innovative
gate cloning technique that integrates placement anddnfertion to improve intercon-
nect delay on critical paths during physical synthesis. @alynomial-time algorithm
simultaneously finds locations for the original and copiateg and assigns sinks to one
of the copies so as to minimize interconnect delay. Our élgyorleverages analytical de-
lay models developed in Chapter Il and thereby accountthiimpact of future buffer

insertion.

Simultaneous performance-driven retiming, placement, béfering and logic cloning.
One of the most common situations in which the latch placeneehniques of Chapter 11|
are insufficient is a critical path wherein moving a gate indrately next to its most-critical
input is the optimal solution but does not meet timing caaists. For example, when relo-
cating the latch adjacent to its only input still violatesetug time constraint, placement is
insufficient to further improve timing. In order to removeéstbarrier, we develop SPIRE,
a new physical synthesis transformation that integratésireg with gate relocation and
buffer insertion. To broaden the scope of retiming, we extéis transformation with gate
duplication designed to create new retiming opportunitM® demonstrate the need for
this transformation by example, motivating the integnaid all considered techniques to

meet timing constraints.

Broadening the scope of physical-synthesis optimizationsing partitioning. The
optimizations developed in this dissertation extend ptatssynthesis transformations be-
yond a handful of gates. Unfortunately, the computatiooahglexity of such optimiza-
tions makes them too inefficient to apply to entire netlist¢aoge ASIC and SoC de-
signs. Therefore, we develop a technique to identify apaitgly-sized subsets of large
designs on which our transformations can be applied eftigie@ur method utilizes ex-
isting hypergraph partitioning algorithms to divide thecait in a top-down fashion until
the subsets reach the desired size. We show that this tehoan work in practice and
demonstrate a run-time solution quality trade-off for SPlEhe transformation developed

in this dissertation that can optimize subcircuits withusands of standard cells.

Co-Optimization of Latches and Clock Networks in Large-Black Physical Synthesis.
Optimizations developed in this dissertation affect neaviery stage of a typical indus-
trial state-of-the-art physical-synthesis flow. In ordeobtain synergies between them, we
explore the infrastructure for physical synthesis used@ for large commercial micro-
processor designs. We focus our attention on a very chafigiggh-performance design
style called large block synthesis (LBS). In such desigespilacement of the latches is
particularly critical to the performance of the clock netiwownhich in turn affects timing
and power. Our research uncovers deficiencies in the stdte-@rt physical synthesis
flow vis-a-vis latch placement that result in timing distiops and hamper design clo-
sure. We introduce a next-generation physical synthesibadelogy that seeks a more
graceful timing-closure process. This is accomplishealtgh careful latch placement and
clock-network routing tq+) avoid timing degradation where possible, gad immedi-

ately recover from unavoidable timing disruptions.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows:

e Partlintroduces our work in this chapter, and outlinesvai¢background on phys-

ical synthesis in Chapter II.

e Part Il covers local transformations and necessary timmagjyais techniques for
physical synthesis. Chapter Ill describes a method for k&maous placement of
sequential gates and buffering of incident interconnebtp@er IV describes a tim-

ing analysis technique that is necessary for the efficieqpiementation of com-

pound transformations such as the one described in Chaptéhapter VV describes
an abstract model for circuit timing under movement and nepong that can be

solved optimally using branch and bound.

Using the timing models developed in Part I, Part 11l depslonew transforma-
tions that significantly extend the scope of existing phgissynthesis optimization.
Chapter VI describes a new physical synthesis optimizdtorgate cloning that
improves worst slack by estimating interconnect delaygitiire linear delay model
described in Chapter Ill. Chapter VIl integrates retimipacement, cloning and
static timing analysis into a unified mixed integer-lineesgram (MILP) that scales
to circuits over 10 times larger than those presented in sl and V. We ap-
ply the techniques in these chapters to larger circuitsgugartitioning in Chapter
VIII. In Chapter I1X, we combine these techniques into a snglethodology for

application to large, high-performance designs.

10

CHAPTER I

State of the Art in Physical Synthesis

Physical synthesis is a multi-phase optimization procestopmned during IC design
to achievetiming closure thougharea, routability, powerandyield must be optimized
as well. Individual steps in physical synthesis, calieshsformationsare invoked by dy-
namiccontroller functions in complex sequences calliekign flowgEDA flows). Trans-
formations rely on abstract delay models to analyze timeggirements and guide opti-
mization, as illustrated in Section 2.3. Finally, we ddserrecent evolution of require-

ments for physical synthesis and discuss current trends.

2.1 Progression of a Modern Physical-Synthesis Flow

The physical design of a semiconductor chip begins when délsegd’s architect for-
malizes plans for different components. This plan may idelpartitioning the function-
ality into hierarchical blocks, setting performance coaisits, or counting the occurrences
of particular functional units such as memories. Desigtiees write hardware descrip-
tion language (HDL) code to describe the behavior of the ahig manner that can be
synthesized in hardware. Logic synthesis is responsiblidaslating the HDL code into

a gate-level netlist for the next stage. With input from tlaelyeplanning stage and the

11

Early Planning

i

v v

Global Placement

Logic Synthesis

I v

Floorplanning

Electrical Correction

Legalization

Timing Analysis

v

Clock-network Synthesis

Global Routing

Detail Placement

Critical-path Optimization

Histogram Compression

Detail Routing

Design for Manufacturing

Timing Constraints Met?

Timing-driven Net Weighting |-

Figure 2.1: Major stages of physical design include floorpiag and logic synthesis, fol-
lowed by physical synthesis beginning with global placethand finishing
with routing and design for manufacturing. Physical syasthean be iterated
with modified parameters to improve the result, howevesg flow does not
always converge to an acceptable solution.

netlist produced by logic synthesis, floorplanning beginddfine the area of the chip and
embed the circuit blocks into those physical boundarieguréi 2.1 illustrates this pro-

cess in a flow chart. After floorplanning, the design enteesphysical synthesis phase,
beginning with global placement. Recent publications [tléscribe the major phases of

physical synthesis which can be briefly summarized as faiow

1. Global placement. Computes non-overlapping physical locations for gategi-Ty
cally optimizes half-perimeter wirelength (HPWL) or weigd HPWL. During this
phase, usually some amount of detailed placement is dodéegalization is called

to ensure a legal optimization result.

12

. Electrical correction. Fixes capacitance and slew rate violations using gategsizin

and net buffering.

. Legalization. An incremental placement capability that removes overtapsed

by circuit optimization with minimal disturbance to placent and timing.

. Timing analysis. Assesses the speed of the design and determines if perfoeman
targets are met. Among other metrics, this phase deterrthieastackof every path
in the circuit, which is the difference between the clock@eéand how long it takes

a signal to traverse the path.

. Detailed placement.Moves gates to further reduce wirelength and improve timing
In this phase it is possible to doming-drivendetailed placement wherein timing

information is explicitly considered when optimizing gatecements.

. Critical-path optimization. At this point one can identify most-critical paths and
can invoke a variety of techniques to increase the slackefatbrst timing viola-
tions. These techniques include buffering, gate sizirgjcleestructuring, etc. [112].
Figure 2.2 illustrates critical path optimization with anaav pushing the worst paths

toward increasing slack.

. Slack-histogram compressionWhen improvements on most-critical paths are no
longer possible, one can improve the other paths that asetaal, but still violate
timing constraints. The goal is tmmpresshe slack histogram by reducing the total
number of paths that fail to meet timing constraints. Fig2u2 illustrates slack-

histogram compression by a series of arrows pushing thedrest downward.

13

Physical Synthesis
Refinement

syred Jo JaqwinN

2. Slack-histogram
Compression ﬁ

1. Critical-path ﬁ ﬁ ﬁﬁ

optimization

—)
Slack 0

Figure 2.2: During physical synthesis refinement, optitnirais first applied to most-
critical paths, then different optimizations are used tue the total number
of critical paths.

The flow can be repeated with net weighting and timing-dripacement for the first
stage to potentially improve results.

With any particular flow of optimizations, at a high level,eonan think of physical
synthesis as progressing with increasing detail and acgweer time, but with reduced
scope and magnitude of change, as shown in Figure 2.3. Fonpd&aduring global
placement, physical synthesis changes the location of alaivie cells in a design but
usually optimizes weighted wirelength, which is a crude elaaf circuit timing. Later
in physical synthesis, buffers may be inserted to optimiteng wire using an Elmore
interconnect-delay model with Steiner-tree estimates.th&sdesign starts to converge,
one can apply fine-grained buffering along actual detaibedes using a statistical timing

model.

14

) Accuracy of
Large Changes Low Accuracy Size of Changes Analysis

Small Changes High Accuracy i
(b)

Figure 2.3: In physical synthesis flows, the amount of chaagiee design is large in early
phases and reduces quickly in later phases. Timing modetsie more ac-
curate as the flow progresses. This trade-off is necessagube using the
highest accuracy of analysis while making large changebdalésign is too
expensive. (a) An ideal physical synthesis flow that grdguatuces the size
of changes as it increases accuracy. (b) A more realistimplaflow with
two global placement steps that move every gate in the desighrefinement
stages that apply local optimizations to one object at a.tiAaxuracy is in-
creased in discrete steps.

After physical synthesis, clock networks are formed by iitisg clock buffers and
routing clock nets. Next, signal nets are routed, first bybglaouting then by detailed
routing. After routing, some optimization is usually nes@y to fix any timing degrada-
tions. Finally, the design is optimized for the manufactgrprocess to increase the yield

of functional chips.

2.2 The Controller / Transformation Approach

With a trend toward larger fractions of critical path delaynterconnect rather than in
gates, it is essential for logic synthesis to be aware ofiphysformation. A recent de-
velopment, physical synthesis optimization flows addreissahallenge with an approach
that integrates logic synthesis and physical design opétitns into a single tool.

Physical synthesis tools read a circuit that satisfies tjneionstraints assuming opti-

mistic timing estimates, based aero wire loadmodels. The first step is to run global

15

wire-length driven placement, followed by the other stegsoduced in Section 2.1. In
each of the remaining phases, lotahsformationsre applied to the netlist. Transforma-
tions such as buffer insertion, gate resizing, and detai@cement are applied to improve
performance metrics such as timing, power consumption &ld.yThe decision as to
which part of the netlist will be optimized is left tocntroller, which has a focus such as
the most critical nets, all critical nets, or non-criticaltgs. As the controller proceeds, it
can call a timing analysis tool for incremental updates twjate the transformation with
fresh timing data to guide its progress. In this way one cagetaptimizations to problem

areas and produce a flow which converges on a well optimizsid e

2.3 Circuit Delay Estimation

Historically, wirelength was used as a coarse metric foinegtng timing and routabil-
ity during layout synthesis. Efficient algorithms have bdeweloped to compute and opti-
mize many different wirelength calculations, includindfferimeter wirelength (HPWL),
guadratic net length, rectilinear Steiner-minimal tre8KR) length [27,92,106]. At tech-
nology nodes larger than 250nm interconnect delay was égitdglfraction of total path
delay, and merely minimizing wirelength was suitable fotimizing design performance,
but this has changed. It is now necessary to consider thg délzonnected wires when
choosing the location of a gate. Similarly, when estimathmgdelay of a gate, one must
consider the capacitance of nets it drives in addition tagttes, as well as the slew rate of
the input signals. Various models are used to abstract thedag calculations into an ana-
lytical form so that they can be efficiently optimized. Wealiss several such abstractions

in the following sections.

16

Elmore delay. Elmore delay is a simple and efficient way to find the delayubioa
net. To compute EImore delay of a net proceed from the sinksrodét toward the root,
summing the resistance of the current segment times the sioyam capacitance. This
approach assumes the net is has a tree topology, which isotrwétually every signal
net in digital logic. An RSMT of a net will be computed for therposes of finding
the Elmore delay through the net. This model is known to haraespessimism, but
provides suitable accuracy to guide optimization in theseethat reducing Elmore de-
lay usually results in a reduction in actual delay [10]. Fearaple, this model could be
used to efficiently estimate the delay impact of moving a gaténg detailed placement.
More recent works have improved upon the accuracy of the Erdelay model. The
authors of [2] improve the accuracy of EImore delay by fittougves to HSpice data with
technology-specific parameters while maintaining a cldsech equation for delay. In ad-
dition, several technology-independent, closed-formaéiqus for computing RC network

delay were shown to have a low error while being relativelsyga implement [9, 11].

Buffered path delay. Buffering has become indispensable in timing closure andct

be ignored during interconnect delay estimation [6, 29]10herefore to calculate new
locations of movable gates, one must adopt a buffering-@iderconnect delay model
that accounts for future buffers. We found that the linedaylenodel described in [6, 79]
is suited to physical synthesis applications. In this motted delay along an optimally

buffered interconnect is

delay(L) = L(RyC + RCy,+ 2R,C,RC) (1.1)

17

whereL is the length of 2-pin buffered netR, andC),, is the intrinsic resistance and input
capacitance of buffers and gates whiteand C' are unit wire resistance and capacitance
respectively. This model is described in more detail in Gaapl.

Empirical results in [6] indicate that Equation II.1 is acate up td).5% when at least

one buffer is inserted along the net.

Slew rate propagation. One of the most costly computations in timing analysis is
propagating the slew rate of a signal through the circuitweleer, changes in slew rate
typically do not propagate beyond a small number of logielevin order to mitigate the
runtime expense of accurate slew rate computation, anaaiistn calledpin-slew mode
can be used. Ipath-slew modeall slew rates are propagated through all wires and logic
to compute the slew rate at a given point in the circuit. Inggw mode, the slew rate at

a given point is computed by looking at the previous logigstaand asserting default
slewrate on its input signals. The slew rate is then propagatexi¢/h that gate and its
output net to find the slew rate at the given point. The defslel rate may be provided
as input, or computed as the average slew rate throughodairthet. Leveraging pin-slew

mode, one can create models which are accurate, but alstesmalcope.

2.4 Current Trends in Physical Synthesis

Physical synthesis is transitioning from a novelty into aunaand highly-integrated
capability required of industrial EDA flows. During this figition, the challenges in phys-
ical synthesis and greatest possibilities for improvencentespond to the following key

trends.

18

Increased interaction with timing. With advancing technology nodes, increasingly
aggressive and complex transformations are prone to caas@ertent timing degrada-
tions. An increasing number of transformations have beerldped that are aware of
their impact on timing, congestion, wirelength, and othesign performance metrics, and
are capable of reversing actions that do unwanted harm.

Transformations already exist in state-of-the-art pralssynthesis flows to optimize
the performance of a handful of gates and nets under severairktiming models, includ-
ing black-box models and exhaustive search. One conseguéiais level of maturity is
that it is not likely, for example, that adding a new algamitko repower one gate at a time
while considering its neighbors’ timing will improve thestdts of a modern physical syn-
thesis flow. However, improvement is possible by increagiegcope or accuracy of such
optimizations. This includes increasing the number of cisjeptimized simultaneously,
increasing the number of objectives in the optimizatiord emproving the delay models
used. Making these extensions affordable by decreasimgdabmputational complexity

is a key challenge addressed in this work.

Early, accurate analysis. Nearly every physical design objective entails a chicken-
and-egg problem between analysis and optimization. Fanplg placement must choose
non-overlapping locations for gates such that worst slaaptimized but accurate static
timing analysis (STA) requires the locations of gates togota timing slack. This pattern
repeats with such top-tier physical design metrics as ggnpower, routability and yield.
Traditionally, iteration-based flows have been used tolkbtka chicken-and-egg cycle,

leveraging the previous analysis to drive the subsequémization. This approach con-

19

sumes considerable runtime, requires consistency oftseBoim algorithms and is not
guaranteed to converge to an acceptable solution. Indteeatjon cycles can be reduced
or eliminated by creating fast analysis tools that accly&stimate key performance met-
rics during optimization and can quickly adjust estimatésrancremental changes. Such
an approach presumes a high level of integration betwedpsamand optimization tools,
which requires a carefully designed software infrastrieetumproving the accuracy of
such predictors and estimators as well as creating new arssris a challenge in phys-
ical synthesis. Our work leverages accurate analysis tgebs in new physical synthesis
transformations that perform more comprehensive optinoizaf large, complex designs

than existing transformations.

Large, complex designs. Moore’s law describes the periodic doubling of transistor
density in integrated circuits due to rapid improvementsianufacturing technology. At
each new technology node, there are more transistors bleifathe same chip area and
individual transistors are smaller than before. As of thigimg of this dissertation, 45nm
CPUs are widespread, 32nm ICs are commercially availablg,22nm designs are in
early stages of development. New challenges stem from tinesds as semiconductor
technology approaches fundamental limits to circuit opena

Some modern ICs contain over a billion transistors. Desigsuch a complex system
presents enormous challenges in physical design. Perhepsdst obvious challenge is
the overbearing amount of design effort required to conedath a design. Improvements
in productivity due to automation have not kept pace withréte of growth in the number

of transistors on-chip. Hence, thisoductivity gapis a growing problem — fundamen-

20

tal improvements in automation or an increasing number gireers will be required to
complete the largest designs in future technologies. Gagareh will develop new trans-
formations and new automation to improve the productivitgesigners and address this

key bottleneck.

21

PART I

Local Physical Synthesis and Necessary
Analysis Techniques

CHAPTER III

Buffer Insertion During Timing-Driven Placement

Physical synthesis tools are responsible for achievingngnelosure. Starting with
130nm designs, multiple cycles are required to cross the, chaking latch placement
critical to success. We present a new physical synthesisiizattion for latch placement
called RUMBLE (Rip Up and Move Boxes with Linear Evaluatiadhat uses a linear tim-
ing model to optimize timing by simultaneously re-placingltiple gates. RUMBLE runs
incrementally and in conjunction with static timing anasy® improve the timing for crit-
ical paths that have already been optimized by placemetd, sgging, and buffering. The
contributions in this chapter improve the detailed placetaad critical path optimization

stages of physical synthesis as illustrated in Figure 3.1.

22

Early Planning

i

v I

Global Placement

Logic Synthesis

Y v

Floorplanning

Electrical Correction

Legalization

Timing Analysis

v

Detail Placement

Clock-network Synthesis

Critical-path Optimization

Global Routing

Histogram Compression

Detail Routing

Design for Manufacturing

Timing Constraints Met?

Timing-driven Net Weighting

Figure 3.1: The contributions in this chapter improve thaesof the art in critical path
optimization and timing-driven detailed placement.

3.1 Introduction

Physical synthesis is a complex multi-phase process pilyhtsigned to achieve tim-
ing closure, though power, area, yield and routability aised to be optimized. Starting
with 130nm designs, signals can no longer cross the chip in a single,oyhich means
that pipeline latchesieed to be introduced to create multi-cycle paths. Thislprotbe-
comes more pronounced for tBe-, 65- and 45-nanometer nodes, where interconnect
delay increasingly dominates gate delay [48]. Indeed, iighdperformance ASIC scaling
trends, the number of pipeline latches increase8.by at each technology generation,
accounting for as much a$% of the area oH0nm designs [28] and as many #%%
of the gates irB2nm designs [101]. Hence, the proper placement of pipelitohés is a

growing problem for timing closure.

23

The choice of computational techniques for latch placendepiends on where this
optimization is invoked in a physical synthesis flow. In Ctespl we described the major
phases of physical synthesis: global placement, elettraraection, legalization, timing
analysis, detailed placement, critical-path optimizatamd compression, which may be
iterated with timing-driven placement to improve solutmumality. We argue that pipeline
latches should be placed only after some amount of timintyaiseand optimization.

Figure 3.2(a)-(d) illustrates the complications of usirgstng global placement tech-
niques to solve the latch placement problem for a singlepimmet. Assume that, for all
four figures, the source A and sink B are fixed in their respedtications, and that global
placement must find the correct location for the latch. Theneple is representative of
situations in which a fixed block in one corner of the chip masshmunicate with a block
in the opposite corner, but signal delay inevitably excesedmgle clock period. All four
placements have equal wirelength, therefore unless gidhedément is timing driven, the

placement of the latch between A and B is arbitrary. Congiuefollowing scenarios:

e Suppose the placement tool chooses (a), which is the waatidm for the latch. In
this case, the latch is so far from B that the timing constrairB cannot be met.
This results in a slack on the input net;J of +5ns and a slack on the output net

(ny) of —5ns (even after optimal buffering).

e With a second iteration of physical synthesis, timing-eénplacement could try to
optimize the location of this latch by adding net weightsyAwet weighting scheme

will assign a higher weight to net, thann,, resulting in a placement where the

1The nets in each scenario could include buffers without ghmnthe trends discussed.

24

> N2
(a)
® D
nq > Ny
(b)
1> L R 18>
ng > no
o0 1o
B
1A [-
(d)

Figure 3.2: The placement of a pipeline latch impacts thekslaf both input and output
paths. A wirelength objective does not capture the timirigot$ of this sit-
uation, and with equal net weights a placer may choose thiégcoation in
(a). In trying to fix this path, timing-driven net weightingowld increase the
weight on netn,, and placement would then choose the configuration in (b).
Placing the latch in the center as in (c) is also not an optapptoach. There
may be only a single optimal location as shown in (d).

latch is very close to B, as in (b). While the timing is imprdyéhere now is a slack

violation on the other side of the latch with3ns of slack om; and+3ns onn,.

e A global or detailed placer could use a quadratic wirelerajtfective to handle
these kinds of nets, giving the location (c), which, whilgtbethan (a) and (b), is

suboptimal.

e To achieve the optimal location with no critical nefiss{ack onn; andn,), the latch
must be placed as shown in (d). In this case, there is only aregibn that meets

both constraints.

25

This example suggests that wirelength optimization is nelt-suited for latch place-
ment, especially when there is little room for error. Insteane must be able to couple
latch placement with timing analysis and model the impadiudfering. The problem is
more complex in practice, and some aspects are not illestitove. In particular, many
latches have buffer trees in the immediate fan-in and fan-8uch complications pose

additional challenges that we address in this work. We miaéédilowing contributions.

e We show that a linear-wire-delay model is sufficient to madelimpact of buffering

for the latch placement problem.

e We develop RUMBLE, a linear-programming-based, timingyehn placement al-
gorithm which includes buffering for slack-optimal placemt of individual latches

under this model and show its effectiveness experimentally

e We extend RUMBLE to improve the locations of individual logjates other than
latches. Further, we show how to find the optimal locationsatftiple gates (and
latches)simultaneouslywith additional objectives. Incremental placement of mul
tiple cells requires additional care to preserve timingiagstions, optimizing a set
of slacks instead of a single slack, while also biasing thatsm towards placement

stability. We describe how RUMBLE handles these situations

e We empirically validate proposed transformations and tiieeeRUMBLE flow. We
show how these techniques can be used to significantly inegrotial latch place-
ment in a reasonably optimized ASIC design. @orno-harmacceptance criteria
reject solutions if any quality metrics are degraded. Tleig feature facilitates the

use of RUMBLE later in physical synthesis.

26

The remainder of this chapter is organized as follows. 8ec3.2 discusses back-
ground and previous work. Section 3.3 describes the timingehwe use in this work.
Section 3.4 describes how RUMBLE performs timing-driveaggiment. Section 3.5 de-
scribes the RUMBLE algorithm. Section 3.6 shows experimlaetsults. Conclusions are

drawn in Section 3.7.

3.2 Background

Several approaches improve IC performance by modifyinglemgth-driven global
placement through timing-based net weights [40, 50, 53/5%80]. Such algorithms are
generally referred to as timing-driven placement, but iteedture has not yet considered
the impact of buffering on latch placement during globakplaent. Due to the lack of
such algorithms, itis inevitable that some latches will bleaptimally placed during global
placement. Therefore, new algorithms are needed for dasement performance-driven
incremental latch movement.

We introduce a high-level description of the incrementalHglacement problem be-
low, and elaborate on its multi-move formulation in Sect®d. Given an optimized
design and a small set of gat&és, e.g., a single latch, find new locations for each gate in
M and new buffering solutions for nets incidentt6 such that the timing characteristics
of the design are improved.

While moving a poorly placed cell can improve adjacent icw@nect delay, moving a
latch has special significance since it facilitates timeswing: reallocating circuit delay
from a longer (slow) combinational stage to a shorter (festhbinational stage. This fact

offers a particularly significant boost to our basic applhpand is enhanced even further

27

when surrounding gates are also free to move.

An optimization that performs operations such as movingta galatch is called a
transformationusing the terminology of [112]. Transformations are des@jto incre-
mentally improve design objectives such as timing. Othemgxes of transformations
include buffering a single net, resizing a gate, cloninglh seapping pins on a gate, etc.
The way transformations are invoked in a physical synthiésis is determined by the
controllers For example, a controller designed for critical path ojation may attempt
a transformation on th&)0 most critical cells. A controller designed for the compress
stage (see Section 3.1) may attempt a transformation oy eedirthat fails to meet its
timing constraints.

A controller has the option of avoiding transformationd tihay harm the design (e.g.,
generating new buffering solutions inferior to the orid)rzand can then reject this solution.
Thisdo no harnmphilosophy of optimization has received significant redbgn in recent
work [18, 88]. The RUMBLE approach adopts this same coneentihich makes it more
trustworthy in a physical synthesis flow.

While no previous work has attempted to solve this partigoitablem, other solutions
do exist that may be able to help with the placement of poddgex latches. The authors
of [122] propose a linear programming formulation that miizies downstream delay to
choose locations for gates in field-programmable gate a(feGAS). The authors of [26]
model static timing analysis (STA) in a linear programmiagiiulation by approximating
the quadratic delay of nets with a piecewise-linear fumcti®heir formulation’s objec-

tive is to maximize the improvement in total negative slatkiming end points. The

28

authors of both approaches conclude that the addition détwd would improve their
techniques [26, 122]. When these transformations areepptithe same point in a physi-
cal synthesis flow that we propose, they will be restrictegi@yious optimizations. When
applied somewhat earlier (e.g., following global placethémey are incapable of certain
improvements. Namely, downstream optimizations, suchufferbinsertion, gate sizing,
and detailed placement may invalidate the optimality atHgblacement. Therefore our
technique focuses on the bad latch placements that we @uaserlarge commercial ASIC

designs after state-of-the-art physical synthesis opttions.

3.3 The RUMBLE Timing Model

We now introduce the timing model critical to RUMBLE'’s susse

:E,-l-_SDSHQ 4 > -@-
>

Lar Q

Figure 3.3: A poorly-placed latch with buffered interconnén this case, the buffer must
be moved or removed in order to have the freedom to move tbiefat enough
to fix the path.

Figure 3.3 shows an intuitive example of the problem whenrywitfind new locations
for movable gates. Similar to Figure 3.2, the latch has to beead to the right to improve
timing. However, since the latch drives a buffer which iscgld next to it, we must move
the buffer in order to improve the slack of the latch. Othealldnges in latch placement
are illustrated by Figure 3.4. At the same time, the optimed mocation of the latch
depends on how the input and output nets are buffered. Ad#t,réee optimal approach
is to simultaneously move the latch and perform buffering, this is computationally

prohibitive because a typical multiple-objective bufferialgorithm runs in exponential

29

(@) (b) (©) (d)

Figure 3.4: The layout in (a) has a poorly-placed latch, atstiag critical path optimiza-
tions do not solve the problem. Repowering the gates mayawegihe timing
some in (b), but if it cannot fix the problem, the latch must leved. Moving
the latch up to the next buffer, shown in (c), does not givénoigation enough
freedom. If we move the latch but do not re-buffer in (d), tigpimay degrade.
Figure 3.12(d) shows the ideal solution to this problem.

time. As mentioned in Section 3.1, we propose a sequent@baph in which we first
compute the new locations for a selected set of movable fated on timing estimation
considering buffers. Then, buffering is applied to the ingmd output nets of the selected
movable gates. Being practical, effective and efficients #pproach can be integrated
into a typical VLSI physical synthesis flow. The calculat@ioptimal movement uses a

simple but effective buffered-interconnect delay moddiiol is discussed next.

Linear buffered-path delay estimation. Buffering has become indispensable in tim-
ing closure and cannot be ignored during interconnect dedtignation [6,29,101]. There-
fore to calculate new locations of movable gates, one musttaal buffering-aware inter-
connect delay model that accounts for future buffers. QGardhe problem of estimating
the delay of an optimally-buffered net of arbitrary lendgth We briefly review an an-
alytical delay model that is well-suited to this purpose7®8]. Consider the delay of a
long chain of buffers as shown in Figure 3.5(a). Supposesthsgk buffers driving wire

segments each of which are lendgth The model is simplified by assuming the size of a

30

Rb

Figure 3.5: (a) A model for buffered interconnedt.describes the optimal distance be-
tween buffers on a two-pin net. (b) A correspondiRg’-network of a single
buffer driving a wire segmentz, andC), represent the intrinsic resistance and
gate capacitance of the buffer whittandC represent the per-unit resistance
and capacitance of a metal wire.

buffer is negligibly small, thei = % Assume that each buffer and wire segment it drives
is modeled by theRC-network in Figure 3.5(b). Then the delay of the whole chdin o

buffers of lengthL is computed as times the delay through each segment.

h

Loyve Eroy (11.1)

delay(L) = k[Ry(—-C) + RyCy + (ER)(E :

k

|

WhereL is the length of &-pin buffered net,R, and(C}, are the intrinsic resistance and
input capacitance of buffers and gates whil@andC' are unit wire resistance and capaci-
tance respectively.

The model is further simplified by assuming continuous gatessand placement sites.

Then the optimal buffering solution must minimize the defiayction as follows.

d(delay (L))

s =0 (I11.2)

Which leads to this relation on the optimal buffering sauti

L - Rbe
=\ e (111.3)

31

By subtituting Equation 111.3 into Equation IIl.1 we can gplify the calculation of delay

to the following.

delay(L) = L(RyC + RCy+ 2R,C,RO) (111.4)

Note that this equation is linear in terms lof

Empirical results in [6] indicate that Equation 111.4 is acate up td).5% when at least
one buffer is inserted along the net. Furthermore, our owpiecal results in Section 3.6
suggest &7% correlation between this linear delay model and the outpan industry

timing-analysis tool.

The timing graph. In RUMBLE, a set of movable gates is selected, which must
include fixed gates or input/output ports to terminate eyeth. Fixed gates and 1/Os
help formulate timing constraints and limit the locatiofismovables. In Figure 3.6(a), we
assume that new locations have to be computed for the lattthartwo OR gates, while
all NAND gates are kept fixed.

In the timing graph, each logic gate is represented by a nelie a latch is repre-
sented by two nodes because the inputs and outputs of a fetamdifferent clock cycles
and can have different slack values. Each edge represemitgeasink path along a net
and is associated with a delay value which is linearly propoal to the distance between
the driver and the sink gate. In other words, we decompodereatti-pin net into a set of
two-pin edges that connect the driver to each sink of theTtas simplification is crucial
to our linear delay model and is valid because the lineatiogiship can be preserved for

the most critical sinks by decoupling less-critical paththvbuffers [6]. Therefore the

32

() (b)

Figure 3.6: (a) An example subcircuit and (b) correspondiimgng graph used in RUM-
BLE. The AATs or RATs of unmovable objects (squares) are ictemed
known. STA is performed on movable objects (round shapes).

two-pin edge model in the timing graph can guide the compurtadf new locations for
the movable gates.

In the timing graph, an edge which represents a timing aredated only for (1)
each connection between the movable gates, and (2) eacbatammbetween a movable
gate and a fixed gate. This is because we only care about ttie dlange due to the
displacement of movable gates. For the subcircuit in Figuééa), the resultant timing
graph is shown in Figure 3.6(b).

For each fixed gate, we assume that the required arrival tRad) and the actual
arrival time (AAT) are fixed. The values of RAT and AAT are geated by a static timing
analysis (STA) engine using a set of timing assertions ecehy designers. An in-depth
exposition of STA can be found in [77, 98] along with algonith to generate RAT and
AAT. A movable latch corresponds to two nodes in the timingpdr, one for the data
input pin and one for the output pin. For the input pin, the R&lixed based on the clock
period. Similarly, the AAT is fixed for the latch’s output piBased on all the fixed RAT
and AAT at fixed gates and latches, the AAT and RAT are progabatong the edges

according to the delay of the timing arcs. The values of AAF jaropagated forward to

33

(0, 20) | 2 +2 (0, 20) 0//,/ (l:o, 20) |0//‘3
(10, 10)—% <0 (20, 0) ey B2
(02 4 LJ)

(@) (b) (©)

Figure 3.7: In many subcircuits there are multiple slackroal placements. In RUMBLE
we add a secondary objective to minimize the displacement the original
placement. This helps to maintain the timing assumptiondgenaitially and
reduces legalization issues. (a) shows the initial staendfexample subcir-
cuit, (b) a slack-optimal solution commonly returned by Ldters, all opti-
mal solutions lie on the dotted line and (c) a solution givgrRUMBLE that
maximizes worst-slack then minimizes displacement.

\

fan-out edges, adding the edge delay to the AAT. On the contRATS are propagated
backward along the fan-in edges, subtracting the edge flelaythe RAT values. Details

of edge delay, RAT and AAT calculation in our algorithm areeed in Section 3.4.

3.4 Timing-Driven Placement with Buffering

The goal of RUMBLE is to find new locations for movable gatesigiven selected
subcircuit such that the overall circuit timing improvesiefefore we maximize the min-
imum (worst) slack of source-to-sink timing arcs in the scuhgt. In contrast to other
objectives used in previous work, we select this objectaeglise we are targeting critical-
path optimization. Hence, we preférunit of worst-slack improvement overunits of
slack improvement on less-critical nets. Below we intragtie timing-driven placement
technique in RUMBLE that directly maximizes minimum sladk.the following place-
ment formulation we account for the timing impact of our opes by implicitly modeling
static timing analysis in our timing graph. In this work, wstimmate net length by the

half-perimeter wirelength (HPWL) and then scale it to reerd net delay. More accurate

34

(@) (b) (©)

Figure 3.8: (a) A timing are,,, connecting an arbitrary gateto an arbitrary gate. (b)
The RAT of a gatey is the minimum of RATs of the outputs of (c) The AAT
of a gatey is the maximum of AATs of the inputs of

models are possible, but may complicate optimization.

Problem formulation. Consider the problem of maximizing the minimum slack of a
given subcircuity with some movable gates and some fixed gates, or ports. Lekethe
of nets in the subcircuit b& = ng,ny,...,n,. Let the set of all gates in the subcircuit
(movable and fixed) b& = ¢y, 91, ..., g;. Let the set of movable gates in the subcircuit
(a subset ofz) be M = mg, mq,...,m;. 7 is a technology dependent parameter that is
equal to the ratio of the delay of an optimally-buffered jtaabily-long wire segment to its
length

_ delay(wire)

~ length(wire) (111-5)

The following equations govern static timing analysis arelused in the next section. A
timing arc is specified for a given netdriven by gatex and having sink» asn,, ,, as
illustrated by Figure 3.8(a). The delay of a gatis D,.

The calculation of Required Arrival Time (RAT) and Actualral Time (AAT) of a
gate for combinational circuits shown in Figure 3.8 are cotag as follows.

The RAT of a combinational gaie

Ry= min {R, —7+HPWL(n,,,) — D,} (111.6)

0;:0<5<m

35

The AAT of a combinational gateis

Ay = max {A;; + 7 HPWL(n;,) + Dy} (n.7)

i5:0<5<I

Given a clocked latch, we assume for simplicity that the RATR() and AAT (A,) are
fixed and come from the timer. Unclocked latches are tredtadasly to the combina-
tional gates above.

The slack of a timing are,, , connecting two gates (combinational or sequential, mov-

able or fixed)p andq is

S

p,q

— R, — A, — 7 * HPWL(n,,,) (111.8)

The RUMBLE linear program. We define a linear program to maximize the mini-
mum slackS of a subcircuit as follows.

VARIABLES:

For each movable object in M we define two independent variables representing the

location(z, y) of m:
s By
In terms of these locations, we define the bounding box of e&th using four new

variables representing lower-left coordinate

Ly, L

as well as the upper-right coordinate.

U, U,

36

Given a gaten, the actual arrival time at the outputafis defined using the variable
Am

The required arrival time at the input of the gatas similarly defined using the variable
Ry,

The slack of each netis defined using the variable
Sn

The minimum slack of alb,, variables is computed using the variable
S

OBJECTIVE: Maximize S

CONSTRAINTS: For every gateg; on netn;
U > B, Upi> By (111.9)

Ly <Y, Ly < py (11.10)

For every movable gate,; and sink it drivesy; via netn;,
Ry, < Ry, — 7 (Ups — L + Uk — L7%) — Dy (I1.11)
For every movable gate; and gatey; that drives one of its inputs via nef,
Ap, > Ay, + 75 (U — Ly + U* — Ly*) + D, (111.12)
For every timing arc in the subcircuit, , associated with net;
Spi SRy — Ay —7* (U = Ly + U = Ly7) (1.13)

37

FOM =-90 FOM = -85
-20 -20

-20 -20
+5

(10, 10)

() (b)

Figure 3.9: (a) An example subcircuit with an imbalancedHathose worst-slack cannot
be improved. Nevertheless, it is possible to improve tinohthe latch while
maintaining slack-optimality. By including a TNS compohanthe objective,
the total negative slack can be reduced, as shown in (b).

For each net;:

S < S, (I1.14)

Extensions to minimize displacement. The linear program of RUMBLE is defined
to maximize the minimum slack of a subcircuit. Additionajetiives can be considered
as well, such as total cell displacement, which sums Maahatistances between cells’
original and new locations. We subtract the minimum slacjective from a weighted
total cell displacement term to avoid unnecessary cell rmare. The weightl/,; for
the total cell displacement objective is set to a small vallieerefore the weighted to-
tal displacement component is used as a tie-breaker andtth@shpact on worst-slack
maximization. Instead, the combined objective is maximhizg a slack-optimal solution
closest to cells’ original locations. During incrementaling-driven placement, minimiz-
ing total cell displacement encourages higher placemabtlgy and often translates into
fewer legalization difficulties.

Figure 3.7 shows an example of the RUMBLE formulation witlkl anthout the total

displacement objectives. The only movable object in Figurga) is the latch. An input

38

netn; and an output net, are connected to the latch with slack® and+2 respectively.
Figure 3.7(b) shows the optimal LP solution without the ltdtaplacement objective. The
Manhattan net length of; is reduced fron20 to 18, and the net length of; is increased
from 20 to 22. This improves the worst slack of the subcircuit frerd to 0. However, the
latch moves a large distance. Figure 3.7(c) illustratesititiuding the total displacement
objective may preserve optimal slack, while minimizinghatlisplacement.

In order to minimize displacement by adding a new objective,introduce the fol-
lowing variables and constraints to the linear program.
DISPLACEMENT VARIABLES:
Given a gaten, define the upper bounds on the new and original coordinatiéeir and

y dimensions using two new variables:

vy O

Similarly define the lower bounds on the new and original dowtes in ther andy

dimensions for the gate using two new variables:

Then, in terms ofh andw we define the displacement of the gaten thex andy dimen-
sions using two variables:

oy, 0y
DISPLACEMENT CONSTRAINTS

For every movable gate:;, o' anday' denote the originak andy coordinates. The

upper and lower bounds of the new and original coordinataadw in each dimension

39

are:

¢x i 2 . z’ wx i S - i
Yy - y 0 Yy - Yy
(I11.15)
¢q; q Z aq; z’ wx i S ax q
m; m; m; m;
¢y 2 O{y) wy S O[y

The displacement®™ for a movable gaten; are defined as

5;7% — (bg"bz _ wmi7 5;m — ¢Zh _ w;ni (|||16)

T

Extensions to improve the slack histogram. The minimum slack is the worst slack in
a subcircuit. For two subcircuits with identical worst Haitis possible that one subcircuit
has few critical paths with worst slack while the other ons hmany. A timing optimiza-
tion has to improve both the worst slack and the overall tibtadshold slack (TTS) in a
subcircuit. TTS is defined as the sum of all slacks below &stiotl. If the slack threshold
is zero, TTS is equivalent to the total negative slack. Wi minimum slack as the only
objective, a small improvement in the worst slack may caukege TTS degradation.
Therefore we must add a TTS component to the optimizatioaablop. The balance be-
tween the minimum slack and the TTS is controlled by a parani&}, which is set to a
relatively small value because the worst slack objectivease important.

Figure 3.9 shows another scenario where the TTS compongnhetig. During opti-
mization, it may not be always possible to improve the mimmalack of the subcircuit.
In that case, we can still reduce the number of critical dgflsmproving the TTS. In Fig-
ure 3.9, there are three movables in the subcircuit. Themum slack of the subcircuit
is —20, and it is not possible to improve the minimum slack by mowanyg of the gates.

With the additional TTS component in the objective, the TT8e subcircuit is improved

40

from —90 to —85, as shown in Figure 3.9(b).

Let S, denote the slack on net then the combined objective has the displacement
and TTS components
Maximize:

S = WaXlen (67 +67) (I11.17)

+ Wf Zn:nEN,Sn<TS S"

whereT} is the small slack threshold used to compute the TTS. We halierassumed
W; and W, to be small, withiW; < W;. In our implementation we sé¥/; to 0.005
times the absolute value of the average slack in the suligiand we sefi?; to 107°.
These additional terms change the optimal region, but lsecthe weights are so small

the combined optimal region is very near the slack-optiragian.

Preserving the TTS objective. The primary goal of the RUMBLE linear program as
presented in previous sections is to maximize the worsksiathe subcircuit. We define
two additional objectives — one preserves the initial Solutas much as possible, the
other can improve the slack histogram when the worst slackatabe further improved.
However, it is possible that in order to improve a single wetack path, multiple paths
may degrade to the point of being critical. If RUMBLE is deyad late enough in a physi-
cal synthesis flow, the corresponding TTS degradation maydesirable. To address this
problem, we have devised an additional constraint that cavept this type of TTS degra-
dation, but may restrict improvement in worst slack. WhergTshould not be degraded,
we add the following constraints to the RUMBLE linear pragréo preserve TTS.

For each net,;, whose slack is greater than the slack threshgldadd the following

41

constraint.

Sny, 2> T (111.18)

This addition may over-constrain the linear program, inckihtase it is not possible to

improve the worst slack without harming TTS.

3.5 The RUMBLE Algorithm

In this section we discuss the details of the RUMBLE alganithvhich employs the
linear program from the previous section to incrementatipiiove the timing of poorly

placed latches.

Subcircuit selection. RUMBLE identifiesimbalanced latcheswvhich we define as
those that exhibit positive slack on their inputs and negatiack on their outputs (or vice
versa). As illustrated in Figure 3.2, the movement of anyhsotbalanced latch has the
potential to improve timing, even if all surrounding cell® deld fixed. More generally,
however, the neighbors and extended neighbors of the &atdgtich may also be included
to form a setV/ of movable cells. In our technique, shown in Figure 3.11, d@pha basic
N-hop neighborhood approach, where any gate withisteps of the imbalanced latch is
included in the set of movable cells. This requires both w&nd sweep (to collect sinks)
and a backward sweep (to collect sources), which are peeimtandem. Those cells
that arelV + 1 steps away from the latch form a getof fixed peripheral nodes.

In contrast to prior work that has assumed operation wittpneabuffering stage, our

subcircuit selection algorithm must address the presehbefters. These buffers will

2variations on this theme, such as metrics that incorporatelegree of neighbors’ criticality [69, 122]
and the size of the subcircuit bounding box are also possible

42

Clock Period = 20 Clock Period = 20

Clock Period = 20

Delay = +10 Delay = +10
A / U S —— U A ———
AAT = +20 RAT =0 o U Bt y ¢
AAT = +1I I "RAT = +1 AAT = +15 f RAT = +5
i RAT +19 Delay = +9 i
(a) (b) (c)

Figure 3.10: Modeling feedback paths within logic requiaesew type of gate. Pseudo-
movable gates have timing values that depend on the timilgsaf neigh-
boring gates, but they cannot be moved. (a) Ignoring theepiesof feedback
paths is overly pessimistic, and it appears that the timirtg@Ilatch cannot
meet its constraints. (b) Making the fixed gates along a faeklpath pseu-
domovable allows the latch to meet its timing constrainis doing only this
can lead to the wrong placement. (c) Including all gates eoted to pseu-
domovables as fixed timing points properly models the prolds a convex
subcircuit.

be encountered in our neighborhood selection algorithnhe are part of the current
logic; however, since it is presumed that they would be ribpe when new locations are
determined (a critical assumption that makes our lineéaydsodel possible), we must
prevent their inclusion in our model of the subcircuit. Téfere, when fetching adjacent
gates, we transparently skip these buffers and omit them the set)/. The recursive

functions True-Source)) and True-Sink() in Figure 3.11 provide this additional level of
indirection, returning only those combinational gated tieflect the logical structure of
the subcircuit. Buffers are removed and reinserted on adjatets by a state-of-the-art

buffer insertion algorithm after RUMBLE moves gates.

Feedback paths. As noted in [122], the process of extracting gates to formsouit
may suffer from complications when subpaths of combinatdoigic between peripheral
nodes are not modeled. These subpaths introduce additiomiad) constraints that, if left
absent from the model, could invalidate the optimality & folution.

To illustrate, consider the example in Figure 3.10, in whichkingle latch has been

43

BUILD-SUBCIRCUIT-FROM-SEED

> Input: Latch[, , int N-hops

> Output: Setnovables , Setpseudo , Setfized

movables =

BUILD-MOVABLES-FROM-SEED([,, N-hops)

pseudo =

BUILD -PSEUDOM OVABLES-FROM-MOVABLES(movables)
fized =

BUILD -FIXED-FROM-CORE(movables | J pseudo)

BUILD-MOVABLES-FROM-SEED

ol A WN P

~N O

> Input: Latch[, , int N-hops
> Output: Setnovables
inputs = input-fringe = {L}
outputs = output-fringe = { L}
for s =1.. N-hops
imput-fringe =
U (GET-INPUTH(input € input-fringe))
output-fringe =
U (GET-OuTPUTS output € output-fringe))
inputs = inputs |J input-fringe
outputs = outputs | J output-fringe
movables = inputs | outputs

BuILD-PSEUDOM OVABLES-FROM-MOVABLES

~NOoO O~ WN PR

> Input: Setmovables

> Output: Sepseudo

pseudo = @

do
Setfan_in = INPUT-CONE(movables | J pseudo)
Setfan_out = OUTPUT-CONE(movables | pseudo)
Setpseudo’ = (fan_in () fan_out) - movables - pseudo
pseudo = pseudo | J pseudo’

while pseudo’ # @

BuILD-FIXED-FROM-CORE

A WN P

> Input: Setcore

> Output: Setfized

fixed =@

for each Gate G € core
Setneighbors = GET-INPUTY G) |J GET-OUTPUTH)
fized = fized |J (neighbors - core)

GET-INPUTS

> Input: GateG
> Output: Setinputs
S=0
for each pin € IN-PINS(@3)
S =S |J TRUE-SOURCHpin)
return §

A WN PR

GET-OUTPUTS

> Input: GateG

> Output: Sebutputs

S=0

for each pin € OUT-PINS(G)
S =S | TRUE-SINKS(pin)

return §

A WN PR

TRUE-SOURCE

> Input: Pinp

> Output: Gatesource

Net net = NET(P)

Gate @ = DRIVER(net)

unlessiS-BUFFER(()
return @

D =IN-PIN(G)

return TRUE-SOURCH?P)

OO0 WN P

TRUE-SINKS
> Input: Pinp
> Output: Setsinks
Net net = NET(P)
Setdriven = DRIVEN(net)
S=0
for each Gate G € driven
if 1S-BUFFER(®)
P = OUT-PIN(QG)
" = TRUE-SINKS(P)
elseS’ = @
s=syUys
return S

QLW ~NOULE,WNPE

[

Figure 3.11Subcircuit selection transparently skips buffers whendmg a neighborhood

of movable gates, and requires detectiopsféudomovables

44

selected as a movable gate. After collecting its inputs ant@uis, a simple subcircuit
is constructed as shown in Figure 3.10(a), with the two emdpshown selected as fixed
gates. With the timing constraints as given in the figure,@mtal solution to this problem
will place the latch equidistantly from both endpoints tee@re that the slacks on either
side are balanced. However, consider a scenario where bdelegath exists from the
output to the input, as shown in Figure 3.10(b); in such amigvwbe RAT of the output
and the AAT of the input ardependentn the location of the latch. If this dependency is
modeled, the solution may be biased toward one of the twchbeig. We loosely refer
to these neighbors gseudomovablgates. Although timing must be propagated through
them (as it is for movable gates), their physical locatiomy tne fixed.

Pseudomovables are collected by intersecting the traasitines of logic between in-
puts and outputs to detect feedback paths, as shown in thd@smde of Figure 3.131To
ensure accuracy, the inputs and outputs of pseudomovdigeselves must be bounded
by fixed endpoints, as shown illustrated in Figure 3.10(¢)edSe fringe nodes completely

isolate the timing of the resultingpnvexsubcircuit from outer cones of logic.

The do-no-harm philosophy. After gates are moved, it is likely that timing has de-
graded due to, for example, a capacitance violation on aworegy The subcircuit must be
examined, and its interconnect improved through physigath®esis optimizations, which
might include gate-sizing and buffer-insertion for delayetectrical considerations on
nets.

Even though the linear program of Section 3.4 can be solvéidhally, it does not

3To improve runtime, one can limit the depth of these conesraaonably small constant, as opposed
to the exhaustive expansion in [18].

45

(@) (b) (€) (d)

Figure 3.12: The RUMBLE algorithm proceeds by (a) selectrgubcircuit to work on.
An LP is formulated and solved, with movable gates beingoagied as shown
in (b). Existing repeater trees are no longer appropriae gae subsequently
removed in (c). Finally, the nets are re-buffered, forming tinal subcircuit
shown in (d).

account for all the complexities of interconnect optimia@at The linear program is an ab-
straction of the subcircuit timing that models physicaltegsis optimizations (e.g., virtual
buffering) by prorating wire delay constants based on upogrmhysical synthesis opti-
mizations. Despite the high correlation to more accuraénty models in experimental
results, the RUMBLE model ignores certain constraints agalizing its solution might
result in a timing degradation. For example, nets can crogkages or congested regions
with no nearby legal locations. As a result, legalizationldareate a timing degradation.
When running RUMBLE in our physical synthesis flow, we mitgéhe harmful ef-
fects of legalization by finding legal locations for gated &dnffers when moving or insert-
ing them. Insisting on legal locations can also contribata tlegradation not anticipated
by the RUMBLE model. Fortunately, RUMBLE can examine theitignimplications of
its changes before committing to them. It simply stores tiigal state of the subcircuit,
and restores it if a timing degradation occurs. In this wayMBLE will do no harm
to the circuit by ensuring that whatever solution it keepaasworse than what existed

before. Such safe delay optimizations are more easily tedento physical synthesis

46

flows [18, 88].

The RUMBLE algorithm. Figure 3.13 shows pseudocode for the RUMBLE algo-
rithm, which assumes a set of movable gates given at inpdt-agure 3.12 illustrates the
process. First, the subcircuit that is necessary for inergal placement is extracted (for a
single movable, we extract its one-hop neighborhood oftigiates). During this process,
buffers are ignored (viewed as wires) as described in Se&i6. Next, RUMBLE per-
forms timing analysis so as to measure timing improvemeat.ld.ine 3 stores the state
of the circuit (gates and nets) so as to possibly undo moshtdcansformations we are
considering. Once the initial state is safely stored, lifi6é3use the linear program of Sec-
tion 3.4 to compute new gate locations, followed by buffenogal. If the model shows
improvement we continue. Buffers are inserted on §pand other physical synthesis op-
timizations could also be applied here (e.g, repowenfgassignment, etc.). Linés12

measure improvement, and in the case of timing degradaietgres the initial solution.

3.6 Empirical Validation

RUMBLE is implemented in C++ (compiled with GC£1.0) and integrated into an
industrial physical synthesis flow. For our experimentsew@mined an already optimized
130nm commercial ASIC with clock period.2ns and3 million objects. We first exam-
ined the most critical latches and then filtered out the onesrevthe latch was already
well placed. We use the algorithm from [5] to perform buffgriafter the cells have been
moved. In practice, the LP-solving technique from RUMBLIEgu&es only17 millisec-

onds; the buffering algorithm dominates the runtime (aW86). Since the overall runtime

a7

RUMBLE-ONE-LATCH

> Input: Gatemovable

o> Output: movable has optimized location and interconnect
subcircuit = BUILD -SUBCIRCUIT-FROM-SEED(movable, 0)
before-timing = MEASURETIMING (subcircuit)
initial-solution = CACHE-SUBCIRCUIT(subcircuit)

LP =new RUMBLE linear program fosubcircuit

after-locs = SOLVE(LP)

SET-GATE-L OCATIONS(subcircuit, after-locs)
REMOVE-BUFFERY subcircuit)

REINSERFBUFFERY subcircuit)

after-timing = MEASURETIMING (subcircuit)

10 if(after-timing worse tharbefore-timing)

11 RESTOREGATE-L OCATIONS(subcircuit, initial-solution)
12 RESTOREINTERCONNECT(initial-solution)

©O©OoO~NOULAS WN P

Figure 3.13: The RUMBLE algorithm for moving one latch.

is dependent on the choice of the buffering algorithm we ahat(trivial) runtimes from
our tables. Note that thdo-no-harm approaclof Section 3.5 is applied to all experi-
ments, preventing timing degradation in our tables (i.ealae of 0 appears in the imprv.

column).

Re-buffering in RUMBLE. Previously published LP techniques for timing-driven
placement do not allow for re-buffering during optimizatidnstead, they are either ap-
plied before buffers have been inserted, or they do notreiffieate the buffers from other
gates. Our first experiment is designed to show how impoit&to rip up buffers before
replacing gates and subsequently rebuffering.

We modified our pseudocode in Figure 3.11 so that the funci®uFFER) always
returns false. The effect of this is to stepeing throughhe buffers, and instead to con-
sider them fixed timing endpoints. This configuration modeéswork of [122]. We then

calculate a new location for each latch with the LP in Sec8ch The final change is to

48

skip line8 of Figure 3.13, i.e., do not re-buffer. We call this algomittKeer-Burrers

Table 3.1 shows the results of RUMBLE on a single latch comgbarith Keer-Burrers
Column1 shows the name of the benchmark and columasd5 show worst-slacks in
picoseconds before optimization. Colunthand6 show the slacks after optimization of
Keer-Burrersand RUMBLE respectively. Columnsand7 show the improvements of

each technique.

Implications of keeping buffers

KEerP-BUFFERS RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new | imprv. orig | new | imprv.
latch AO -1480 | -1318 162 || -1480| 26| 1506
latch Al -1268 | -1066 202 || -1268| 186 | 1454
latch A2 -1020| -939 80 || -1020 | -791 229
latch A3 -953 | -766 187 || -953 | -390 563
latch A4 -897 | -677 220 || -897| 356| 1253
latch A5 -848 | -746 101 || -848 | -278 570
latch A6 -690 | -690 0| -690| 395| 1085
latch A7 -645| -586 59| -645| -19 626
latch A8 -633 | -560 74 || -633| 290 923
latch A9 -610 | -466 144 || -610| 262 872
avg -904 | -782 123 || -904 4 908

Table 3.1: Keeping buffers instead of removing and reimsgthem degrades RUMBLE’s
performance.

From the table we observe the following:

e Despite not ripping up buffers,atpr-Burrersis still able to improve solution quality

for nine out of ten testcases, though the improvement isrmaeee thar220ps.

e When rip-up and re-buffering is allowed, RUMBLE is able tgrsficantly outper-

form Keer-Burrersfor all ten testcases. On average the improvement growsiy

e While Keer-Burrersimproves slack by an average t#3ps, RUMBLE improves

slack by908ps, which confirms how important it is to rip-up buffers sotttiey do

49

not anchor the latch into an artificially small region.

Accuracy of the RUMBLE timing model. Theoretical results published by Otten [79]
and discussed in Section 3.3 indicate that optimal buffegrition on a two-pin net results
in a wire delay that is linearly-proportional to its lengtiihe RUMBLE model heavily
relies on these results.

Table 3.2 compares the model-predicted values for subtsiack to values measured
by running a commercial static timing analyzer. Measurdsare taken after the RUM-
BLE LP is solved, the latches are moved and connected netsuffiered. Columng-4
report the initial, final, and improvement in worst-slackioé subcircuit measured by the
timing model presented in Section 3.3. Columrareport the same metrics measured by

the STA engine.

Model timing vs. reference timing

Model slack (ps) Subcircuit slack (ps)

Subcircuit orig | new | imprv. orig | new | imprv.
latch AO -1799| -48| 1751 || -1480| 26| 1506
latch Al -1509| 65| 1574 || -1268| 186 | 1454
latch A2 -1113| -868 | 245 || -1020| -791 229
latch A3 -1147| -527 | 620 -953 | -390 563
latch A4 -1090| 180 | 1269 -897 | 356 | 1253
latch A5 -945| -295| 650 -848 | -278 570
latch A6 -920 | 320| 1241 -690 | 395| 1085
latch A7 -886 | 49 935 -645| -19 626
latch A8 -913 | 213 | 1126 -633 | 290 923
latch A9 -800 | 397 | 1198 -610 | 262 872
avg -1112 | -51 | 1061 || -904 4 908

Table 3.2: The RUMBLE model accurately predicts the sotujoality improvements in
the reference timing model.

We make the following observations:

e On average, the RUMBLE model overestimates the actual ginmmprovement by

50

about15%. This makes sense since it assumes an optimal ideal Imgfeuill be

achievable, but this is not always the case, especially tdtifsink nets.

e However, if one compares actual improvement to model imgmeent, there is a
97% correlation, suggesting that the model is reasonablegimtujustify the latch

location.

We now show how RUMBLE actually improves the design’s timahgracteristics.

RUMBLE on a single latch. Given that we are solving a new physical synthesis prob-

lem, existing solutions are scarce. Therefore we first dmmstraightforward approaches
to solve this problem. One possibility is to take ttenter-of-gravity(COG) of adjacent
pins. A timing-driven improvement of the center-of-grgviechnique weights each pin by
its slack. A reasonable version of this heuristic works ia fibllowing way. For a slack

thresholdr; (see Section 3.4), let the weightof a pinp with slacksS, be:

14 |S, — Ty Sy, <0
wp =
max(0.1,1 —[S, —Ts|) S, >0
Then we compute the coordinate of movable gate as the weighted average of the

coordinates of the set of neighboring pifis

EpeP WpPx

e ZpEP Wp
and similarly for they coordinate.

We implemented the above COG technique within the RUMBLEn&@ork in place
of the LP solver presented in Section 3.4. We still allow C®€ bbenefits of ripping up

buffers, and reinserting them after the latches are movatle13.3 shows a comparison

51

between RUMBLE and slack-weighted COG o latches. Column shows the same
latches as reported in Table 3.2. Colun2a$ show the initial and final slacks, and im-

provement for COG. Columris7 show the same for RUMBLE.

Center-of-gravity vs. RUMBLE

COG RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig | new | imprv. orig | new | imprv.
latch AO -1480| -527 953 || -1480| 26| 1506
latch Al -1268| -203| 1065| -1268| 186 | 1454
latch A2 -1020| -800 219 || -1020| -791 229
latch A3 -953 | -615 338 || -953]| -390 563
latch A4 -897 | -78 819 || -897| 356| 1253
latch A5 -848 | -319 529 || -848| -278 570
latch A6 -690 | -690 0| -690| 395| 1085
latch A7 -645 | -645 0| -645| -19 626
latch A8 -633 | -633 0| -633| 290 923
latch A9 -610 67 677 || -610| 262 872
avg -904 | -444 460 || -904 4 908

Table 3.3: Comparison of RUMBLE’s LP to a slack-weightedteetf-gravity technique.

lterated RUMBLE vs. RUMBLE: 1-hop
Iterated single-move RUMBLE Multi-move RUMBLE
Slack (ps) TTS (ps) Slack (ps) TTS (ps)

Subcircuit orig new | imp. orig new imp. orig | new | imp. orig new imp.
subckt BO || -1542 | -1542 0 -6091 | -6091 0 -1542 | -130 | 1412 | -6091 -130 | 5962
subckt B1 || -1501 -277 | 1223 | -5924 -277 | 5647 || -1501 55 | 1556 | -5924 0 5924
subckt B2 || -1240 | -1240 0 -4354 | -4354 0 -1240 | -980 261 | -4354 | -4044 310
subckt B3 -848 -278 569 | -2523 -812 1710 -848 | -279 569 | -2523 -813 1709
subckt B4 -690 -79 612 | -4090 -79 | 4011 -690 | 202 893 | -4090 0 | 4090
subckt B5 -690 48 739 | -2053 0 2053 -690 290 980 | -2053 0 2053
subckt B6 -645 -18 627 | -1921 -32 | 1889 -645 | 301 945 | -1921 0 | 1921
subckt B7 -595 86 681 | -1937 0 1937 -595 503 | 1098 | -1937 0 1937
subckt B8 -444 | -444 0 -889 -889 0 -444 | -92 352 -889 -191 698
subckt B9 -418 -46 372 -857 -46 811 -418 6 424 -857 0 857

avg -861 -379 482 | -3064 | -1258 | 1806 -861 -12 849 | -3064 -518 | 2546

Table 3.4: RUMBLE simultaneously movingame-hopneighborhood compared to itera-
tively moving the same gates individually.

We observe the following:

e For all ten cases, RUMBLE generates a better solution tha®.G@r three of the
cases, COG could not improve the latch placement. Thesealatioss are rejected

by the controller so as not to make the design worse.

52

lterated RUMBLE vs. RUMBLE: 2-hop

Iterated single-move RUMBLE Multi-move RUMBLE
Slack (ps) TTS (ps) Slack (ps) TTS (ps)
Subcircuit orig new | imp. orig new imp. orig | new | imp. orig new imp.
subckt CO || -719 | -719 0 | -8313 | -8313 0 -719 | -675 44 | -8313 | -5028 | 3285
subcktC1|| -719 | -719 0 | -8004 | -8004 0 -719 | -653 66 | -8004 | -4386 | 3617
subckt C2 || -690 -79 | 612 | -4090 -79 | 4011 -690 | 314 | 1004 | -4090 0 | 4090
subckt C3 || -690 -79 | 612 | -4090 -79 | 4011 -690 | 337 | 1027 | -4090 0 | 4090

subckt C4 || -681 | -349 | 333 | -3865 -349 | 3516 -681 | -158 524 | -3865 | -158 | 3707

subckt C5 || -645 -91 | 554 | -3767 -306 | 3462 -645 | 371 | 1015 | -3767 0| 3767
subckt C6 || -645 -33 | 612 | -3767 -52 | 3716 -645 | 324 969 | -3767 0 | 3767
subckt C7 || -318 | -318 0 -940 -940 0 -318 | 531 848 -940 0 940
subckt C8 || -490 227 | 716 -966 0 966 -490 | 466 956 -966 0 966
subckt C9 || -217 | -217 0 -652 -652 0 -217 60 277 -652 0 652

avg -581 | -238 | 344 | -3846 | -1877 | 1968 -581 92 673 | -3846 -957 | 2888

Table 3.5: RUMBLE simultaneously movingtao-hopneighborhood compared to itera-
tively moving the same gates individually.

e On average, COG improves slack 2y.9% of the2.2ns cycle time, whereas RUM-
BLE improves slack byl1.3%. This shows that one must incorporate slack con-

straints on cells incident on the latch to achieve the mdsinead solution.

Optimizing multiple gates simultaneously. For this experiment, we show how an
even better solution can be obtained when one allows celt®db the latch to move. We

show the effectiveness of this technique on two sets of itgicu

e One-hopsubcircuits include every gate (while ignoring buffers amgerters) inci-
dent to the latch of interest that shares an incident net téHatch. Typically this

results ind or 5 gates being moved.

e Two-hop subcircuits in addition include all non-buffer and invertells incident to
cells in the one-hop neighborhood. These subcircuits rémoge11 to 18 movables

with a mean ofi4.8 movables.

We compare this technique to iterated single-move RUMBLEers we pick each cell

in the neighborhood and solve the LP for that particular, ¢edlit, and then move to the

53

next cell. The experiment is designed to show that multigkksmeed to be optimized
simultaneously to obtain the best results.

To measure the improvement one must now consider the sldcdsaells that may
be moved, and the objective becomes to improve the wordgk sfaihie entire subcircuit.
However, when one cannot improve the most critical pathpther paths may have room
for improvement. We use TTS to measure the total improvermkall the slacks in the
subcircuit.

Tables 3.4 and 3.5 compare iterating RUMBLE over each gateabra time versus
RUMBLE moving multiple gates simultaneously. Coluniig show the original and fi-
nal slack, and the slack improvement for iterated singlelarRUMBLE, while columns
5-7 show the corresponding TTS measurements for a zero-sleestibld. Columns-13
show the same measurements for multi-move RUMBLE. We makéotlowing observa-

tions:

e Multi-move RUMBLE is clearly more effective than iteratn®JMBLE both for
one- and two-hop neighborhoods. In fact, for six out of tee-bop subcircuits and
for seven out of ten two-hop circuits, multi-move actualtgight the TTS down to
zero, meaning it fixed all the timing violations. Iterativagle move was able to fix

two and four respectively.

e On average, the worst-slack improvements weréps and673ps respectively for
one- and two-hop subcircuits. The diminished improvemenlarger subcircuits is
likely because we are including more nets, some of which @aba improved as

much as those connected to the imbalanced latch (Figurea3.@rmexample).

54

e Solving the LP takes§3ms for one-hop subcircuits ars@5ms for two-hop subcir-

cuits, on average.

Imb. | Imb. FOM | Cirit. | Crit. FOM TTS

old | 102768 -21855| 7912 -2798 | -22448

cktl | new| 93736 -19400| 7775 -2644 | -20511
diff -9032 2455 -137 154 1937

old 12151 -3080 | 3206 -1783| -19211

ckt2 | new| 11037 -2351| 2997 -1667| -18170
diff -1114 271 | -209 116 1041

Table 3.6: RUMBLE deployed in a physical design flow on citsuhat have pipeline
latch placement problems. cktl has 2.92M objects and 628kda and ckt2
has 4.74M objects and 247k latches. “old” reports valuesreeRUMBLE
“new” reports results after and “diff” reports their difeisrce. FOM is reported
in nanoseconds.

RUMBLE in a physical design flow. In the experiments presented so far, we have
compared the effects of RUMBLE to those of other techniquethe most critical latches
of the design. Due to the high runtime of buffering all of tlésin multi-move subcircuits,
multi-move RUMBLE for every critical latch in the design ispensive. Consequently, in
this subsection, we demonstrate the cumulative effect majlsimove RUMBLE when
deployed in our physical synthesis flow alhlatches with a critical pin Table 3.6 shows
two circuits that each contain a significant number of popigced latches. For each
circuit, we report 5 statistics. An imbalanced latch is dafims one that has slack on the
input pins that is greater than the slack thresh@ld(see Section 3.4), and slack on the
output pins that are lower thah, or vice versa. The Imb. column reports the number of

imbalanced latches found in the design. Let the set of inmoala latches bé, and for

55

each latch let ws(l) be the worst slack of any pin dnWe define imbalance FOM to be

> T, —ws(l) (111.19)

lel

The Imb. FOM column reports this value. A critical latch idided as one that has pins
on both sides that are beloiy. The Crit. column reports the number of critical latches
found in the design. Similarly to imbalance FOM(Ifis the set of critical latches and for
each latche let ws(c) be the worst slack of any pin an then we define the critical FOM

to be

ZTS —ws(c) (111.20)

ceC

The Crit. FOM column reports this value.
Finally, the TTS column reports the TTS for the entire desiye make the following

observations:

e RUMBLE reduces the number of imbalanced latches by 8.8% &% 8n cktl and

ckt2, respectively.
e RUMBLE has a harder time optimizing the critical latchesthize imbalanced ones.
e RUMBLE reduces circuit TTS by 8.6% and 5.4% on cktl and clégpectively.

e RUMBLE improves the characteristics of all columns, andsdoe harm to the

circuit metrics.

In addition to these observations, we point out that the tvastncommon reasons for
being unable to fix a particular latch are 1) there is a higiota net in the subcircuit,

which would degrade the performance of buffering, and weefloee skip this case or 2)

56

the gates are moved to a fixed endpoint, which indicates tbdMBLE does not have
enough freedom to solve the problem entirely. The additioRWMBLE to our design

flow adds about 4% to the total runtime in these experiments.

3.7 Conclusions

In this work we observe that wirelength-driven placemeatteto particularly poor
timing of pipeline latchesn modern physical design flows, which is especially problem
atic at sub-130nm technology nodes. To address this clgaljeme developed RUMBLE
— alinear-programming based, incremental physical syanstedgorithm that incorporates
timing-driven placement and buffering. The latter jus§fRUMBLE’s linear-delay model
which exhibited @&7% correlation to the reference timing model in our experitaeEm-
pirically this delay model is accurate enough to guide ofation; RUMBLE improves
slack by41.3% of cycle time on average for a large commercial ASIC design.

The linear program (LP) used in RUMBLE is general enough tbnage multiple
gates and latches simultaneously. However, when movingpreugates considering only
the slack objective, we encountered two challenges: plaoestability and TTS degra-
dations. We present our extensions to address these p®diesotly in our LP objective.
With these additions, moving several gates simultaneooglyoves upon RUMBLE used

iteratively on the same movables.

57

CHAPTER IV

Bounded Transactional Timing Analysis

Modern physical synthesis flows operate on very large desagua perform increas-
ingly aggressive timing optimizations. Traditional inerental timing analysis now repre-
sents the single greatest bottleneck in such optimizatonss lacking in features neces-
sary to support them efficiently. We describe a paradigmasfdactional timing analysis,
which, in addition to incremental updates, offers an effitimestedundo functionality
that does not require significant timing calculations. Tgasadigm extends traditional in-
cremental Static Timing Analysis (STA) and enables necgsshastructure for a number
of physical synthesis optimizations in this dissertation.

Transactions offer significant performance benefits wherkiwg with highly-optimized
netlists, where most candidate transformations are tettadter evaluation. Another con-
text, where our techniques offer speed-ups of two ordersagfntude, is compound op-
timizations where incremental updates are amortized ovwszeaof further possible op-
timizations. We describe efficient implementationsupidate begin commitand undo

functionalities by bounding their impact throughout thdise

58

| Early Planning |
¥

¥ +

Global Placement

Logic Synthesis

Electrical Correction

3 ¥
| Floorplanning |
[

Legalization

Timing Analysis

2

Clock-network Synthesis

Global Routing

| Histogram Compression |

| Detail Routing
| Design for Manufacturing

-

Timing Constraints Met?
N

| Timing-driven Net Weighting |—

Figure 4.1: The contributions in this chapter improve tramutes of timing analysis as it is

used in physical synthesis.

4.1 Introduction

Achieving timing closure for large modern ASIC designs lieggithe use ophysical

synthesis— a series of performance-driven optimizations that siemdbusly alter the

layout, the netlist and electrical parameters of logic glate

Physical synthesis tightly couplemalysiswith optimizationin an automated flow

that iteratively improves design parameters. Such flowg oal Static Timing Analysis

(STA) in two essential ways. First, STA identifies the sawdiof the design that are most

critical to the overall performance. Second, STA assesseipact of every potential

change on circuit performance, before the change is comanitCircuit optimizations

are bundled intdransformationghat implement common operations such as relocating

a gate, buffering a net, etc. [112]. Recent state-of-thelesign methodologies consider

compound transformatiorte simultaneously perform many simpler transformatiorad th

would not have improved overall performance if appliedwdlially [74].

59

Advanced technology nodes require complex timing modeds ¢annot be captured
analytically with sufficient accuracy, often making timiagalysis the single major bottle-
neck in physical synthesis. Therefore we take a closer lotieaconceptual role of STA
and its interfaces with optimization. Mathematically,cciit optimizations often interact
with STA by obtainingarrival timesandrequired arrival timesat timing points throughout
the design [54, 89]. However, running STA on the entire desigevaluate each poten-
tial change is impractical. Therefore, STA can be used (Datch modeo evaluate the
compound impact of many changes, (iiimcremental modewhere the impact of a single
change is efficiently propagated through the netlist, anda{ith lazy updateswhere tim-
ing data are propagated only in response to queries, ealbgbtitching the changes that
occur between queries.

Multi-objective optimizations now increasingly rely ado-no-harmmethodologies
that carefully evaluate each change and commit only thaaeptiovide tangible improve-
ments [18, 83, 88]. The more aggressive algorithms have higtyrejection rates in this
loop, making the speed of incremental STA a major factor iproming physical synthe-
sis. However, batched mode and lazy updates are of limied/ben evaluating individual
impact of multiple candidate changes.

The major impact of STA on overall runtime tempts physicaltegsis developers to
assume the responsibility for some aspects of timing arsafyred shortchange STA en-
gines for handcrafted local delay models, which offer digant opportunities for runtime
improvement. However, this practice risks subtle timingtakes and also increases the

development effort by lowering reuse. Therefore, we pregogprovements to reusable

60

STA engines that better account for the bounded scope ofgalys/nthesis transforma-
tions.

We present an extension to the interface of static timingyarsto accommodate trans-
action histories. Our technique employfiraing change historgatastructure that stores
changes to the state of the timing graph so that it can be e=ifigi restored to a pre-
vious state in the event of a retraction. This approach isiBpally designed to allow
nesting events that spur timing changes. To further impmweest-case complexity, we
limit changes to the timing graph by way lbdunded timing analysigan enhancement that
works in conjunction with transactional timing analysisattow for the rapid exploration
of circuit search space. Finally, we provide an empiricaleation of bounded transaction
histories for both classical and lazy STA, demonstratingnggrovement in performance
by up to two orders of magnitude.

The remainder of this chapter is organized as follows. IrtiSee.2 we describe the
state of the art in timing analysis as it applies to physigaltisesis and transformation-
driven optimization. We go on to classify several types ofgatal synthesis transforma-
tions that pose problems to existing timing analysis ergjig&ection 4.3 presents bounded
transactional timing analysis, along with appropriateadetfor embedding it into mod-
ern static timing analysis. Section 4.4 provides empir@atience demonstrating that
bounded transactional timing analysis greatly improvessieed of transformations that
rely on repeated retractions. Conclusions are drawn in@e4t5. A review of basic static

timing analysis appears in the appendix.

61

4.2 Background

Timing analysis and its integration into the physical dadigw have long been key
topics in design automation. To this end, we review the 18asfcSTA in this section.
Modern static timing engines are products of sophisticategineering, and have evolved
substantially over recent decades. Yet, dramatic chamgessic timing models continue
to drive the need for further innovation. For instance, imibde timing has become in-
creasingly popular — wherein several timing points are te@nmed at each node of the
global timing graph, each corresponding to a different eoonf design operation. While
these corners enable modern optimization techniques toateahe effect of their actions
on many scenarios at once, they also serve as a multiplieasa€ lromputation that the
timing engine must perform. Statistical timing engined tieflect the variance of design
performance require the maintenance of complex distobuthodels that also signifi-
cantly expand the amount of work placed on the timing engifieese elaborate models,
in conjunction with a stronger emphasis on local transfaionadriven operations, have
increased the responsibility of timing engines to providawch higher degree of incre-

mental maintenance of internal timing state.

Previous work. The problem of updating only a subset of timing analysis eslin
response to a local change is explored in [31], where a d@gthpropagation of tim-
ing values is executed until no change is observed. Thisegsowas later refined [1], to
reduce the amount of incremental recalculation needed.s#ndtion between the prop-

agation cost of positive delay changes and negative delaygds is described in [62],

62

demonstrating that the expense of executing an operatigndiffar from that of its in-
verse. The algorithm of [96] avoids excessive computatipptopagating only along
paths that are influenced by altered inputs. A query langbaged on temporal logic is
proposed in [76], along with an algorithm to efficiently rette answers to those queries.
Algorithms for incremental timing analysis [105] and inerental criticality updates [35]
have been proposed in the context of FPGAs. The authors pEjdfore an extension
of static timing analysis to model coupling, and exploitait structure to determine an

effective node ordering during incremental iterative ggisl.

(b)

Figure 4.2: A physical synthesis transformation improves gubcircuit in (a) by resyn-
thesizing the logic, resulting in the circuit shown in (bheéltraditional way of
evaluating the timing impact of such transformations camfygoved consid-
erably.

Relatively little attention has been given to taeplicit support for the retraction of
local design changes. The recent work of [55] provides stppotransactional operations
such asbegin commit andunda However, these operations are restricted only to the
resurrection of previously cacheduting data, and are not communicated to the timing
engine. Indeed, the decision to revert one or more timinggmees to their original state
is typically cast as just another sequence of incrementai@és to the system; this forces

the wasteful recomputation of timing data, which may be era&ted when an inverse

operation takes much longer to execute than the originaiatipa [62]. Other choices in

63

the design flow — such as the decision to compute Steinerfoedslay estimation — also
compound the effort required to restore timing informatiora previously known state.
The savings, that can be achieved by efficiently rolling badent changes, are likely to
escalate in coming years, as compound transformationsrieeowreasingly dominant in

physical synthesis and routinely thrash the timer with ipldthypothetical changes.

Incremental static timing analysis. In static timing analysis [97], #iming graph
G = (V, E) is extracted from a combinational logic circuit. Each venrtes V' is a timing
point, and corresponds to an input or output pin of a gate dolaadjinput or output pin.
A pair of vertices,u,v € G, are connected by a directed edge,v) € E if there is
a timing relationship (i.e., a connection) between the pirsmdv. This connection can
occur within a gate, as in between an input pin and an outpyiopiit can correspond to a
wire connecting two gates. Each edge has an associatedielay indicating the delay
between: andv.

To determine the worst path of the circuit, a topologicaléraal is performed on the
graph beginning at the sources. The actual arrival thad’(v) at a timing point in the

circuit is the latest arrival time of any of its predecessdtsr considering delay:

AAT(v) = max (AAT(u)+ d(u,v)) (IV.1)

{ule(u,v)}
The required arrival tim& AT () at a timing point: in the circuit is computed in a similar

fashion, traversing backwards from the primary output$efdircuit:

RAT (u) = {U‘Ier&g)} (RAT(v) — 6(u,v)) (IV.2)

A pair of topological traversals are made to determine thakees, after which thglackof

64

any timing pointv is calculated as the difference between required arrivad tnd actual
arrival time:

slack(v) = RAT(v) — AAT(v) (IV.3)

Early STA engines always processed an entire design, whighpractically expen-
sive when evaluating optimization transformations [39isTexpense can be avoided by
using stale timing information or crude estimations, reitbf which are acceptable in
modern high-precision physical synthesis [88]. Anoth&sraktive is to maintain accurate
timing information throughout the automated flow, but to darsan incremental fashion.
Research imncremental static timing analysams to provide efficient techniques for the
updating of values within a timing network in response taland partial modifications.
Several varieties of incremental STA have appeared ovgrabedecade, and are respon-
sible for decreasing timing runtime from hours to minutd#ofeing incremental circuit
changes on large ASICs [16].

Further extensions to incremental analysis incliggel-limitedanddominance-limited
schemes to reduce the amount of work performed [102, 11243y evaluatiorfl1, 71], in
which propagation is delayed until triggered by a relevargrg, represents a particularly
important improvement in throughput of static timing arssgyengines.

The boost in throughput offered by incremental analysisnalan optimization algo-
rithm (as well as a designer) to explore several hypothlefara‘what-if”) scenarios, a
task unaffordable in earlier tools [16]. Such hypothets@narios are typically commu-
nicated to the timing engine as if committing changes. Ifrésults are unacceptable and

the scenarios are rejected, another set of changes mustrbeitted. This requires new

65

timing calculations, even though the needed timing valu& lpreviously been known.
While a single layer of “what-if” support can be added to SESiy, this is insufficient to
handle the evaluation of multiple nested scenarios and iibigaction. Detailed use cases

for retraction are discussed in the following section.

Types of Transformation-driven Optimization Recall that timing-driven placement
and synthesis seek non-overlapping locations for all celth that the performance of the
design meets objectives [17]. Timing optimization durifyygical synthesis is typically
accomplished by gradually modifying and refining an initiatlist and placement image
[34].

We distinguistcontrollersand optimizationransformationsA transformatiorapplies
a particular local optimization to gates and/or nets selkbly acontroller. For instance,
IBM’s Placement Driven Synthesis (PDS) [112] makes use wéisg transformation tem-
plates, including buffering, re-powering, connectionrdssing, cloning, etc. Aontroller
selects nets and/or gates for optimization, ordering thedhjadging the impact of opti-
mizations. Both controllers and transformations can qtiemng engines. For example,
transformations often make several queries to STA, not tintpnstruct a basic model of
the neighboring region (with appropriate arrival times agglired arrival times), but also
to verify improvement after optimization is complete. Quoilers implement optimization
strategies with sophisticated reasoning to handle thebteddreceived from STA.

Despite extensive support for incremental propagationlamygl evaluation, existing
timing engines often perform unnecessary computationarctimtext of sophisticated op-

timizations. In this section we illustrate several oppoities for improvement that moti-

66

vate our research, and summarize them in Table 4.1.

Case 1: Inefficiencies in fallible transformations. The simplest transformations first
identify feasible changes and then rely on the timer to etalthe impact on performance.
For example, aell-movement transformatidnying to relocate a cell on a critical path
may identify several vacant nearby locations, and@wering transformatiomay bind

a critical cell to every power level available in the cellrliby. In either case, a timing
guery must be independently executed after each changenmitted to the netlist, to
select the one with greatest slack improvement. We term sustthodsbind-and-test
transformations.

More advanced transformations attempt to predict the imnpltheir changes in ad-
vance, so as to quickly weed out unpromising options, therthestimer to select among
few finalists, and verify improvement. In the case of a repowgetransformation, the slew
rate at input pins and the load capacitance offer sufficigormation to estimate slack at
the output pin for each power level. Such a transformatiaccguestimate the best power
level, bind it, then verify its slack improvement. If the iesate is too inaccurate, the new
power level may worsen slack, requiring the change to beddblack. In other words,
such transformations sometimes fail, and we therefore teemfallible. Aggressive use
of fallible transformations requiresrror correctionin the form of anundofunctionality.

Though simple, both fallible and bind-and-test transfdiores are inherently slow
because repeated changes and timing queries requiredabgropagation and updates
of timing information. In our example of bind-and-test re@ing, the evaluation of each

power level triggers timing updates for the fan-in cones B&Ts) and fan-out cones

67

() (b)

Figure 4.3: Evaluating the timing impact of the physicaltiasis transformation in Figure
4.2 (output side only). (a) Traditional static timing argd/with lazy evalua-
tion will mark the fanout cone of the change dirty. (b) If tHeaage is found
to have a negative impact on timing, it will be reversed. Tiegersal will
be treated as another change, and the fanout cone will beethdilty for a
second time.

(for RATS) of the gate. As we point out next, some of this dffayuld be deferred and
ultimately avoided if the timing engine adopts a philosophyazy evaluation Namely,
after forward-propagating AATs to evaluate the impact oharge, there is no need to
back-propagate RATSs, unless the changmimmitted

A stand-alone reusable STA engine must ensure consistdnty adatabase without
necessarily trusting its clients. Therefore, AATs whosklies are not current, would be
marked adirty. Timing propagation to update dirty data would be invokedy in the
event of a query (and even then, only to the portion of logedeel to answer the query).
However, if the original location (or power level) is optimaas it is likely to be if es-
timation routines and detailed placement have done theipjoperly — the demarcation
of these cones as dirty is unnecessary, since the originahktimes stored within these
cones are in fact a correct representation of the curretat $tegure 4.3 illustrates the work
performed by traditional static timing analysis with lazakiation when a transformation

is applied to a circuit and subsequently retracts its change

68

Case 2: Candidate selection transformations are those that employ multiple strate-
gies to generate several alternativescandidate solutions In doing so, they try each
optimization, and select the best candidate, rejectingasie Such transformations lever-
age the fact that different strategies work well in diffareontexts. For example, consider
a transformation that generates candidates by repowesingkhas moving a gate. Often,
moving a gate has greater impact, but if the design has té®whitespace, there may be
no open location where the gate can move to improve timirggeld, a higher power level
may be available for the same footprint, or enough whitespaay be available nearby to
increase the footprint.

While fallible transformations may occasionally invokedarfor correction(e.g., when
they degrade circuit performance due to approximationdnaxy), a candidate selection
transformation requires undhy construction- after each candidate is computed, the initial
state must be restored so that the next candidate can beatgdierdependentlypased on
the initial conditions. In the example of repowering or muayia gate, retraction must
restore the gate to its original power level after repowgesa that the movement decision
can be based on the timing of the initial power level. Timingedes for interrogating
initial conditions of each candidate generation strategyavoid the unnecessary work of

timing updates if undo can restore the initial timing state.

Case 3: Compound transformations not only consider multiple strategies for gen-
erating candidates, but also do so foultiple objects Such transformations may even
considercomposingoverlapping optimizations to generate a single candidabe.exam-

ple, consider simultaneously moving and/or repowering ¢aonected gates in a discrete

69

| TYPE | UNDO FREQUENCY | UNDO PURPOSE \

Bind&test | (0.1) Already optimal | Return to initial state
Fallible (0.1) Upon degradation Error correction

Candidate | (1.) For each candidate Metric-indep. changes
Compound| (10.) Nested candidatgsJoint evaluation

Table 4.1: Types of transformations with embedded rewactillustrative values in the
“Undo frequency” column suggest that some cases require/ mame retrac-
tions that other cases.

domain [74,83]. In this situation, a very large number ofdidates can be generated and
evaluated, where each successive decision may depend pretheus. For example, the
resynthesis transformation illustrated in Figure 4.2 cathought of as a compound trans-
formation consisting of merging the inverter gates with@t gate followed by swapping
logically equivalent pins.

The increasingly popular compound transformations stiggsg analysis tools much
more heavily than other use cases, in that the construcfianacal model requires the
searchof a large, conditional solution space. Modifications am@dsglly made innested
pairs to generate appropriate timing arcs; indeed, the authofg4jfobserve that the
expense of generating their disjunctive timing graph ismfinore costly than the branch-
and-bound search used to solve it optimally, a consequédtice propagation efforts of the

timer. Whenundocan efficiently restore the previous timing state, comlanally many

timing updates can be saved in compound transformations.

4.3 Transactional Timing Analysis

In the presence of retractions, the state-of-the-art ST&s perform a large amount
of unnecessary work, as we have demonstrated in Sectiomtllis section, we present

the details obounded transactional timing analysishich serves to substantially reduce

70

(a) (b)
Figure 4.4: Evaluating the timing impact of the physicaltéygsis transformation in Fig-
ure 4.2 (output side only). (a) Bounded transactional tgranalysis will not

propagate the change outside of a specified window. (b) Ieteat of a re-
version, gates with dirty timing will have their timing datestored.

the computation needed to supponidofunctionality. We first consider its application to

classical STA, and then to the more advanced version thaostglazy evaluation.

Support for transactions. By definition, a retraction restores the design to a preWjous
known state. Current techniques (which view retraction separate incremental change)
discard the original timing values during propagation. émtrast, transactional timing
analysiscachediming data that becomes invalidated during the executf@ahange.

Specifically, when a modification is made to the design, thetiis notified through
a monitoring mechanism that the delay at a particular tinpognt has changed. That
notification triggers a corresponding propagation to thegitive fan-in and fan-out cones.
During transactional timing analysis propagation, prialues are not simply overwritten
(as is commonly done within STA engines), but are ratheestor a change stack as new
values are written in their place. Therefore, if and whemgdesis retracted, the old values
may be restored by “replaying” the timing updates in reverse

In the case that a sequence of nested transactions areexkéasimay occur with com-

pound transformations), each individual change staclesas a distinct checkpoint of the

71

design state These checkpoints are themselves stored amsadtion stack of all change
stacks. A new change stack is pushed onto the transactiok staen a transformation
requests a new checkpoint. The current state of timing iedtm the timing graph as
usual. When a transformation backtracks and retractsritaitimodifications, changes to
the timing graph may be rolled back to the most recent cheokpy copying all values
in the current head of the transaction stack back into thagjrgraph. Changes may be
committed simply by clearing the transaction stack.

Figure 4.5 illustrates one possible implementation ofdemtional timing analysis.
Several variations of this code are useful in differentwnstances. For instance, if a
change is likely to have significant impact on the state ofdégign, the caching of old
timing values could be performed once, prior to rather thamng propagation.

Integrating these ideas into a high-performance timingrengequires a sophisticated
interface for optimization transformations. In partiaut@ansformations are required to
communicate their intent, e.g., whether a change requéstlysnew or seeks to restore a
previous state. This information allows the timer to takprapriate actions on behalf of

each transformation for each change.

Ensuring consistency and compatibility. As noted earlier, it is common for static
timing engines to defer timing updates until needed by avagietiming query. In many
cases, this avoids work when timing values are invalidatellipte times before they are
actually used. The notification of a change in delay durinthdazy executiomwill not
trigger timing propagation; instead, the fan-in and fat-@anes of a modified edge are

simply markedlirty, indicating that they must be recomputed.

72

To accommodate transactional timing analysis with lazyceien, dirty bits must
also be considered as part of the state of a timing point. B&4setraditional engines will
leave nodes marked as dirty in the event of a retraction, diogrtiming analysis will
revert them back to their state prior to the change. Thouglsinown in Figure 4.5, this
extension is relatively straightforward: all actions th#er the dirty bit of a timing point
are recorded, and are subsequently restored if a retrastissued by the transformation.

Finally, support for transaction histories in the preseoiclgic changes (such as in
our example) requires the careful caching of topologicatliiications to the graph itself
(in addition to the timing values associated with these el&s). The creation, deletion,
and modification of graph connectivity can be achieved thoageference labeling of
timing points; changes to structural elements, such assealy# nodes, are recorded with
respect to these unique identifiers, and thus may subsdyuentestored. While the
implementation required to properly maintain this boolkeg is complex and nuanced,

the basic framework we outlined so far encounters no sutiastabstacles.

Bounded timing windows. When evaluating the impact of a transformation, it is com-
mon to query timing at specific relative locations to the @denFor example, one can
qguery the slack of the output pin of a gate after repowerimdghe slack of an input pin

at the next circuit level after moving a gate. When possilierg points can be limited

to awindow of interesknown in advance, one can reduce the maintenance requitemen
for timing information and the update effort. This window yrize expanded slightly for

safety, and we call the resulting local regiob@unded timing window Limiting propa-

1Some static timing engines — such as IBM’s EinsTifriér— provide similar level-limiting features
that serve to circumscribe the scope of local changes; tteyna, however, integrated with any form of

73

CHANGED-DELAY

> Input: arc — > timing arc that changed
1 PROPAGATEFORWARD(arc.input)
2 PROPAGATEBACKWARD (arc.output)

PUSH-CHANGES
1 ChangeHistory.push()

CoMMIT-CHANGES

> Existing changes no longer need to be trackedpgropacATEFORWARD

1 ChangeHistory.clear() > Input: timing-point

UNDO-CHANGES 1 foreachsuccessosucc of timing-point
1 AATStack = ChangeHistory.top().AATStack 2 if UPDATE-AAT (timing-point, succ)
2 while not AATStack.empty() 3 PROPAGATE-FORWARD(succ)
3 AATStack.top()node.aat =
AATStack.top().aat
4 AATStack.pop()
5 RATStack = ChangeHistory.top().RATStack PROPAGATE-BACKWARD
6 while not RATStack.empty() o ,
7 RATStack.top().node.aat = > Input: timing-point o ‘
RATStack.top().aat 1 for_each predecessagsred 01" tzmmg—pomt
8 RATStack.pop() 2 if UPDATE-RAT (pred, timing-point)
9 ChangeHistory.pop() UPDATE-AAT 3 PROPAGATE-BACKWARD (pred)

> Input: pred, succ timing points
1 delay = COMPUTEDELAY (pred, succ)
2 if (succ.aat < pred.aat + delay)
3 ChangeHistory .top().AATStack.push(’C(succ, succ.aat))
4 succ.aat = pred.aat + delay
5 return True
6 return False

UPDATE-RAT

> Input: pred, succ timing points

delay = COMPUTE-DELAY (pred, succ)

if (pred.rat > succ.rat - delay)
ChangeHistory.top().RATStack.push(T'C(pred, pred.rat))
pred.rat = succ.rat - delay
return True

return False

OO0k WN P

Figure 4.5:0ne possible implementation of transactional timing asialy The functions
PROPAGATE-FORWARD and FRROPAGATE-BACKWARD shown here using recur-
sion for brevity are best implemented without recursion.

gation to such windows provides cost savings, as it is ontgsgary to propagate arrival
times (and/or dirty bits, in the case of lazy evaluation)ite boundaries of the window.

Likewise, in the event of a rollback, the data required taaesthe graph to its original

state is also reduced. Since immediate timing queries arareesd to be made within the

transaction management.

74

timing window, all values outside the region are considecebe fixed timing endpoints.
Bounded transactional timing analysis of an example tansdtion is illustrated by Fig-
ure 4.4.

Selecting an appropriate window size for a particular ti@msation may require some
care. The effect on timing of an optimization depends on titene of the optimization;
therefore, choosing a static window size is best done whetrdmsformation is designed
and tested. In particular, differences in slew rate cantlyredfect timing for the whole
path in ways that are difficult to predict while only considerslack [120]. For this reason,
timing analysis tools support a mode to limit slew rate pggieon to a constant number
of levels. This mode provides a convenient way to limit thepsgcof timing changes and
improves the speed of timing analysis in physical synthesis. Any window larger than
the scope of slew rate propagation can provide faster cgrefith no accuracy loss. Fur-
thermore, in the context of bounded transactional timirgysis, timing queries are only
required to decide if aretraction is necessary. Typictily effect of an optimization on the
timing of a path is known with enough accuracy to make a degit retract or not after
a signal is propagated through only a few levels of logic. Adiaonal dynamic approach
runs a small number of trial transformation applicationg samples several window sizes
to determine how much accuracy is lost for various windovesizlt then chooses the
smallest window size with tolerable error to be used on thgontg of transformation

applications.

Facilitating parallelism. Since a bounded timing window delimits the scope of a local

change, it also provides a guarantee of the mutual indepeed# disjoint timing islands.

75

This independence meets the requirements set fortdistributedstatic timing analysis
[32,33] and could, in theory, be exploited to easily decosgptiming optimization into
several parallel processes. Although we do not evaluateaparallel architecture in this
work, we emphasize that significant runtime savings coulddieed if these techniques
are integrated with other components of the design flow, thg.placement engine, the

data model, etc.

Complexity analysis. Let C denote a fanout cone affected by a given logic transfor-
mation, and ledV represent the bounded timing window used in bounded tréinsat
timing analysis for that change. In traditional increméstatic timing analysis with lazy
evaluation, all of the timing points i@ are marked dirty upon the change. If the change
is retracted, all of the timing points thare again marked dirty. Subsequent queries in the
area may need to recompute previously known timing datehfuse timing points that are
left dirty. When using bounded transactional timing anialyi€ N V| nodes are marked
dirty upon a change. If the change is retracted, no more gpaints are recomputed, but
|C N W)| timing points are copied back into the timing graph. No tighpoints are left
dirty.

We use the following notation to estimate the impact of pegabtechniques. Let
represent the depth of a fanout cahelLet L,,, denote the depth @ in the windowV.
Let B be the average branching factorand letR be the average reconvergence factor.
Then|C| is approximately B — R)L. The size of the fanout cone within the window
|C N W)| is approximately(B — R)". Therefore, the number of timing points that do

not need to be marked dirty due to bounding is approximdtBly- R)L — (B — R)Iw.

76

Nodes Expanded Runtime (seconds)
Plundo] Window Classical STA Lazy STA Classical STA Lazy STA
Size wlotr | witr | wiotr [w/tr || wiotr [w/tr wlotr [witr
[%S) 12638 | 12638 | 22905 | 22905 0.28 | 0.33 (08x) 2.09 | 2.36(0.8x)
40 12638 | 12638 | 19356 | 19356 0.32 | 0.33 (0.9%) 1.65 | 1.86(0.8x)
0% 20 10186 | 10186 | 7400 | 7400 0.25 | 0.26 (0.9%) 0.41 | 0.47(0.8x)
10 3641 3641 1967 1967 0.08 | 0.08 (1.0x) 0.1 | 0.11(0.9%)
[e%S) 346170 | 12646 | 22895 | 22605 145 | 0.32 (45.3x) 2.07 | 2.29(0.9%)
40 202821 | 12646 | 19346 | 19056 6.65 | 0.32 (20.7%) 1.69 | 1.82(0.9%)
10% 20 41251 | 10194 7380 7013 1.3 | 0.25 (5.2%) 0.41 | 0.43(0.9x)
10 5957 3649 1955 1793 0.14 | 0.07 (2.00 0.09 0.1(0.9x)
oo 1124067 | 12693 | 22888 | 21960 || 46.66 | 0.32(145.8x) 1.98 | 2.28(0.8x)
40 510642 | 12693 | 19339 | 18320 14.84 | 0.32 (46.3x) 1.63 | 1.76(0.9%)
30% 20 75128 | 10233 | 7353 | 6282 213 | 0.25 (85x) 0.39 | 0.37(1.0x)
10 8716 3649 1948 1599 0.19 | 0.07 (27x) 0.1 | 0.09(1.1x)
[e%S) 1733287 | 12693 | 22886 9939 73.11 | 0.32(228.4x) 2 | 0.67(29)
40 799207 | 12693 | 19335 | 9405 245 | 0.32 (76.5%) 1.62 | 0.63(25x)
50% 20 105003 | 10233 7351 4012 3.12 | 0.25 (12.4%) 0.41 | 0.25(1.6x)
10 11570 | 3649 | 1944 | 1085 0.26 | 0.08 (3.2x) 0.09 | 0.06(1.5x)
oo 1855924 | 12705 | 22872 | 6483 || 76.47 | 0.31(246.6x) 2.02 | 0.48(4.2x)
40 913461 | 12705 | 19321 5848 27.52 | 0.32 (86.0x) 1.65 | 0.44@3.7%)
70% 20 133800 | 10245 | 7339 | 1882 4.12 | 0.25 (16.4x) 0.4 | 0.14(s8x
10 15257 3661 1932 397 0.34 | 0.07 (48x) 0.1 | 0.03(3.3%)
[e%S) 1947548 | 12705 | 22850 5551 76.81 | 0.33(232.7x) 2.11 0.4(5.2x)
40 995711 | 12705 | 19299 | 4769 || 29.02 | 0.33 (87.9%) 1.62 | 0.36(4.5%)
90% 20 157328 | 10245 7315 1078 451 | 0.25 (18.0x) 0.4 | 0.07(5.7x)
10 17019 3661 1910 173 0.37 | 0.07 (5.2x) 0.09 | 0.02(4.5x)

Table 4.2: Empirical results of bounded transactionalgnanalysis, with and without
lazy evaluation.

The number of timing points restored upon a retraction whengubounded transactional
timing analysis is approximately3 — R)w, versus approximately3 — R) timing points

left dirty in traditional incremental static timing anailgs

4.4 Empirical Validation

In order to evaluate the computational benefits of boundetsactional timing anal-
ysis, we have implemented the aforementioned techniquesew static timing analysis
tool that supports both classical STA (i.e., the academietgthat immediately performs
propagation of modified timing values) and lazy evaluatexg (, the more popular variety
that performs propagation only on demand). For evaluatfothe former, we discount
the runtime required for initial propagation of a changetheas time is shared by “with-

transaction” and “without-transaction” runs. All incatimas of our timing engine employ

77

some form of incremental propagation.

We modified a simple timing-driven gate movement transfaionawithin a state-of-
the-art industrial physical synthesis flow to query ouristéning analyzer when deciding
whether or not to retract the change. Changes to delay vaduks timing graph of a real
65nm design were simulated and profiled to determine thémeritcurred by STA. Two
parameters were adjusted in these experiments; first, ti®pility that a delay change
is retracted P(undo)), and the size of our bounded timing window (where a sizecof
indicates the absence of this technique). Since the freayuehfinding timing-driven
placement improvements strongly depends on the circuittbedstate of optimization,
our experimental transformation uses théundo) parameter to determine if and when
to retract the change. Thus, we can v&tfundo) independently to study the impact on
runtime of any frequency of retraction.

In experiments, we exercised established physical syisthemsformations that in-
troduced changes in delay values of the timing graph. We pnefiled those changes in
an STA engine to compare several configurations of timindyarsaand measure runtime

savings. Two parameters were varied in these experiments:

e P(undo), the probability that a delay change is retracted.

e Ly, the number of levels of logic, both upstream and downstreaitihe bounded

timing window)V, where a size ofo indicates the absence of this technique.

The results of these tests are presented in Figure 4.2. Ebrsedting ofP(undo) and
Ly, we report the number of nodes expanded and runtime incbgredl solver variants.

Please note that for evaluation of classical STA, we disttm runtime required for

78

initial propagation of a change, as this time will be incdrigy “with-transaction” and
“without-transaction” runs.

We observe the following:

e Transactioning is at a slight disadvantage due to the oaerbéstate-recording. As
one would expect, benefit is observed only when retractioagparformed. The
worst overhead is about 20% and occurs when using large wisddath no chance

of undo. In practice, such a transformation should not entthhsaction histories.

e Forclassical STA, a speedup of upH x is observed. The greatest speedups occur

for the largest windows and greatest probability of undo.

e Forlazy evaluation, a speedup of upt@ x is achieved. Compared to classical STA
without transaction histories, lazy evaluation improwgstime in all configurations
that have a non-zero chance of undo. When transaction ieistare introduced to
both, the runtime improvement of lazy evaluation is redud¢edeveral cases, classi-

cal STA with transaction histories is faster than lazy STAvansaction histories.

e The use of bounded windows dramatically reduces the amdumbik, especially
when lazy evaluation is disabled. For example, runtime diaas 76.81s to 0.37s

for P(undo) = 90%.

e For all parameter settings and STA variants, when trarmadtistories are used,
higher frequencies of retraction generally lead to stromgerovements in runtime

and nodes expanded.

These results confirm that even with a moderate amount of,,uthdocomputational

79

savings can be substantial. It can also be observed thatlbduming windows (which
can be exploited independently of transaction historiespanerally effective at reducing
runtime. Indeed, best results are achieved when both taosaistories and bounding
approaches are used in concert.

While the use of lazy evaluation alone prevents a fair amotithrashing (hence its
adoption in all modern timing engines), its performance wavertheless be further im-
proved with these techniques. We expect that most physion#issis flows will realize the

combined benefits of lazy evaluation, transaction histspaad bounded timing windows.

45 Conclusions

In this chapter, we have presented the concepiooinded transactional timing anal-
ysis described our implementation, and validated it in a pradacphysical synthesis
flow.

Our work has been motivated primarily by deficiencies inistétning analysis that
result in poor runtime for several common physical syntheperations. Specifically, we
have categorized several types of physical synthesisftnanations that utilize retraction
in different ways. Then we have presented an extensiontio staing analysis to accom-
modatetransaction historiesin which a history of network delay propagations is tracked
and cached so that the state of the timing graph may be efficiestored in the event
of a retraction. This approach was further generalizedltavafor the nesting of timing
changes. Changes to the timing graph were limited by wayooihded timing analysjs
an enhancement that works in conjunction with transactitiméng analysis to allow for

the rapid exploration of circuit search space. The incraaléiming concepts presented

80

in this paper are not unique to physical synthesis; they qualy applicable to the ef-
ficient support of logic synthesis transformations, and sa@hthem may have been in
use for this purpose since the mid 90s. However, converitiogec synthesis does not
stress timing infrastructure as much as modern physicahegis does, therefore relevant
techniques were not given as much attention and, to thisrdmain poorly documented.
We conclude that as transformation-driven optimizationshysical synthesis continue to
increase in complexity, the need to efficiently accommobtgpmthetical timing queries is

likely to grow.

81

CHAPTER YV

Gate Sizing During Timing-Driven Placement

A fundamental challenge addressed by physical synthessligcing circuit delay by
altering timing-critical paths. Several techniques campglied to achieve this optimiza-
tion: buffer insertion, gate sizing, cell movement, etcthis work, we propose a powerful
new technique that moves and resizes multiple cells simedtasly to straighten critical
paths, thereby reducing delay and improving worst negafizek. Our approach offers
several key advantages over previous formulations, imetuthe accurate modeling of
objectives and constraints in the true timing model, andaautee of legality for all cell
locations, thereby avoiding overlap with large fixed blagpésiand the need for subsequent
legalization. We formulate the path smoothing problem mimteof adisjunctive timing
graph, and develop a computation of optimal locations by incaagiog a generalization
of static timing analysis into an efficient branch-and-bdfmamework. Empirically, our
approach consistently improves solution quality in a lesgale modern industrial bench-
mark. Experimental results indicate that the techniquesl urs this chapter are accurate
enough to improve the critical path optimization and sla@togram compression stages

of physical synthesis, as illustrated by Figure 5.1.

82

| Early Planning | L
1 Global Placement |

Logic Synthesis | Electrical Correction |
3 ¥ I
| Floorplanning | Legalization |

¥
Clock-network Synthesis

Critical-path Optimization

| Histogram Compression |

Timing Constraints Met?
N

| Timing-driven Net Weighting |—

Global Routing

| Detail Routing

. -y

Design for Manufacturing

Figure 5.1: The contributions in this chapter improve treutes of the critical path opti-
mization and slack-histogram compression stages of palysynthesis.

5.1 Introduction

Timing-driven placement [17,73,111] is a critical step iy @hysical synthesis flow,
and has received steadily increased attention in recems y8a Due to its computa-
tional expense and complexity, several algorithms openining objectives indirectly
by relying on edge- or net-weighting methods to cast the Iprokinto one of weighted
wirelength-driven placement. Whether such approachegragnbe considerediming-
driven— or instead, merelfiming-influenced- remains a matter of debate.

A great deal of focus has been given specifically to the caostm of cheap, in-
cremental methods for improving timing along critical math an optimized design, a
problem we loosely refer to gmth-smoothingWhether a design simply remains poorly
optimized after running existing P&R tools, or whether oeeds to close on timing after
the application of ECOs, there remains a high demand for@ffi@nd automated tech-

niques for timing-driven path smoothing.

83

Prior work on this topic has varied widely in the treatmentafdel accuracyinclud-
ing various assumptions about physical properties (eate, delay and wire delay) as well
as the set of constraints that must be enforced in the finafisol(e.g., whether the design
must be legalized, or subsequently buffered, or repowested). They also differ in the
specific computational frameworks used to achieve the opdition (e.g., a local search,
greedy algorithm, or dynamic program). These two constaera— choice of model and
choice of algorithm — are typically strongly coupled, as gipalar model often gives rise
to a specific search space or methodology.

One of the more popular approaches to incremental timingediplacement in the lit-
erature is that dinear programmindgLP) [50]. While several flavors exist, a conventional
LP formulation typically involves the association of decrsvariables with the coordi-
nate(s) of each gate or pin, and the expression of pairwisi@di dependencies between
these variables using linear constraints. Since the oglstiip between pin-to-pin wire
delay and Manhattan distance is quadratic rather thanrjitfeainaccuracy of this linear
model has been addressed in various ways. For instance,a@tdddazargan [24] con-
sider an objective function that minimizes total cell desgment to prevent cases where
large cell movement invalidates the linear model. The moti&fang et al. [122] assumes
that LP-based optimization is followed by perfect buffesartion. A piecewise-linear ap-
proximation of the quadratic function is employed by Choesghet al. [26], along with
additional constraints to capture net length and load ¢egpae using differential tim-
ing analysis. Luo et al. [69] optimize a weighted slack obyecin which Elmore delays

computed from the original placement are scaled linearlg lopefficient; to ensure that

84

gates are not displaced by extremely large distances, mavarhindividual cells is con-
strained by bounding boxes, similar to the approach takeHhlddpin et al. [40]. Most
recently, Papa et al. [83] deploy an LP formulation in latgst of refinement after strip-
ping all repeaters out from combinational logic and subsatjy re-buffering long wires
as a post-processing step.

Despite these efforts, linear programming formulatiorfeesdirom additional compli-
cations aside from their inability to capture a faithful@gemodel. Among these deficien-
cies includes the potential to create cell overlap; altiggyeral post-placement legaliza-
tion techniques have been adopted in academia and ind@5t41], there is no guarantee
that these procedures will preserve improvements madeniadgi Other solutions, in-
cluding the restriction of cell movement to geometricaligjoint bounding boxes [40,69],
severely overconstrains the problem by preventing largeparentially beneficial leaps.
Furthermore, a trend in modern ASIC designs is the presehleege fixed macros that
serve as blockages and limit the possible legal locationsfwvable logic. For such de-
signs, an accurate model should avoid solutions that plat@sgn top of fixed obstacles.
Finally, optimizing other discrete design parameters aggate sizes and placement si-
multaneously requires an approach that accounts for desisvith finitely-many alterna-
tives, since solutions produced by continuous gate-siZAgymay degrade unacceptably
when mapped to a standard cell library. Such continuowdigorete mappings present
challenges for any of the aforementioned mathematicalraroming approaches.

In this chapter, we introduce a new direction for incremgmitaing driven placement

under models with high-fidelity to an industrial static tgi analysis engine. In con-

85

trast to prior efforts that approximate timing objectivessng weighted wirelength driven
metrics (and approximate discrete decision variablegusssy, continuous models), our
approach maintains a high degree of accuracy by explicitboding placement alterna-
tives into a fully discretized graph-based representatimaitching the true timing objec-
tives as computed by an industrial static timing analysgrem Specifically, we consider
a formulation in which a finite set gfre-legalizedcandidate locations and power lev-
els are identified for each movable gate, allowing a moréfiaitand accurate encoding
of pairwise delay, as well as enabling the avoidance of léisgeel macros that serve as
blockages. This formulation gives way talesjunctive timing grapha compact structure
that captures all possible conditional timing arcs for agiproblem instance. We then
propose a means to compute optimal solutions to this model as efficient branch-and-
bound framework that considers the simultaneous placeafentitiple gates. To obtain
upper bounds on worst negative slack (WNS), we develop a sneaperformGeneral-
ized Static Timing Analys(&STA), an extension of traditional static timing analytbiat
produces optimistic slack values even when only a subsettesghave been assigned to
their respective candidates.

The remainder of this chapter is organized as follows. IntiBe&.2, we present a
brief review of static timing analysis and timing-driverapément. In Section 5.3, we
describe our problem formulation in detail, including tledestion of movable gates and
candidate assignments. In Section 5.3, we formally defia®tsjunctive Timing Graph
and describe our optimization algorithm in Section 5.4 aljnin Section 5.5, we present

experimental results of our system — nameddReT — followed by concluding thoughts.

86

5.2 Background

Timing-driven placement seeks non-overlapping locatufrike cells of a circuit such
that the worst slack in the design is maximized. This is intk@st to wirelength-driven
placement wherein the objective is to minimize total hafimeter wirelength (HPWL).

The problem thaincrementakiming-driven placement aims to solve is the following:
given an optimized design, select a subset of gtdsom & (whereM may just consist
of a single gate) and find a new location for each gat&/isuch that the worst negative

slack (WNS) in the entire subcircuit is improved:

WNS(G) = ug\l/i(%) (min(0, slack(v))) (V.1)

For tie-breaking, a total negative slack (TNS) component aiso be optimized, which is
equal to the sum of all negative slacks:
TNS(G) = Z (min(0, slack(v))) (V.2)
veV (G)

An algorithm that solves this problem is calledransformation using the terminology
of [34,112]. More generally, a transformation is any op#ation procedure designed to
incrementally improve timing while preserving the logicakrectness of a circuit. Other
examples of transformations include: buffering a single nesizing a gate, cloning a
cell, swapping equivalent pins on a gate, etc. Transfoonatare invoked in a physical
synthesis flow bycontrollers For example, a controller for critical path optimization
may attempt a transformation on the 100 most critical ceflscontroller designed for

compression may consider every cell that fails to meetrmgig constraints.

87

cx~ \ N
s =57 A Y
1 1
bE b, !
! . i [{OBSTACLE

B
v

|

¢

U

7
5
1

- =F7/

\\\"’ 7
N2
W
WV,
A\Y)

—h
N
I

Figure 5.2: Gatea andg are fixed. Alternate candidate locations for movable ghtes
d, e, andf have been determined. Gdtalso has two candidate power levels.

5.3 Problem Formulation

In formulating our problem, we require three steps to begseréd in sequence. The
first identifies the set of gate(s) that should be considesethbvement, such as the most
critical gates and their adjacent neighbors. Next, a seapnflicate assignments is com-
puted for each movable gate; if desired, these candidatesatesfy current constraints
in the physical synthesis flow, such as avoidance with olegtakeep-out regions, etc.

Finally, a timing arc is extracted for each pair of candidesignments.

Selection of movables. The task of selecting a set of movable gates is shared by many
timing-driven placement algorithms. Since our transfdararecan be enacted by any high-
level controller, we are free to assume that an external am@sin chooses individual gates
for relocation (e.g., such as all imbalanced latches [88]kexpanding the movable logic

to include additional gates, various heuristics have beepgsed that incorporate the

88

degree of neighbors’ criticality [69, 122]. We combine thiicality adjacency network
of [69] with an N-hop neighborhood, in which any gate withiv steps of the targeted
gate is included in the set of movable cells; however, wessttigat our core timing-driven
placement engine can be parametrized with any well-fornegd-gelection strategy. All

peripheral gates connected to the movable logic are celldctform a set of fixed nodes.

Selection of candidate assignments. After the set of movable gates has been de-
termined, we precompute a discrete setafdidate assignmenter each. Our method
imposes no restrictions on how these candidates are ottaia¢here are several possible
strategies ranging from simple to exotic. In the case ofguta@nt, examples include the

following:

e For a gate whose current coordinatéisy), consider the candidates:

(x + Az, y)
(xr — Az, y)
(z,y + Ay)

(x,y - Ay)

for a given(Az, Ay), in addition to the current coordinate of the gate. Such a set

corresponds to the directionp, down left, andright.

e The closesteasibleocations to each of the candidates in the above set (ispeot-

ing blockages and large fixed macros).

e Then nearest feasible locations closest to the gate’s curremtouate, for some

specified numben.

89

e A set ofm or more locations obtained by other incremental timing-driven place-

ment algorithms for single gates.

The precomputation of candidate assignments bears soeralb&sce to graph-based
approaches to buffer insertion [38]; however, it reflectsgaificant deviation from the
vast majority of existing incremental timing-driven platent approaches that assume a
continuous (and globally feasible) geometric plane. Reféfigure 5.2 for an example in
which each of five movable gatels, (C, d, e, andf) has between two and four candidates
each. The presence of a single large macro prevents caadiadations from appearing
toward the center of the subcircuit.

Although our experiments are limited to multi-move placemé is important to note
that candidate assignments need not necessarily be nevicahgsations; for instance,
cell f is shown to have two possible sizes, indicating differemididate power levels for
the gate. Similar assignments can be obtained if consgleliral threshold voltage (Y
levels [63]. As will be demonstrated later, this generaicapermits the simultaneous op-
timization of placement and other transformations, in alsinspirit to [20] but imposing

discrete (rather than continuous) valdes.

Disjunctive timing model. The final step in our problem formulation is to construct
a conditional timing arcfor each pair(/;, ;) of candidate assignments between source
and sink, which specifies the delay that would occur betweemt We refer to the arcs
between these nodes as becunditionalsince they depend on the chosen candidate(s).

Our algorithm makes no assumptions about the correlatibndss the values of these

LIn practice, a discrete set of candidate values is more @piate when working with a predefined cell
library, and discretization from continuous values is NiPaplete in general [64].

90

timing arcs, and any delay model may be used. For instantfepdrameter wirelength
(HPWL) may be used to create a linear-delay model if rebinitewill be performed as a

postprocessing step. In this case, delay is a pure functigaametric location:
delay(l;,1;) = 7 = dist(;, ;) (V.3)

wherer is atechnology dependent parameter equal to the ratio ditlag of an optimally-
buffered, arbitrarily-long wire segment to its length:

delay(wire)
= ———= V.4
length(wire) (V4)

Alternatively, if rebuffering will not occur, more elabdeaand accurate timing models
are appropriate. For instance, the Elmore delay model e quadratic function of
wirelength on 2-pin nets:

cx* dist(l;, 1;)

delay(l;, 1;) = Kp 7 dist(l;, 1;) * (;

+ Cpmj) (V.5)

The delay between gates on higher degree nets may be obimgekrying a full-blown
industrial timing engine, reconstructing Steiner treesnfrscratch [18] or via topological

repair [4], or instead by cheaper methods of estimation [9].

The disjunctive timing graph. In the previous paragraphs, we identified the three
major components in our formulation of incremental timohgven placement: selection
of movable gates, selection of candidate assignments,emetation of conditional timing
arcs. We now formally define an extension of the classicahtygraph that captures these
attributes:

Definition: A disjunctive timing graplt: is defined by a tupléV, C, E), where (as in the

traditional timing graph) each elementc V' corresponds to a logic gate in the circuit,

91

Figure 5.3: Thalisjunctive timing graptor our running example. Each timing arc be-
tween a pair of candidate assignments has a distinct vdlaeadtual arc be-
tween any two meta-nodes in a complete solution dependseocatididates
chosen.

and a pair of verticesy, v € G, are connected by a directed edde, v) € E if there is
a connection from the output of gateto the input of gate.. The additional parametér
is a mapping from any gate € V' to a set of candidate assignmefts, ..., vc, }. Each
edge has an associatednditional delay functiond(u;, v;) — R, indicating the delay
between any pair of candidatesandv;. [

The disjunctive timing graph encodes all combinations afwiae net delays, with
each vertex corresponding toreeta-nodeepresenting a set of candidates. See Figure 5.3
for an illustration corresponding to our example. In sulbseq sections, it will be useful

to refer to a solution to a disjunctive timing graph, whiclolstained simply by selecting

92

a candidate for each gate and extracting the appropriategiancs.

Definition: A solution S to a disjunctive timing grapld- is a mapping” — C(V), in
which a single candidate is selected from the domain of eat@:gin V. A solution
corresponds to a traditional timing gragh = (V’, £’), in which the verticed”’ of ¢’
correspond to the candidates selected fr@mand the weight of each edg&u,v) €
E’ is taken fromd(u;, v;), wherew,; andv; are the candidates chosen for gatesnd v
(respectively)[]

A solution S to a disjunctive timing graph is deemegdtimalwith respect to an objec-
tive functionO (e.g., worst negative slack, or delay) if the valugS) is as good or better
thanO(S’) for every other solutiort’. Observe that, in contrast to a traditional timing
graph, a simple longest path calculation through the detjue graph does not sulffice,
even if optimizing for delay; such a computation maximizes fbongest path, whereas we

instead seek to select a set of candidates such that theskquegé isminimized

5.4 Our Simultaneous Placement and Gate-Sizing Algorithm

The previous section alludes to one possible algorithmHerdptimization of a dis-
junctive timing graph: generate every possible solutiyrevaluate its cost, and return
the best solution, an approach generally referred texdmustive enumerationHow-
ever, when considering even moderately-sized problenescdmputational expense of
this brute-force procedure may be prohibitively expensiveparticular, givenV/ mov-
able gates and' candidates per gate, a total@!! solutions will be considered, with each
requiring a full pass of Static Timing Analysis to determwerst negative slack.

Of course, if strict optimality is not required, other pdskiies exist. A simple greedy

93

Generalized STA

b
b, b,
Generalized STA
‘ S
7 \ \\
yd \ >SS
C, C, Cs
Generalized STA Generi\}zed STA
Generalized STA d; d, d; d,

Generalized STA Weakened STA

N\
e e e e

GSTA €1 e, GSTA e e, e e, e,/ \
N N \
GSTA '
il GsTA
1L, H 1L H 1L 2H | 1L, H 1L H| 1L H
2L, 2 2L, 2 2 2L,

Figure 5.4:Branch-and-boundomputes an upper bound on the worst negative slack at
every node in search. Any partial solution that cannot inaprapon the best
known is pruned.

strategy could consider the movement of each gate indilhideaoosing the location that
maximizes worst slack assuming all other gates are held {negghiring the generation of
M x C' solutions). However, in many practical cases, it is impasgo improve timing by
moving only a single gate. For instance, suppose a largegjlageng driven by a relatively
weak driver, in which case neither gate can be moved a signifaistance from the other
without imposing an electrical violation. To accommodateide range of instances, our
algorithm must consider the simultaneous movement of plalgjates. In response, we

turn to the well-known algorithmic framework of branch-anolund.

94

Recursive branch-and-bound search. Branch-and-bound is a widely-studied, com-
monly used depth-first-search optimization technique.h&athan explore all possible
combinations of assignments, branch-and-bound prunemlpsolutions based on esti-
mates of the objective function calculated during searctackBacking occurs when-
ever the upper bound on the value of a partial solution is ritebthan that of the best
found. Recent work in the coupling of graph-based procedwi¢h branch-and-bound
have demonstrated runtime reductions from days to secafiid®rplanning domains [75],
although such advances have yet to be extended toward prslotetiming-driven place-
ment.

In Figure 5.4, we display a possible search tree for our nghekample that has been
pruned as aresult of bounding. The partial soluioa {(b < b,), (¢ < ¢1),(d < dy)}is
eventually extended to form a complete solution; howewezxploring the partial solution
S" = {(b « b1),(c < 1), (d < dq)}, search is aborted. By visual inspection of Figure
5.2, the distance between candidatesndd, is relatively large, and contributes to an
excessively long delay if’.

In order to make branch-and-bound effective, one must @ouslligent metrics to
guide the process of node expansion. We identify two selestirategies for the branching
schedule: thgate ordering used to determine which gates should be instantiatecestrli
in search, and theandidate orderingused to determine which partial solutions should be
attempted before others. For the former strategy, gatésathalong the critical path are
given highest priority; since it is the placement of theseegdhat has the highest impact

on worst negative slack, their assignment should not beppast. For the latter strategy,

95

d1 : x
Ci 7pS : %S fllow 2low](ihigh](2high

e 4ps 6ps Sps

o 4ps‘)2)§ 1'% %s@ ps 3ps

optimistic delay value optimistic delay value

(@) (b)

Figure 5.5: The delay functiongc, d) andd(e, f). Here we show the case where the par-
tial solutionS includes the decisiongl < d;) and(e « e;). The weakened
delay values arés(c, d) = 3 ps andig(e, f) = 2 ps.

we order candidates by determining their effect on the bmgncalculation, as described

in the next section.

Generalized static timing analysis. One question raised by the backtracking frame-
work is how to compute upper bounds on worst negative slacknwdnly a subset of
candidate assignments have been chosen. Traditionabrersf Static Timing Analysis
assume that all timing arcs have been fixed, whereas in oueklhadlisjunctive set of
choices remains until a leaf node (i.e., a fully instantiagelution) in search is encoun-
tered.

We resolve this by performing a generalized version of &tatning Analysis, which
we callGeneralized Static Timing AnalysiGSTA). In GSTA, each edge in the graph cor-
responding to a source/sink pair is replaced with the masinigtic (or least constraining)
possible timing arc. These weakened values may be safghagated through the graph
in place of any particular timing arc. Actual arrival timesguired arrival times, and slacks
are computed as is typically done in STA, using these weakeakies during propaga-

tion. More formally, the actual arrival times and requiredval times for a partial solution

96

RaTcHET(DesignD, int Iterationg
. GateGG «+— SELECTTARGETEDGATE(D)
. SetGate M «— SeLecTMovaBLES(D, G)
. Set(Gate,Loc) BestSok— CURRENTASSIGNMENTY M)
. foriter = 1,2, ... lterations
for eachu € M

SetLoc) C,, < GETCANDIDATE ASSIGNMENT 1)
for each pair of adjacent gatesv € M

for each candidate; € C,,

for each candidate; € C,

10. arcsy,»(uq, vj) < GETTIMING ARC(u;,v;)
11. Sowe(@, M, C, arcs)
12. returnBestSol

©CEONOUA®WNE

Sowve(Set(Gate,Loc) S, SetGate U, Se{SetLoc)) C, arcs)

. if (WORSTSLACKUB(S, arcs) < WorsTSLACK (BestSalarcs))
return

. If (TERmINATIONCRITERIONREACHED()) // timeout, # nodes, ...
return

f(U = ©)

BestSok— S; returr:

. 4 < CHooseMovABLE(U)

. SetGate U’ — U — {u}

. for each candidate; € C,,

10. Set(Gate,Loc) S" — S J{(u,u;)}

11. CompuTeDAG(S’, arcs)

12. Sowe(s’, U, C, arcs)

© 0O ~NOUAWNE

Figure 5.6: Pseudocode for thamR+eT algorithm.

97

S are computed by the following expressions:

AAT(v) = max (AAT(u)+ min s (g, v; V.6
() {u\e(u,v)}(() uiGC(u),vjEC(v)(S(]))) ()
RAT(u) = min (RAT(v)— min 8s(ug, v V.7
() {v|e(u,v)}(() uiEC(u),vjeC(u)(S(]))) ()

Since these weakened delay values must hold in any fullgmtistted solution, the sound-
ness of the procedure is preserved. Although the worst glstikate calculated from this
procedure may not be achievable in any complete soldtier, are guaranteed that no
extension of the partial solution can improve upon it.

If a candidate assignment for one movable gate has beenrghas®e entries in the
conditional delay function may be disregarded. For ingtaint Figure 5.5, we consider
the case when the partial solutidhincludes the decision§d < d,), (e < e;)}. Since
no extension of this particular search node will considergélection of candidai&, an
entire column of entries can be ignored, raising the optimelay of the conditional
function ds(c, d) up to 3ps from 2ps. A similar effect is observed e, f). If both
gates have been instantiated with candidate assignméetgctual timing arc between
those specific candidates may be used.

To address issues such as resource contention (i.e., wioedifferent gates attempt
to take the same location), one may check for such confliaisglsearch, backtracking
accordingly. Alternatively, such locations may be pregassed prior to search, so that
only one location appears as the candidate of any cell.

Observe that in the case that all gates have only a singledatedassignment (or,

2Interestingly, for subcircuits whose topology is that ofeet a slight variation of GSTA can provide
provably achievable upper bounds; however, due to spadtations, we omit the details in this 6-page
submission.

98

equivalently, that a single candidate has been chosen @r e@vable gate), General-
ized STA reduces to traditional STA. It should also be noteat bur branch-and-bound
technique is amnytimealgorithm, and may be interrupted prior to completion toaiit

suboptimal solution (e.g., based on a timeout limit, maximenber of nodes, etc.).

The complete flow. In Figure 5.6, we present the full pseudocode for our algorjt
named RrcHeT. After selecting the targeted gate (line 1) and its surrcagnanovable
neighbors (line 2), the current location of each gate isestanto the best known solution
(BestSol. The algorithm then repeats the remaining steps for a givember ofiterations
(line 4). Within each iteration, candidate assignmentgémh movable gate are computed
(lines 5 — 6), as well as the appropriate timing arcs for pafrsandidate assignments
between adjacent gates (lines 7 — 10). These data are pas#esl recursive function
Sowve (line 11). Upon its return (line 12), the optimized solutwitl be stored inBestSal
Function Suve is given the current partial solution of candidate assigms& gates
(9), the unassigned gates), the candidate assignmen¢s)(and the timing arcsafcs).
If branch-and-bound detects that worst slack cannot bedugglin any extension of this
node, search is aborted (lines 1 — 2). Similarly, if any oteemination criteria have been
reached (such as a timeout limit, or a maximal number of seaodes), the function
return as well (lines 3 — 4). If a leaf node in the search trexeldeen reached (line 5), the
fully instantiated solution is recorded as the best knowre(b). Otherwise, a movable
gate is selected heuristically (line 7), removed from theo$e@inassigned gates (line 8),
and each of its candidate assignments is attempted (linéd®)each location, the partial

solution is extended appropriately (line 10), and the DA&momputed to reflect the new

99

Name #gates| #mov. | #nets | initslack | init FOM
ibm-ps-01 3 1 2 -549 ps -549 ps
ibm-ps-02 4 2 3 -522 ps -801 ps
ibm-ps-03 6 3 5 -260 ps -A77 ps
ibm-ps-04 8 4 6 -758 ps | -1516 ps
ibm-ps-05 15 7 15 -943 ps | -1986 ps
ibm-ps-06 18 9 16 -411ps | -1174 ps
ibm-ps-07 19 10 17 -1171ps | -3513 ps
ibm-ps-08 21 13 18 -288 ps | -2537 ps
ibm-ps-09 34 15 33 -307 ps | -2726 ps
ibm-ps-10 58 21 57 -782ps | -1863 ps
ibm-ps-11 96 29 103 -297 ps | -2927 ps
ibm-ps-12 164 49 205 -252 ps | -2149 ps

Table 5.1: Path Smoothing Benchmarks

Exhaustive Enumeration RATCHET (B&B)

Name old slack | old FOM new slack | new FOM | cpu (s) new slack | new FOM | cpu (s)
ibm-ps-01 -549 ps -549 ps 0 ps(24.95%) O0ps 0.01 0 ps(24.95%) 0 ps 0.01
ibm-ps-02 -522 ps -801 ps || -231 ps(13.23%) -450 ps 0.03 -231 pPs(13.23%) -450 ps 0.05
ibm-ps-03 -260 ps -477 ps -25 ps(10.68%) -36 ps 0.2 -25 pS(10.68%) -36 ps 0.04
ibm-ps-04 -758 ps | -1516 ps|| -153 ps(27.50%) -307 ps 0.52 -153 ps(27.50%) -307 ps 0.03
ibm-ps-05 -943 ps | -1986 ps|| -704 ps(10.86%) -1388 ps 0.92 || -704 ps(10.86%) -1388 ps 0.05
ibm-ps-06 -411ps| -1174 ps|| -180 ps(10.50%) -571 ps 3.2 -180 ps(10.50%) -571 ps 0.08
ibm-ps-07 -1171 ps| -3513 ps || -897 ps(12.45%) -2690 ps 7.4 -897 ps(12.45%) -2690 ps 0.2
ibm-ps-08 -288 ps | -2537 ps -62 pS(10.27%) -200 ps 14 -62 PS(10.27%) -200 ps 0.43
ibm-ps-09 -307 ps | -2726 ps || -148 ps(07.23%) -870 ps 68 -148 ps(07.23%) -870 ps 0.69
ibm-ps-10 -782ps | -1863 ps|| -513 ps(12.23%) -1492 ps 129 -513 ps(12.23%) -1492 ps 0.58
ibm-ps-11 -297 ps | -2927 ps || -132 ps(07.50%) -2293 ps 290 -132 ps(07.50%) -2293 ps 1.52
ibm-ps-12 -262 ps | -2149 ps -19 ps(10.59%) -77 ps 430 -19 ps(10.59%) -77 ps 1.55

avg. -545ps | -1852ps || -255ps(13.17%) -865ps 78.61 || -255ps(13.17%) -865ps 0.44

Table 5.2: Experimental Results on a large industrial desiigh a 2.2ns clock.

assignment (line 11). The function then recurses (line b&)raturns when all candidates

have been attempted.

RatcHET IS meant to be applied in an iterative fashion; each calluplestthe location
of movable gates, and a fresh set of candidate assignmentgeaerated from this new
solution. This process continues until a maximal numbeteshtions are attempted, or a
threshold on minimal improvement cannot be met. In the ehfilevent that a solution is
found to degrade timing (for instance, if delay values fa thodel had been inaccurately

estimated), we adopt@o-no-harm philosophf83, 88] by reverting the design back to its

pre-transformation state.

100

5.5 Empirical Validation

In order to evaluate the efficacy ofaRHET, we extracted twelve subcircuits from a
large, modern 65nm industrial design that contains seweaalos, keep-out regions, and
other blockages. A summary of these subcircuits is giveralnld5.1.

Since the disjunctive nature of our problem formulationegss the expressive power
of LP formulations in previous work, we compare our full irapientation of RrcHeT
against a simple variation on the aforementioned bruteefapproach of exhaustive enu-
meration. For this set of experiments, we limit ruar&iet with a controller that selects
imbalanced latches, and vary the number of movable gatestsune scalability. For
candidate selection, we select four locations around the(effectively, the legalized po-
sitions corresponding to coordinates to the right, the &fbve, and below each movable
gate). Any duplicate locations after the legalization sxcare lumped into a single can-
didate. Exhaustive enumeration is, as expected, capalgeodticing optimal solutions,
but with a significant runtime penalty. Our branch-and-tbalgorithm is able to improve

worst negative slack and TNS on all subcircuits with comipeety negligible runtime.

5.6 Conclusions

The path smoothing problem in timing-driven placement is thrat fundamentally ad-
mits a discrete solution space, and requires a correspgmdaihodology to efficiently
perform discrete optimization. In response, we have pregp@snew direction for incre-
mental, timing-driven physical synthesis that directlytiojizes timing objectives using

accurate, high-fidelity models.aRHeT couples the graph-based techniques of static tim-

101

ing analysis with a powerful branch-and-bound strategyctueve efficient optimization
of critical paths in late stages of refinement. In contragirtor efforts that approximate
timing objectives using weighted-wirelength driven megriour approach maintains a high
degree of accuracy by explicitly encoding placement adtevas into adisjunctive timing
graph We have also developed a methodGeneralized Static Timing Analysieces-
sary to obtain upper bounds on worst negative slack (WNShvamly a subset of gates
have been assigned to their respective locations, leadiag efficient branch-and-bound

algorithm shown to improve the solution quality of largeusttial designs.

102

PART Il

Broadening the Scope of Circuit
Transformations

CHAPTER VI

Physically-Driven Logic Restructuring

In a complete physical synthesis flow, many optimizatioresagplied to critical paths
that are already optimized by a series of powerful transédions, as described in Chapter
Il. Transforms that can further improve the timing of suclhgaare invaluable for timing
closure. Finding such transformations and applying themieftly is very challenging.
To this end, we explore new techniques for logic cloning égaplication) to improve
timing closure in a physical synthesis environment.

With a buffer-aware interconnect timing model, new polymartime optimal algo-
rithms are proposed for timing-driven cloning, includingding appropriate sink parti-

tions (fan-out identification) for the original and the diepted gates, as well as optimized

103

physical locations for both gates. In particular, we présenO(m)-time optimal algo-
rithm to maximize the worst slack if the original gate is molg and arO(m log m)-time
optimal algorithm if the original gate is fixed, whereis the number of fan-outs. To the
best of our knowledge, this work is the first to consider tha&rg-driven cloning problem

under a buffer-aware interconnect delay model.

6.1 Introduction

Physical synthesis is a complex process that combines galydesign with netlist
restructuring to achieve design closure. As described ap@r |1, physical synthesis typ-
ically consists of several stages including placemengliegtion, critical-path optimiza-
tion, etc. Among these stages, the critical-path optinopadtage is particularly important.
It takes a design that is legally placed and initially optaed for timing, and restructures
critical paths by applying a multitude of different transfations, such as gate sizing,
Vi, tuning, and buffering. It is usually not difficult to improwiening early in a physical
synthesis flow. However, it is more challenging to improweitig if the circuit has been
optimized by a series of powerful transformations in a ptgissynthesis flow.

Timing closure requires a variety of netlist transformasipeach addressing certain
problematic structures. In this chapter, we design sevegdlly efficient cloning tech-
niques, also known as cell replication techniques, to im@melay along critical paths.
Cloning is not a new synthesis optimization; Brglez [60] &twdang et al. [47] use cloning
as a mechanism to reduce net-cut during partitioning, aodec gate placement has
been studied in the FPGA domain [22, 57]. Since cloning heipseducing the total

capacitance loading of a high-fanout net, many existingriegies focus on technology-

104

independent delay optimization [21, 68, 107]. A varianinahg problem that considers a
load-dependent gate delay model and zero-wire delay is kriowe NP-complete [107].
Under the same delay model, a cloning in sink-to-sourceraraie improve the timing of
a technology-mapped circuit [108]. Due to the computatiocnenplexity of the problem,
heuristics are often proposed to speed up the techniqueeVoyall of these techniques
neglect two key features of the problem: interconnect dalaythe placement of the du-
plicated gate. Thus, these models can be used in the logibhesia stage of design but
will be less applicable during the core stages of a physigathesis flow.

For modern technologies, previous cloning algorithmsangely ineffective for critical-
path optimization because they ignore wire delay, buffeand placement. This is ex-
plained in part by interconnect scaling, which has only ndgenecessitated that buffers
be inserted on nearly all global nets to overcome wire rascs [101]. Consequently,
when one wants to apply cloning to improve path delay, bafteat have been inserted
previously limit the scope of cloning for timing improventeiio make cloning effective,
one must account for buffers by considering only non-bufiaks, and re-buffering the
resulting circuit.

To the best of our knowledge, the only work which handles lwbdiming and buffer
insertion in the placement stage is BufDup [13]. Unfortehatthey consider cloning and
buffer insertion separately. In addition, BufDup uses drtgroblivious, simple:-means
based clustering algorithm to partition the fanout gatésiokes contain a timing-driven
post-processing step, but it can only be used to balanceapa&citance loading of the

two partitions and is not designed to improve timing. In cast to [13], our cloning is

105

(a) Original circuit. (b) New circuit after cloning leaving
buffering intact.

Slack =1

Slack =1

(c) New circuit after cloning consid-
ering buffering.

Figure 6.1: Example of interconnect-driven cloning. Thevat times of F; and F; are O.

The required arrival times df; andS; are 5. For simplicity, this example uses
gate delays of 0.

based on a linear-delay model [6, 79] with the knowledge lthé#ered interconnect delay
is linearly-proportional to its length (see Chapter Il)hi$ model handles simultaneous
buffering and cloning in an abstract and unified way. Adaptid such a delay model
also helps to reduce the complexity of the gate cloning bl This work reveals that
cloning with a buffer-aware linear-delay model can be aquitshed very efficiently (in
polynomial time).

Other works on simultaneous timing-driven gate placemadtlauffering are related
to this problem. RUMBLE (see Chapter Ill) uses a linear-gddaffering model and lin-
ear programming techniques to solve the timing-driverhlatied gate placement problem
considering practical constraints. Pyramids uses corntipunt geometry techniques to

efficiently solve a one gate placement problem with a sintiiday model [70]. Note that

106

the timing-driven gate placement problem is subsumed byithieg-driven gate cloning
problem, since a fixed sink partitioning reduces the clopiradlem to the gate placement
problem. Thus, the cloning problem is complicated by thedriedind sink partitions and
gate placements simultaneously.

An example of simultaneous cloning and buffering is showRigure 6.1. The arrival
times of /7 and I, are 0, and the required arrival times®f and S, are 5. Consider the
situation in Figure 6.1(a) where we consider cloning gat&here are two sinkS; and.S,
with slacks +1 and -1. The delays from fan-ifisand F; to P are 1 and 3 respectively, as
are the delays fron® to S; and.S,, including the delay of buffers and wires along the path.
If we clone P to P’ while leaving the original buffer trees intact, we may get tesult
shown in Figure 6.1(b) in whicl’ is placed very close t®&, and the slack only improves
to -0.5. Here the new location @t is restricted by the buffers that must drive bdttand
P’. However, if one restructures the buffering solution tonghiate this constraint, one can
obtain the superior solution in Figure 6.1(c) which incesaloth slacks to +1 and obtains
the physically shortest possible paths fréinand F; to S; and.S,. This example suggests
that one must consider buffering and cloning together tecéffely reduce delay.

Timing-driven buffering alone can be computationally exgige when used exces-
sively [103]. It is also difficult to use it to derive any guitze for simultaneous cloning
and buffering. To be most accurate, one should explore aBipte partitionings of sinks
for each net, find gate placements (i.e, with the technigquéhapter IIl), re-buffer with
dynamic programming, and legalize the design. The wholegqs®is too expensive for

modern designs with hundreds of thousands of nets. It mayweste the majority of its

107

runtime, because in many cases the new solution may be waasdtte old solution, and
will therefore be retracted.

Unlike the above approach, we use abstract timing modelbuaifdia theoretical guide
on top of them. In our approach, the effect of buffering is eled by a linear-delay model,
introduced in Chapter Ill. Our algorithms guarantee oplitpainder this delay model,
and can also be used as a filter to identify a group of critieékg that may benefit from
cloning. Even if our solution does not fix all timing problenmhe can still apply more
accurate gate placement techniques based on our sinkqran and re-buffer on a small
group of nets. In that way, success rate and the total twarakr-time will be improved.

The main contributions of this chapter are summarized sl

e We propose several polynomial-time optimal algorithmsdwnultaneous timing-
driven cloning and buffering under a linear-delay modelr @gorithms “see through”
buffer trees in the original circuit.

e For circuits surrounding a movable object,@fn)-time algorithm to compute the
optimal cloning that maximizes worst slack is proposed, he is the number of
fanouts.

e For circuits surrounding a fixed object, we presenfam log m)-time algorithm to

compute the optimal cloning.

For the remainder of this chapter, we assume that load-l@seihg techniques have
already been applied during logic synthesis or an earlygdesiage, and we will not
focus on the problem of reducing capacitive load. Also, énrfig should have processed

all high-fanout nets before the cloning we propose. Thertegles in this chapter are

108

designed primarily for gates driving substantial intemect delay (medium-length and
long nets).

6.2 Background and Preliminaries

We outline our problem formulation as follows.

Linear Buffered-Path Delay Model. Recall the linear-delay model introduced in
Chapter 1ll. The delay along an optimally buffered intemseat of lengthl is given
by delay(l) = 7 - [, wherer is a technology dependent constant. In generatle-
pends on the buffer library size and the input slew rate. s thapter, we refer to
7 = delay(wire) /length(wire).

Problem Formulation. The circuit for the cloning problem is a directed gragh=
(V,E), whereV = {P}U FUS,andE = (F x {P})U ({P} x S). Vertex P is the
targetgate to be duplicated; is the set offan-in gates that drive” with sizen, andS
is the set offan-outgates that” drives with sizem.! Every gateg € V is a logic gate
performing certain logic functions, such as AND, OR, XOR bat buffers or inverters,
and is associated with physical coordinat&gg), Y (g)). If there are any buffers/inverters
in the circuit that are fan-ins or fan-outs £f we will look through them to find the first
non-repeater logic gate. Each fan-out géte S, is associated with required arrival time
RAT(S;) at its input pin, and each fan-in gaté € F' is associated with arrival time
AAT(F;) at its output pin.

The location of each gate it and F' can not be changed in our problem formulation,

and we refer them afixedgates. Note that these gates may be allowed to move during

Iwithout loss of generality, we assumeandm are of the same order for simplicity of the complexity
analysis.

109

other transformations (e.g., legalization after clonibg) their locations are constrained
during cloning to simplify the analysis. It may also be thee#hat they are fixed by
designers who want to keep certain gates in specified lotgtmr in a late stage of the
design flow, one prefers minimal perturbation to the desayrstability. GateP may be
movable or fixed.

After cloning, we create a duplicated gate oy denoted byP’. Finding a location
for P’ is one objective of this work. The gragh becomess’ = (V' E’), whereV’ =
PUP UFUSpUSp,E'=(FxP)U(PxSp)U(FxP)YU(P'x Sp). InG, each
fan-in gater; is also connected to the duplicated gate but fan-out gate$' are divided
into two disjoint setsSp and Sy such thatSp U Spr = S, andSp N Spr. Sp is the set of
fan-out gates thaP drives, andSp: is the set of fan-out gates th&t drives. We refer to
the division ofS into Sp andSp: as asink partitioning andS» andSp: assink partitions
All other notations pertaining t& are valid forG'.

For each edge = (¢, ¢2) in G andG’, the Manhattan length of edges dis(e) =
| X (g1) — X(g2)| +1Y (91) — Y (g2)|, whereg, € FUPUP’, andg, € PUP'US. Recall
that all multi-pin nets will be broken into 2-pin nets withiadar-delay model. For each
edgee, edge delay i9(g1, g2) = 7 - dis(e). Each edge is also referred as a “net” where
g1 is the driver, and, is the sink.

For gatesP and P’, we denote their gate delays By(P) and D(P’), respectively.
In this chapter, we treat these gate delays as constants.islfairly accurate since we
maintain that buffering must be performed with cloning, aftér that, the load o and

P’ will remain almost the same. Gate sizing can be performearbeir after cloning if the

110

original driver is too weak or strong, which will further dool the error of this constant
gate delay model.

For a gatey in P U P, the required arrival time at the output pin @fs RAT (g) =
inléISl{RAT(SZ') — D(P, S;)}, whereS is the set of its fan-out gates. The arrival time at the
output pin ofg is AAT (g) = %g{AAT(E) + D(F;, P)} + D(g), where[' is the set of
its fan-in gates. The slack of a gatés Q(g) = RAT (g) — AAT(g).

Without loss of generality, we set gate deldy&P) and D(P’) to zero in the following
discussion to simplify the analysis. All algorithms ardl stilid as long as gate delays are
constants.

It is easy to see that the slack Bfand P’ determines the slack of the circditandG’.

For circuitG, we haveQ(G) = Q(P), and forG’, we haveQ(G’) = min{Q(P), Q(P’)}.

For each edge (net)= (g1, 92) € E'U E’, we define the slack afas

Q(e) = RAT(g2) — D(g1, 92) — AAT (). (VI.1)

Note thatQ(G’) = rereling(e) andQ(G) = reréng(e).
Cloning Problem: Given a graphG = (V, E), whereP is the target gate, RAT for all
fan-outssS;, AT for all fan-ins F;, and a linear-delay constantcreate a cloned gate’ for
P, which induces a new gragh, find Sp, Spr and locations of”” and P (if P is movable)
such that)(G’) is maximized.

In contrast to most previous work which only identifies thetipans Sp and Sy, our
algorithms will not only provide a partitioning of fan-outsut also the placement éfand

P'[68,107]. If the solution is worse than the original circuit cloning will be performed.

111

6.3 Fast Timing-Driven Gate Cloning

In this section, we present our algorithms for the cases &/Ras movable and is

fixed. We start with several new concepts.

Best Region and Best Arrival Arc Segment.Recall that the set of fan-in gatésis
connected to both the original gattand the duplicate gatE’ after cloning. The set of
fan-out gates is splitinto two disjoint sets (partitions)» andSp: such thats = SpUSp:.

Treat the whole circuitimage as a 2D plaHe For each fan-in gaté; in F', the arrival
time at any poinv in H is AAT(F;) + D(F;,v), andD(F;,v) = 7 -dis(F;,v). Therefore,

if we place a gate at with the fan-in setf’, according to static timing analysis
AAT (v) = I}la%({AAT(E) + D(F;,v)}.
i€

Clearly, AAT (v) is a 2D function, parametrized by the locatienDefine the set of points

minimizing AAT (v) on the planed as

K(F) = {a € H|AAT(a) < AAT(v)}.

YveH
So K(F) is the set of points which have minimum arrival time for alhfms. In the
following, we will show thatK (F') is either a single point or a line segment with®
slope. Refer to Figure 6.2 and 6.3 for example&q@f').
If there is only a single fan-irf, it is obvious thatK (F') is the same point as the

location of F' itself, with AAT (K (F')) = AAT(F). If there are two fan-ing", and F,

112

AT(F) =1

AT(K(F))=5

Figure 6.2: An example d@drrival time arcK(F). dis(F1, K(F)) = 4, dis(Fy, K(F)) = 2,

T=1.

then there are three cases,

(

{a c H|AAT(F1) + D(Fl, CI,) = AAT(FQ) + D(FQ, CI,)},

Uy, if AAT(Fl) > AAT(FQ) + D(Fl, 172)7

vy, if AAT(Fy) > AAT(F)) + D(F, F);
Here vy, refers to the location of fan-in gatg. In the first case, where the difference
between the arrival time & andF; is smaller tharD(F}, F;), K (F') is aManhattan Ar¢
which is a segment with slop&° or —45° in the bounding box o and F». This slope
will always be45° or —45° as long as technology dependent coefficiemnd a constant.
Note that when/; and F, are either horizontally or vertically alignedk (F') is a point,
which is a degenerate case d¥ianhattan Arc For the other two cases, where one of the
arrival times dominates the othét,(F') is at the location of one of the fan-in gates.
Denote the set of points minimizingAT'(v) for fan-insFy, ..., F; by K(F;). If we
have more than two fan-ins, we will first forfi (/5) for F; and 5, and then merg& (F3)
with F3 to getK (F3). K(F3) will be anotheManhattan Arcor a single point, depending

on the relationship amond AT (K (Fy)), AAT(F3), anddis(K (Fy), F3) which is the

113

shortest Manhattan distance betwdgrand K (F;). Repeating this procedure for all fan-
ins, we can find the finalk((F"). This bottom-up merging process is very similar to the
Deferred-Merge Embedding (DME) algorithm in clock tree sioaction [19] though the
goal there is to get a zero skew arc. With a similar procedutied one shown in [19], it is
not hard to prove thak'(F') is always aManhattan Arcor a single point, and our merging
process guarantees thidt ') will have minimum arrival time for all fan-ins.

In the rest of this chapter, we denote thival time arcby K (F') (a point can be
considered a degenerate case of an arc), and the arrivabtirttés arc asA AT (K (F))).
An example ofK (F') for two fan-ins is shown in Figure 6.2.

Similarly, we can findx'(.S), the set of points maximizing AT'(v) on the plangd, for
the set of fan-outs. We denote theequired arrival time arcby K (.S) and the required
arrival time on this arc bR AT'(K(.5)). Refer to Figure 6.3 for an illustration &f (.S) in
an example. With a procedure similar to that in [19], it isyesprove that computation
of K(F')andK (5) takesO(m) time assumingn andn are of the same order. Also, given
any order of fan-ins and fan-outs, denote déineval time arcfor the set of gates, ..., F;
by K (F;), and therequired arrival time arcfor the set of gates’, ..., S; by K(S;). We
can compute all values df (F;) and K (.5;) in O(m) time with dynamic programming by
incrementally updating and storing all arcs. Therefore,amortized cost for computing
each K (F;) and K(9S;) is constant. We introduce the following lemma to be used in

Section 6.3.

Lemma VI.1 It takesO(m) time to computes (F), K(S), and all values of<(F;) and

K (S;). The amortized cost of computing ea€liF;) and K (S;) is O(1).

114

The next lemma states that for any point in the plane, itsartime (required arrival
time) can also be represented by the arrival tim& af') (K (5)) and the shortest Manhat-
tan distance between the point alidF") (K(.S)). The proof is straightforward, it is based
on the merging process and the fact that computation ofedriivme (or required arrival

time) is amax (min) operation.

Lemma VI.2 Forany pointv in the planeH , AAT (v) = AAT (K (F))+7-dis(K(F),v),

andRAT (v) = RAT(K(S5)) — 7 - dis(K(S5),v).

Now we will introduce the concept &est RegionDefineZ(F, S) as a region formed

by K(F)andK(S),

Z(F,8) = {v € H|dis(v, K(F)) + dis(v, K(S)) = dis(K (F), K(5))},

wheredis(v, K(F)), dis(v, K(5)) anddis(K(F), K(S)) are the shortest distances be-
tween a point oManhattan Arcand another point oManhattan Arc When K (F') and
K(S) are both single points, thefi(F, .S) is the rectangle bounding box formed by the
two points. Other examples of the regigiiF’, S) for different shapes ok (F') and K(S)
are shown in Figure 6.3.

It is easy to show that for any pointoutside regior?, it will have dis(v, K(F)) +
dis(v, K(S)) > dis(K(F), K(S)), and no point exists it¥ with dis(v, K (F))+dis(v, K(5)) <

dis(K(F), K(5)). Also, all points in regior¥Z will have the same slack

Q(Z(F,S)) = RAT(K(F))— AAT(K(S)) — - dis(K (F), K(S)).

The following theorem states the slack optimality of theoadZ (F, S).

115

“(3) K(S)

7 B(F,S) B(F,S)

~ ~
K(F)
B(F,S) K(F) K(F) K(S)

(@) (b) (c)

Figure 6.3: Examples of the regidh (a) BothK'(F') and K (.S) are—45° line segments;
(b) K(F')is a45° line segment and (S) is a—45° line segment; (c)< () is
a45° line segment and(S) is a single point.

Theorem VI.1 Given the location of fan-in gateg, fan-out gatesS, if the gateP is
placed inside a regio (F', S) formed with the above process, it achieves the maximum

slack.

Proof: If P islocated outside of regiofd with a bigger slack, then based on Lemma

VI.2 we have

Q(P) = RAT(P)— AAT(P)
= RAT(K(S)) — AAT(K(F)) — 7 - (dis(K(F),v) + dis(K(S),v))
< RAT(K(S)) — AAT(K(F)) — 7 - dis(K(F), K(S))

< Q(Z(F,5)),

which contradicts the assumption. []
We refer to regiorn” as theBest Regiorsince it gives the region with the best slack.

We also refer to the above procedure to fididas END-BESTREGION. The runtime

complexity of END-BESTREGION is O(m) since the only cost is to computé(F') and

K(S).

116

Theorem VI.2 FIND-BEST-REGION finds Best Regio& in O(m) time for a net withn

fan-outs.

Now we introduce the concept 8est Arrival Time Arc We defineBest Arrival Time
Arc B(F,S) as the intersection oK (F') and Z(F, S). B(F,S) is part of K(F'), while
the detailed shape is decided By /') and K (S). In examples illustrated in Figure 6.3,
B(F,S)is K(F') in Figure 6.3 (a), a single point in Figure 6.3 (b), and a phgegment
of K(F') in Figure 6.3 (c). From Theorem VI.1, we know that every poin3(F, S) still
achieves the maximum slack. Define the slack{i#", S) as@Q(B(F, S)), and we have
Q(B(F,S)) = Q(Z(F,S)). In next section, the concept &f(F, S) is used to design our
algorithm.

The case of movable original gateln this section, we present the algorithm for the
case when the original gate is movable. The main idea is to limit the solution search
space td< (F'), and then findBest Arrival Time Ard3(F, Sp) andB(F, Sp:) efficiently by
dividing the plane into six regions (Figure 6.4) and using dimique properties of fan-out
slack of each region to find the best locationgoénd P'.

WhenP is movable, we are free to place bathand P’. From Section 6.3, given a par-
titioning S andSp/, we can simply placé and P’ on the best arrival time arB(F', Sp)
andB(F, Sp/) to achieve the optimal solution. The goal is to find the pariihg, S and
Spr, which gives best slack among all possible partitioningswelver, without knowing
the partitioningsB(F, Sp) and B(F, Sp/) are not apparent.

An important observation is that both arcs must coincidé kit /'), which is known.

Therefore, rather than trying all partitionings, we wilhiit our solution search space for

117

both P and P’ to K (F'), which enables efficient algorithms. This is the key obstoma
used to derive the partitioning and computatiorbeét arrival time arcs By limiting P

andP’ on K(F), we haveAAT (P) = AAT(P') = AAT(K(F)).

Lemma VI.3 If arrival time arc K'(F') is a single point, no cloning is needed.

Proof: If K(F) is a single point, the®(F, Sp) = B(F, Sp:) is a single point. One
can placeP at B(F, Sp) and achieve the maximum worst slack without cloning. m
As stated in Section 6.1, we assume that the capacitive lbtdk@ate is reasonable

and no capacitance-based cloning is needed.

o B [Fan-ins
HSD Ha ' M g Fan-outs
m He m
H
Ha K(F))

H, H> Hs
|

Figure 6.4: The region division for trerival time arc K (F).

Now we discuss the case whéf(F') is a Manhattan Arc Since bothP and P’ are
movable, we usé as an example in the following discussion. Without loss afegality,
we assumex (F') is a45° line segment (analysis for the45° case is similar), as shown
in the Figure 6.4. Denote the lower-left and upper-rightpmdt of K (F') asi and j,
respectively. The plané is divided into six regions,, H,, Hs, H,, Hs, and Hg, based
oni andj as shown in Figure 6.4. Note that some fan-ins may be locattside region

Hg as shown in Figure 6.4 since the arrival time of all fan-inegatould be different.

118

One can also refer Figure 6.2 as an example. For any fan-oeitSgan each region, we
analyze the relation between the slack of the edge ¢net) P, S;) and the location of?
on K (F). Note thatQ(e) is purely determined bR AT (S;) — D(P, S;) sinceAAT (P) =
AAT(K(F)).

Figure 6.5 shows the typical curves of edge slack vs. logaifad” on K (F) for each
region. The horizontal coordinate is the distance alonditteesegment from point to
point j. For example, if a fan-out is located in regiéfi, then whenP is located at,
we will get the maximum slack for this net, and whenis located atj, we will get the
minimum slack for this net. When a fan-out is locatedds then whenP is located from
i to a certain point ori (F"), the slack will stay constant, and begins to decrease vthen

moves towardg.

k H H

Slack
Slack
Slack

v
v
v

—
[S—
—

H. Hs Hs
/ /7 \\

j i j i j

Slack
Slack
Slack

4
Y
4

Figure 6.5: The slack vd< (F') curves for each region.

If we intersect all slack curves in the s&t (Sp/), a minimum slack curve can be gen-

erated by taking the minimum slack among all slack curveg&mh point o< (F'). The

119

segment with maximum slack on this new curve will be the bleskswe can achieve for
this set of fan-outs. This segment is either a level segmeatsingle point, as illustrated
in Figure 6.6. Let us refer to this segment as Best Slack Segmenifhen the corre-
sponding segment for thgest Slack Segmeoh K (F') is B(F, Sp) (B(F, Sp:)). Clearly,
we seek the partitioning with the great@&sst Slack Segmerand if we find it, theBest
Slack SegmenB(F, Sp) andB(F, Sp:) are also determined. Two examplesBefst Slack

Segmentare illustrated in Figure 6.6.

A | A

Best-slack

segment Best-slack

segment

Slack

I
I
I
I
I
I

I

I

}
X |
ol
o | |
5|
I

»

»
»

i B(F.S) | i BFSe)

Figure 6.6: Examples of Best Slack Segment.

We have now two cases, hamely, whether or not there are fenroregionHs.

The case when there are no fan-outs in regioii/s. Consider Figure 6.5. By putting
all fan-out gates front/; and H, in one set (say'p), and all fan-out gates from; and
H, in another set (sayp/), the Best Slack Segmefdr each set is the maximized since
it avoids potential intersection (i.e. fan-outs fraly and Hs). In that caseB(F, Sp)
is a line segment otk (F') starting fromi, and B(F, Sp/) is a line segment ok ()
starting fromj. Fan-out gates fromi/; can be put in either set and do not affect the results
since for every point in regioi/;, the distances to all locations dti(') are equal. This

partitioning is one of the best partitionings and achietestest slack.

Lemma V1.4 If both P and P’ are movable, and no fan-out gates are located in the region

120

Hg, the cloning problem can be solved optimally(rm) time.

Proof: If we put all fan-out gates froni/; and H in Sp, all fan-out gates froni;
andH, in Sp., and all fan-out gates frorf5 in either set, we have an optimal partitioning.
One of the optimal placement solutions plag¢eati and P’ atj. The time complexity is
O(m), which is the time of computing’(#"). The case when the slope &f(F') is —45°
can be proved similarly. [|

From Lemma VI.4, it follows that

Lemma VI.5 If P is movable, and no fan-out gates are located in regifyu H; U H,
(or Hg U H3 U Hy), no clone is needed and optimal slack can be achieved byngldtat
j (ori).

Now we present the general algorithm.

The case when there are fan-outs in regiort{s. A slack curve as shown in Figure
6.5 for any region,, H,, Hs, H,, H5 and Hg can be regarded as a trapezoid-like curve
(referred to as trapezoids for notational conveniencedfenit) or a degenerate case (e.g.,
a line segment) of a trapezoid. Consider a graph contaiauk €urves corresponding
to all fan-out gates. In the following, a side of a trapezoitl be called a line segment.
The slope of any such line segment is on@4fr or —7. A 0° line segment in a trapezoid
is called a level segment. In the degenerate case wheredtie @lirve is a single line
segment, the level segment is defined as the end point witinmiax slack.

In all trapezoids, we first find the rightmostslope line segment and the leftmest-
slope line segment. For example, the left (right) side ofdbiedt; (¢2) in Figure 6.7(a)

shows the rightmost-slope (leftmost—7-slope line segment). The line segment of a

121

trapezoid is rightmost (leftmost) if no line segment of thaps is to the right (left) of the

line segment. The leftmost and rightmost line segments edondnd in linear time.

A A

Slack
Slack

(b) (©)

Figure 6.7: Examples of slack curves versus locations: riagxample that needs gate
duplication; (b) an example in which the rightmost and lefsinsegments do
not intersect; (c) an example that does not need gate dtiphca

First note that any point in a slack curve for fansitefers to the net slac(P, S;)
when placingP alongi, j as defined in Figure 6.4. Given a single slack cugveéhe best
slack it can achieve is the slack corresponding to the lagghent. To achieve it, one can
place the gate anywhere along that level segment.

Case 1:When the rightmost-slope line segment and the leftmest-slope line seg-
ment do not intersect, as shown in Figure 6.7(b), the lowesl lsegment of all trapezoids,
which is theBest Slack Segmeretermine the maximum worst slack and no gate dupli-
cation is needed. Note that in this case, pure line segmemnégionsH,, H,, H; and H,
are considered as well, since they are degenerate casepetoids. One can just place
P anywhere on that level segment and this achieves the bekt sla

Case 2:When the rightmost-slope line segment and the leftmasslope line seg-
ment intersect, first find the trapezoids that these two legrents belong to. Without

loss of generality, the identified trapezoids areaandi,, respectively, in Figure 6.7(a).

122

We compute the intersections of all other trapezoids witandt,, and put them into the
setsSp andSp formed byt; andt,, respectively. All other trapezoids can be divided into
three groups.

Group A: For any trapezoid intersecting neithigrnor t,, called azero-intersecting
trapezoid we arbitrarily assign it to a set. The zero-intersectirgpérzoids will not im-
pact the worst slack. Note that if all trapezoids other thaandt, are zero-intersecting
trapezoids, the lowest level segment in each @ndt, is theBest Slack Segmeint each
set.

Group B:For any trapezoid intersecting only onetptindi,, called aone-intersecting
trapezoid we can always assign it to the opposite set (formed by treedegment not
intersecting with it). For example, the trapezojdn Figure 6.7(a) only intersects and it
is assigned t&'» formed byt,. The one-intersecting trapezoids will not impact the worst
slack as long as they are assigned appropriately. Notefthhttiapezoids other thah
andt, are one-intersecting trapezoids, the lowest level segmegdch oft; andt, is the
Best Slack Segmeat each set.

Group C: For any trapezoid intersecting both fandt,, called atwo-intersecting
trapezoid we have two intersecting points. A two-intersecting trapeé will be assigned
to the set containing the higher intersecting point. Fongxe, botht, andt; are assigned
to the Sp formed byt;. One then needs to find the two-intersecting trapezoid witlebt
level segment, such ds in Figure 6.7(a). Subsequently, the lowest level segmeti,in
t, andt, determines thdest Slack Segmentn Figure 6.7(a), thdBest Slack Segment

for P isint,. This means thaP can be anywhere betweenb and P’ can be anywhere

123

between, d. For the partitioning of the set of fan-out gatgsP will connect toS» which
contains all the trapezoids assignedsSte determined byt;, and P’ will connect toSp
which contains all the trapezoids assignedto determined by,. Note that the lowest
level segment of a two-intersecting trapezoid can be lotan the intersection af and
t9, See, e.g45 in Figure 6.7(c). However, it will not impact our algorithihis just means
that one cannot improve the slack by gate duplication sineewvorst slack is determined
by the level segment df.

The algorithm is optimal since the above two cases coveradsiple situations and
in each situation, it is easy to see that the optimal solus@omputed. In the algorithm,
one needs to first compute the rightmostlope and the leftmostr-slope line segment.
If they do not intersect, the slack is determined by the lolseel segment. Otherwise,
for each of the remainingn — 2 trapezoids, compute its intersections witrandt,. As-
sign the trapezoids to partitions accordingly based om tireups. For a two-intersecting
trapezoid, one also needs to record its higher intersepoant. Next, find the trapezoid
with lowest higher intersecting point (e.d,, in Figure 6.7(a)), which takes linear time.
One can then immediately find the maximum possible worskdlae circuit can achieve
by comparing it with the level segment of and¢,. The above algorithm runs in linear

time.

Theorem VI.3 The optimal cloning can be computed(rim) time if the original gate is

movable.

Pseudo-code of the algorithm appears in Figure 6.8.

The case of fixed original gate.When the original gaté is fixed, the algorithm in

124

CLONING-MOVABLE

> Input: Graph@
> Output: Location ofp and P/, Sp and Sy
Find arrival time ard< (F') given the set of fan-in gates
if K(F)isapoint
Move P to K (F') andreturn
Divide the placement region ki () into 6 regions
if noS; in Hy
ComputeSp, Sp, P, P" according to Lemma VI.4eturn
Put all slack curves into a single graph
Find the rightmost-slope and leftmost7-slope line segment and trapezoids
if they do not intersect
10 Slack is determined by the lower level segment
11 else
12 Compute intersections between remaining trapezoids
with the above trapezoids and assign then§tcand S},
accordingly. Compute and P’ as above.
13 return the location ofp and P/, Sp and S},

O©CoO~NO UL, WNPF

Figure 6.8: Our simultaneous cloning and placement algorithm for a rolevgate.

Figure 6.8 does not work since we can not expgedo be placed on tharrival time arc
K(F). Let us assume all fan-outs thare sorted in a non-increasing orderfol7(.S;) —

D(P,S)).

Lemma VI.6 There are at most: uniqueQ(P) values ifP is fixed.

Proof: SinceP is fixed, AAT(P) and D(P, S;) are constant. Then for all possible
partitionings () (P) can only be one of the values amaR@lT'(S,) —D(P, S;)—AAT(P),
RAT(Sy) — D(P,Sy) — AAT(P), ..., RAT(S,,) — D(P, S,,) — AAT(P). u

The above lemma states that if fan-djtis in Sp, then we can put all fan-outs;,
wherej < i into Sp, andQ(P) does not change. With Lemma V1.6, we can start with
putting.S; in S(P), while putting all other gates if(P’), and get the worst slack ¢f(P)

andQ(P"). If Q(P") > Q(P), we can stop since we have found the possible best slack. If

125

CLONING-FIXED

> Input: Graphg, Original Slack@,;
> Output: Location ofP’, Sp and.S),

1 SORT § in non-increasing order ARAT(S,) — D(P, S;)

2 for;=1tom-1

3 Sp={S5;...5},5,=8—S5p

4 Call AND-BESTREGION to get the location of”’
Compute@(P) and Q(P’)

5 if Q(P') > Q(P)

6 break

7 Compare the solution withy,,; and
return the location ofP’, Sp and .S},

Figure 6.9: Our simultaneous cloning and placement algorithm for a foate.

not, we can puts; andS, in S(P), which will decrease&)(P), but may increasé€)(F’).
Again, if Q(P") > Q(P), this will be the best possible slack since further addgitm
S(P) can only decreas@(P). The pseudo-code of the algorithm is shown in Figure 6.9.
The sorting ofS takesO(m log m) time. After S is sorted, we can compute &l(Sp)
for all possiblem cases irD(m) time based on Lemma VI.1. EachN®-BEST-REGION
then takeg) (1) time sinceAAT (K (F)) is a constant an& (Sp/) has been precomputed.
The total complexity i) (m logm).
An interesting corollary is that one solution to this prablevolves disconnecting all
sinks from P and letting the cloned gate’ drive all fan-outs, then placing’ optimally.
If permissible, this case is similar to RUMBLE (see Chapltgr &and we can compare the
solution with the above results and choose the best oneasligthindesirable behavior, we

can constrain the solution to include at least one sink drineP.

Theorem VI.4 The optimal cloning can be computed@im log m) time if the original

gate is fixed.

126

6.4 Empirical Validation

To show the effectiveness of cloning and compare it to otipéinozations, we first
create 100 testcases at the 45nm process node. We randesatydtcircuits with different
fan-ins and fan-outs and placed them in a region with the Bimgrbox size ranging from
1mm to 15 mm. The number of fan-ins range from two to four, &ediumber of fan-outs
range from two to eight. We choose 16 buffers and inverterthi® buffer insertion.

We implemented four different optimizations includingmilog as follows, to show the

benefit of our techniques. They are

e Buffering: Timing-driven buffer insertion [67]. This optization is treated as the

baseline to which all other optimizations are compared.
e RUMBLE: Moving the original gate and rebuffering as desedbn Chapter IIl.
e Clonel: Our cloning algorithm when the original gate is fixed

e Clone2: Our cloning algorithm when both the original and lcigted gates can be

moved.

Before the optimizations RUMBLE, Clonel, and Clone2, weaslsvperform buffer
insertion to fix slew rate violations and begin with reasdedimning. The results are also
compared to buffer insertion results (which means Buffgisithe baseline). This is to
guarantee that any improvement we see from our techniquigeiso cloning instead of
merely buffering the original net. In addition, we also use RUMBLE algorithm inside
our cloning algorithms to determine the best gate locatiter @ partitioning is fixed.

For each partition, we will perform RUMBLE to find the gate &ion and slack, and then

127

choose the best solution for all partitions derived fromalgorithm. Note that this is only
for comparison purposes, and one can apply our algorithtridifsd the best partitioning
and only apply the RUMBLE algorithm once.

All algorithms including buffering and RUMBLE are implented in C++ and tested
on an AMD Opteron computer with 2.8GHz CPU and adequate mer&or cloning, we
apply all optimization steps, including ripping up buffeeés for the circuits, duplicating
and placing the gates, re-buffering and legalization. ROMBLE, we also rip up buffer
trees and place the original gate in the new location. We nsedustrial static timing
analysis (STA) engine for timing analysis. For rebufferimge implement the buffering
algorithm in [67] to get the best timing-area trade-off, &nel buffer tree is constructed to
be placement-congestion aware.

To clearly illustrate the impact of each optimization, wetfichoose one circuit and
show its layout after each optimization from Figure 6.1@@3igure 6.10(d), where Figure
6.10(a) shows the original circuit without buffering. Theahhattan distance betweéh
and.S, is 13 mm. The timing information after each optimizationalthm is shown in
Table 6.1. It clearly shows the benefit of the Buffering, RUMB Clonel and Clone2
approaches. Clone2 gives the best results in terms of wladt and total negative slack.
Clonel is still better than RUMBLE and achieves the same tgbask as Clone2, but can
not do better forS;. RUMBLE achieves better slack than pure buffering by plgdime
original gate in the middle, however, it sacrifices the slaick; for S,. Note that the slack
of S; and .S, are not exactly the same for RUMBLE and Clone2. This is exgldiby

slew rate differences; the buffering topology chosen byplagement congestion aware

128

buffer-tree algorithm considers placement density, as agelhe order of buffer insertion

for all the nets which results in asymmetric timing consttsi

| Optimization | Slack atS; (ns) | Slack atS; (ns) |
Buffering (Figure 6.10(b)) -2.855 -2.206
RUMBLE (Figure 6.10(c)) -2.410 -2.403
Clonel (Figure 6.10(d)) -1.606 -2.076
Clone2 (Figure 6.10(e)) -1.606 -1.590

Table 6.1: Experimental results comparing cloning to othy@imization techniques for
the circuit shown in Figure 6.10.

For the rest of the circuits, we list the top 10 circuits witle best improvement due to
cloning with detailed information. The results are showmable 6.2. For all experiments,
we present worst slack (WSLK) improvement over “Bufferingptal negative slack (TNS,
the sum of all negative paths) improvement over “Bufferiniyial area and wirelength,
where Buffering serves as the baseline. The area includaxitinal fan-in gates, fan-out
gates, cloned gate and buffering area. We also list the suynmesults of all 100 circuits
in Table 6.2 by averaging all metrics. The runtime for alt¢ases is less than 5 seconds,
including all static timing analysis, buffer insertioméiar programming inside RUMBLE,
I/O processing and model build time.

The table clearly shows the same trend as shown in Figure 6rilerms of worst
slack, Clonel and Clone2 are better than RUMBLE, which itebétan buffering. Clone2
gives the best timing results in general, although with tbst ©of area and wirelength
increase. We also notice that for all cases, Clonel and €lbnéh achieve better TNS
improvement than buffering. Note that our algorithms matyget the best TNS, especially
Clonel, which does not entail movement of the original gakle summary data show that

Clone2 and Clonel still outperform RUMBLE and buffering areieage.

129

6.5 Extensions

Our algorithms naturally accommodate several additiobgdaiives that we briefly
summarize in this section.

Wirelength optimization. Note that in our formulation, we do not directly consider
wirelength. However, our approach can be extended to censittelength while not
sacrificing slack. For example, in the case where both gagesiavable and no gates are
placed in regiont;, after we determine the partitioning, and pitat: and P’ at j, we
can still find the best regio# which is bounded by andSy for P (similarly for P’ with
aregion bounded byandSp/). When regior? is not a single point, it may be possible to
find a solution with same slack but better wirelength. Weflyrisummarize the) (m?)-
time algorithm as follows. Consider the Hanan giiccomposed of the coordinates of all
fan-ins and fanouts of some gafte Each rectangular region éf will have some distinct
function of wirelength in terms of the location éf. Begin by finding the slack-optimal
regionZ for the gateP. Then iterate over all region8 of H and compute the minimum
wirelength value for locations i® N Z. Skip this region ifR N Z = (). Record the best
wirelength for each regio® of H, then choose the best wirelength solution among all
recorded. Because this coordinate is withinit is guaranteed to have the optimal slack,
and because we exhaustively searcHedt is guaranteed to have the best wirelength of all
locations withinZ. Note that the wirelength optimal region may be containetthiwiz,
in which case the wirelength optimal solution is also slapkiroal. This algorithm runs
in O(m?)-time because there af¥m?) rectangular regions withii/ and evaluating each

region require$)(m) time for the wirelength calculation.

130

A wirelength-suboptimal Clone2 example is shown in Figu@). It has the same
slack and TNS as Figure 6.10(e), however, Figure 6.10(ajlglshows smaller wirelength
(and fewer buffers), and it can be proved that the locatio®ah Figure 6.10(e) is a
wirelength optimal solution.

TNS Optimization. Though our algorithms can improve the TNS objective (seeaEqu
tion V.2) by improving worst slack, our algorithms do notetitly optimize the TNS ob-
jective. It can, for example, hurt TNS by reducing slack oo waths, while seeking to
improve the slack on a third worst-slack path. In the latges$eof the flow, this may be
unacceptable, and we may wish not to harm TNS, or to diregiymoze TNS or the num-
ber of negative paths. When both gates are movable and thecefan-out in regiori/,
it is easy to prove that our solution gives the best solutioterms of TNS. When there
are gates in regioflg, one can tune the algorithm.ONING-MOVABLE to be TNS aware.
When we assign trapezoids, even if it does not change waist,slve can assign based on
its own slack and achieve better TNS. Finally, we can prekianh to the TNS objective
by incorporating it into the acceptance criteria for anynahg solution.

Placement Blockages.When there are placement blockages in the design, such as
IP, macros, or high-gate-density regions, one may not be t@abplace gates in optimal
locations. Our algorithms can be extended to handle blekag follows. When the
best region” is not a single point, and not completely blocked by placdrbéotkages,
we placeP (or P’) in the region insideZ with free space and still achieve the optimal
slack. If Z is completely blocked, thefR is placed at the legal location with the minimum

Manhattan distance to the regian

131

6.6 Conclusions

This chapter revisits timing-driven cloning under a lin@aterconnect-delay model
that accounts for buffering during physical synthesis. \Wesent several highly efficient
algorithms for timing-driven cloning to optimize the wossack of a circuit. The primary
contribution of this work is an optimal method for simultanely determining which sinks
will be driven by the which copy of a gate, as well as the lawagiof a gate and its replica
under the given delay model. We also describe several aatento the algorithm for
accommodating additional objectives. Our empirical rsstémonstrate improved circuit

performance as a result of increased optimization scope.

132

Figure 6.10:

40045 » 40047 tracks

05 1

- h

P

] \‘rz

R —)
(a) Original circuit. (b) New circuit after buffer

insertion.

- " B TR

=] Buffer

asa— FI =~ Fl *

. o so02e P

...... F, 10008

- SL s e "'i.t—*—“szm.. g s s g g 3

(c) New circuit after gate re- (d) New circuit after cloning

placing and buffer insertion and replacing new gate only

(RUMBLE, see Chapter III). (Clonel).

40045 % 40047 trocks

0050 ‘s0e50—
S, Sj
o045~ asor—
poe F v F ~
| ' P oo
o]
o s
- .|
- o
P
o F, -
-) -
So P,
wosf Sp [s |
(o e s s s S e e e S S S R SR 1
s i b ke mks s sm ke ote e s

(e) New circuit after cloning (f) New circuit after Clone2
and replacing both gates with wirelength-suboptimal
(Clone2). solution.

Examples of different optimizations, inchglibuffering, RUMBLE and
cloning. F; and F, are fan-ins with same arrival time arf§ and S, are

fan-outs with same required arrival timg.is the original gate, an#”’ is the

new duplicated gate.

133

Ckt Transforms WSk (ns) NS (ns) Area | WL
Improvement| Improvement

Buffering 0 0 1158 | 181960

1 RUMBLE 1.548 3.630 609 | 117637
Clonel 1.553 3.645 799 | 117632

Clone2 1.581 3.747 601 | 141977
Buffering 0 0 1110 | 166546

5 RUMBLE 1.111 2.895 859 | 162461
Clonel 1.175 3.091 889 | 162419
Clone2 1.542 4.660 1026 | 164254
Buffering 0 0 942 | 142242
3 RUMBLE 0.956 1.859 722 | 131794
Clonel 1.030 2.298 850 | 145908

Clone2 1.073 2.611 765 | 135896
Buffering 0 0 709 | 95520

4 RUMBLE 1.050 1.113 636 | 88441
Clonel 1.022 1.092 636 | 88441

Clone2 1.050 1.113 636 | 88441
Buffering 0 0 1758 | 253393

5 RUMBLE 0.839 6.128 1120 | 194261
Clonel 0.814 6.262 1109 | 194260

Clone2 1.028 5.413 1410 | 241818
Buffering 0 0 1604 | 225577

6 RUMBLE 0.773 3.282 998 | 177139
Clonel 1.014 1.041 1529 | 241626

Clone2 1.017 2.152 1293 | 233053
Buffering 0 0 1781 | 268237

7 RUMBLE 0.302 0.189 1583 | 257903
Clonel 0.830 1.049 1990 | 315835

Clone2 0.815 1.121 2047 | 330826
Buffering 0 0 1578 | 227047

8 RUMBLE 0.262 4.270 1153 | 195097
Clonel 0.681 2.118 1836 | 272108
Clone2 0.732 4.866 1633 | 251854
Buffering 0 0 998 | 140556
9 RUMBLE 0.685 1.512 861 | 122344
Clonel 0.687 1.514 848 | 122411
Clone2 0.718 1.530 871 | 122360
Buffering 0 0 998 | 159705

10 RUMBLE 0.269 1.312 831 | 140127
Clonel 0.672 1.759 916 | 150529
Clone2 0.673 1.754 899 | 150490

Avg. Buffering 0 0 1407 | 205891
of 100 RUMBLE 0.192 0.797 1337 | 198247
circuits Clonel 0.279 1.050 1472 | 216617
Clone2 0.309 1.267 1471 | 220089

Table 6.2: Experimental results comparing cloning to othy@imization techniques for
100 circuits. Buffering refers to timing-driven bufferiniRUMBLE refers to
timing-driven gate placement followed by buffering. Clarefers to gate du-
plication with the original gate fixed. Clone2 refers to gaigplication with the
original gate movable.

134

CHAPTER VII

Logic Restructuring as an Aid to Physical Retiming

The impact of physical synthesis on design performancecre@sing as process tech-
nology scales. Current physical synthesis flows generaijopm a series of individual
netlist transformations based on local timing conditiddewever, such optimizations lack
sufficient perspective or scope to achieve timing closumaamy cases. To address these
issues, we develop an integrated transformation systenpénorms multiple optimiza-
tions simultaneously on larger design partitions thanteygsapproaches. Our system,
SPIRE, combines physically-aware register retiming, @laith a novel form of logic
cloning and register placement. SPIRE also incorporates@ment-dependent static
timing analyzer (STA) with a delay model that accounts foifdning and is suitable for

physical synthesis.
7.1 Introduction

Recall from Chapter Il that the physical synthesis procegits by computing a tenta-
tive cell placement and proceeds to restructure timintjeatipaths. Traditional physical-
synthesis flows in the industry [8,112] apply a series of lotstly greedy transforma-

tions such as inserting individual buffers on particulaisner relocating individual gates

135

in the limited context of their neighboring gates. Sevetalations of such transforma-
tions may be required for timing closure [8,112]. Howeveovwgng reliance on physical
synthesis for timing closure motivates the developmentarigformations that are more

powerful in two specific ways.

e Greater optimization scope:the ability to effect larger changes in the circuit in terms

of simultaneously moving or altering several objects ineori achieve timing closure.

e Larger optimization window size: the ability to consider temporal and spatial con-

straints from partitions of a design.

Increasing the optimization scope and window sizes candwdljal local minima in the
solution space that trap individual, local transformasioAdditionally, this circumvents
the ordering problemof individual transformations, since different sequencas yield
different results.

We facilitate more powerful optimizations through retiginUnlike traditional gate-
and net-centric timing optimizations that aim to satisfyegi stage-timing constraints,
retiming can optimize the constraints themselves to béttargiven netlist. Therefore,
we propose &ystem forPhysically-award ncrementaRetiming andEnhancements, or
SPIRE that performs register-retiming with accurate delay nsdmuffering, placement,
and logic cloning to seamlessly integrate retiming intogbgl synthesis. Key features of

SPIRE are:

e Multiple degrees of freedom to optimize the circuit, indhglgate placementegister

retiming, andgate cloning

136

| CLONING |

N
@ ©)
2
@I@ @I

| STA with virtual buffering |

CLONING changes the netlist and influences PLACEMENT
RETIMING helps select combinational gates for CLONING
CLONING creates new opportunities for RETIMING (see Fig)7.
RETIMING relocates netlist registers, causing new PLACENVE
PLACEMENT changes interconnect delays used in STA
Register PLACEMENT after retiming is performed based on STA
RETIMING relocates netlist registers, changing paths iAST

STA computes min slack — the optimization goal for RETIMING

Figure 7.1: Interactions in SPIRE’s joint optimization.

e A mixed-integer linear programming (MILP) framework foigboptimization that em-

phasizes synergies between point optimizations as showigure 7.1.

¢ An embedding of placement-dependent STA computations witthal buffering into
the MILP, which allows for efficient and accurate consideraif timing constraints

from large design partitions.

SPIRE allows for placement, retiming, and cloning to simmdtously optimize a cir-
cuit, as shown in Figure 7.1. In physical synthesis, suchirg mptimization problem
is often considered intractable. Instead, one chains iehg®} optimizations with limited
scope. However, as shown in Figure 7.2, saeparation of concerngverlooks oppor-
tunities for joint optimization. Therefore, we propose avedul transformation that is

computationally expensive, but can be applied to sizabbtitiwindows Window sizes

137

can be selected subject to runtime constraints imposedeosystem. Our experimental
results in Section 7.4, in fact, show that SPIRE can handhelow sizes of thousands of
gates by efficiently encoding the problem as an MILP withdig many constraints in
the size of the circuit.

Retiming methods based on [65] enforce timing constraiptseluiring a register on
every path whose delay exceeds a threshold. However, sutlodsaequire computationally-
expensive path enumeration within the linear programmarghtilation. We avoid path
enumeration by enforcing linearly many conditional STReliconstraints which deter-
mine optimal retiming and placement. Further, differerdichs for retiming, cloning and
gate relocation perturb only a small set of local constsailiriectly (those affecting nearby
edges). Aside from the system as a whole, we highlight tHeviihg contributions of this

work:

e A method for retiming with an accurate STA-like embeddecdge&lomputation model.

e A novel gate-cloning technique to create opportunitiegétiming.

e A simultaneous retiming and re-placement technique.

The remainder of this chapter is organized as follows. 8e¢ti2 reviews background
and notation. Section 7.3 presents our maximum-slack mggiformulation that incorpo-
rates STA, placement, and cloning. In Section 7.4, our nutlawe validated on a 45nm
high-performance microprocessor against leading-edgsigdl synthesis tools. Section
7.5 outlines additional optimizations that can furthemr@ase the scope of SPIRE. Con-

clusions are drawn in Section 7.6.

138

7.2 Background, Notation and Objectives

In this section, we provide the necessary background incsiating analysis and
period-constrained retiming.

Static timing analysis with buffered wires. SPIRE depends on the ability to encode
timing constraints efficiently, and in such a way that theg ba easily adjusted to ac-
commodate changes resulting from circuit optimizationsti§timing analysis relies on
models to compute the delays of gates and nets. For exarmigleommon to use a look-
up table to represent gate delays in terms of its inputs. Waced CMOS technologies,
buffering is utilized heavily during physical synthesisramluce wire delay and improve
timing. Therefore, it is important to estimate bufferedevitelay in an interconnect de-
lay model. In SPIRE we efficiently accommodate these congias by using constant
gate delays that are obtained from look-up-table-basexyaebdels, and by using a linear
interconnect-delay model introduced in Chapter Ill. Thassumptions allow the con-
straints represented in SPIRE to be in terms of a local neigidod, and are thus only
linear in number (assuming constant maximum edge and veeigree).

To compute the initial conditions for SPIRE, the RAT and AAfTadl fixed timing
points are generated by an STA engine using very accurasy debdels and a set of
timing assertions created by designers [77,98]. SPIREiderssthe timing of register’s
input pin fixed and uses a static timing engine to determm&AT value. Similarly, the
AAT is fixed on output pin of a register. The timing analysig#m® includes considerations
of setup and hold time.

The timing metrics that we optimize include the minimum slack of all verticés\),

139

(b)

Figure 7.2: Retiming and gate cloning to improve slack: (ayiRter’ cannot be moved
past gate”' because of fanout-F. (b) If the NAND gateC' is cloned, creat-
ing a new gat&’ to drive its two sinks, it is possible to retime the top regist
without changing the logic function. (c) The final result kviegisterE re-

timed.

(a) (b)
Figure 7.3: A circuit (a) and its timing graph (a). The squalgects have fixed AATs or

RATs. STA is performed only on circular movable objects.

the total negative slack in the circuif’), and the total slack below a threshadl@r),

computed as shown below. Note tiat= ©,.

M = mJnS(u) (VI.1)
T =) min(0,S(u)) (VII.2)
Or = min(0,8(u) — T) (VI1.3)

In SPIRE, registers are allowed to move, while combinaligiaées remairfixedin
place; this limitation is not inherent, as discussed ini®act.5. After gate cloning (Sec-

tion 7.3), the cloned gates can be physically relocated. effiaiency, we restrict our

140

timing graph edges to those representing (1) each conndmtitveen the movable gates,
and (2) each connection between a movable gate and a fixed [gatehe subcircuit in
Figure 7.3(a), the resultant timing graph is shown in FiguB{b).

Register retiming. The original linear programming formulations for minimymeriod
and minimum-area retiming were developed by Leiserson axé §5]. In their frame-
work, a circuit is represented byratiming graphG(V, E), where each vertex € V
represents a combinational gate, and each édge) € E represents a connection be-
tween a driver; and sinkv. An edge is labeled by a weight(«, v), indicating the number
of registers (flip-flops) betweem andv. The objective of minimum-area retiming is to
determine labels(v) for each vertex, denoting the number of registers that are moved
from the outputs to the inputs ef, that minimize the total sum of edge weights. The

weight of an edge after retiming is given by:

wy(u,v) = w(u,v) —r(u) + r(v) (VI1.4)

Therefore, the total number of registers in the retimedudircan be minimized in

terms of the following expression.

Z w(u,v) —r(u) +r(v) (VIL.5)

(u,v)EE

Additionally, retiming labels have to mekegality constraintsw (u, v) > r(u) — r(v)
for each edge, to enforce the fact that edges cannot havdiveegeights. A linear
program for the minimum-area retiming problem is given igufe 7.4. Leiserson and

Saxe [65] observe that this problem is the dual of a min-ceswork flow problem and

141

can therefore be solved in polynomial time.

Minimize
3 (e W1, ¥) — (1) +1(v)

subject to
V(u,v) € E,r(u) —r(v) < w(u,v)

Figure 7.4: An LP for minimum-area retiming.

As shown in Figure 7.5, the period can be constrained in trimdilation by requir-
ing weight> 1 on every path between two vertices with delay exceedingetgrgriod
P. However, this formulation required(|V|?) constraints in the form of matri® that
stores the delay of the longest path between the vertices in D(u,v), and matrixil’
that stores the weight of that path. Then, a binary searcleri®gned to determine the
minimum achievable clock period. The feasibility of eachiget according to the legality

constraints is checked using the Bellman-Ford algorithsj. [6

Minimize
Z(u,V)EE W(Ll, V) - I'(ll) + I(V)
subject to
V(u,v) € E,r(u) —r(v) < w(u,v)
V(u,v) € E|D(u,v) > P,r(u) —r(v) < W(u,v) — 1

Figure 7.5: An LP for min-area, period-constrained retigain

Prior work in retiming also includes the ASTRA [99] algorithm, which is a faster ap-
proach. It relates the problem of clock skew optimizatioeath flip-flop to a retiming
solution for minimum-period retiming, and uses the Bellntard algorithm to derive
the longest path. Recently, the authors of [123] used progtarivation to automatically
generate an algorithm for min-period retiming. Retimings\vaéso explored for slack bud-

geting and power minimization for FPGAs [45].

142

Challenges in min-period retiming. Algorithms based on techniques from [65] enforce
timing constraints by requiring registers on gate-to-geths that exceed a length thresh-
old. This involves computationally expensive enumeratibsuch paths. Therefore, in our
approach we avoid path enumeration by using slack, ratla@rglkriod as a metric. Slack
constraints are linear in the size of the circuit and all piglays are implicitly encoded
through the AAT and RAT constraints.

Other retiming algorithms use network-flow based approseti@ch are difficult to
extend to a multi-objective optimization [99]. Using intennect delays instead of lengths
has been a challenge, as wires can be dynamically re-bdféenen their lengths change
[100]. Unlike much of past literature, we use a buffered getmdel to account for this.
Inherent limitations of retiming are associated with multi-fanout branches. To move a
register backward through a gate, all fanout branches of&te must include (or share)
a register, and all these registers must be retimed at onbi&s cbnstraint ensures that
the number of registers on any PI-to-PO path stays constaimtgdretiming. Therefore,
fanouts can be a bottleneck for retiming. In order to allevidis problem, we clone
gates within the retiming formulation so as to provide addil backward-movement

opportunities for registers (see Figure 7.2).

7.3 Joint Optimization for Physical Synthesis
This section introduces the SPIRE system which combinesrakeptimizations used
individually in the past literature. As shown in Figure 7cémbining retiming and place-

ment is better than applying them individually. In this exae) only the combined ap-

proach closes timing. The main difficulty in combining plamnt, cloning and retiming

143

AAT(a) = 25 _ . RAT(d) =50
AAT(D) =25 AAT@=1 pate)=50
”—l:.—.l—-a C)—d—u e —¢
(a) (10, 20) (28) E (35, 15)
[B)p Delay(C)= 30 (30, 15)
(10, 10)
AAT(a) = 25 _ . RAT(d)=50
AAT(b) =25 AAT@=1 pat(e) =50
(b) a d O e E
(10,20 5, 1) (35, 15)

b (20, 15)
(10, 10) Delay(C)= 30

AAT(@)=25 AAT(q)=1 RAT(d)=50
AAT(b)=25 AAT(@)=1 RAT(d)=50

(26, 25) RAT(e) = 50

(©) [A)2 d By ek
(10, 20) 7Bl (015 (35, 15)
(10, 10) (26, 12) De1Y(C)=30

Figure 7.6: Advantages of performance-driven retiminghvgitmultaneous re-placement.
Timing values of labeled pins are given, and physical lacetiof gates and
ports are shown as (x, y) pairs. In the original circuit (bg timing path feed-
ing the input of the register has negative slack. Moving tae @nd register
in (b) improves the slack, but movement alone does not ath@ypath to meet
timing constraints. Only by retiming and movement can aflitig constraints
be metin (c).

is their inter-dependence—optimal locations and clonedigarations depend on the tim-
ing constraints which are altered by retiming.

Embedding the STA backplane into an ILP.In order to incorporate STA into SPIRE,
we first encode the RAT and AAT variable computations into dhRwith constraints
corresponding to actual arrival time and required arrivaktcalculations, both of which
are linear. Then, alternative constraints are introduoethtillyze each timing arc, for the
case where a register is between the source and sink of thé&ignore 7.7 shows an LP
simply for computing the worst-case slack. For cirauitvith gatesG = {uy, us ... u,},

and register® = {l4, l», . . .l,, }, the variables in this program are:

144

e AAT and RAT for eachu € GG, denotedA4,,, andR,,.
o M for the minimum slack.

In other words, for a gate driven byi,, iy, ...ig the constraints to enforce, are

shown below. Heré < j < §:

A, > A, + 7% HPWL(i;,u) + D, (VIL.6)

Since A, must actually be equal to one of the values in Equation Vit.i5,added to
the objective function so that it can be minimized. The caists guarantee that it will be
greater than any path’s delay. Adding it to the objectivergngees that it will be no more
than the greatest path delay. Similarly ¥y, supposing that drives gates, oo, ... or,

then the corresponding constraints are of the formiferk < 7=

R, < R, — 7+ HPWL(g, 0,) — D, (VIL7)

We add—RAT(u) to the objective function since this variable is maximizather than
minimized. The AAT and RAT of registers (and other end polikis primary input and
output pins) are simply set according to initial values ot#d form the reference timing
model. The term- M is added to the minimization objective. The total sl&Ckan also
easily be computed from the MILP and added as an objectiverdatice, we minimize
both. However, for brevity, we drof from the MILP formulations for the remainder of
the chapter. Note that the number of constraints in this édation is proportional to the

number of2-pin arcs in the circuit and not the number of paths. Furttier,number of

145

constraints in which each gate ar2dpin connection appears is limite@vhich is key to
incorporating retiming, placement and cloning.

Max-slack retiming. Retiming is the most powerful optimization within SPIRE be-
cause it can effect drastic changes on the timing consstaifor instance, moving one
register past a gate can allaycle stealingon the order of gate delays along all paths that
cross the register. In order to utilize the STA constraimsodibed in the previous section,
we develop a maximum slack formulation. The key idea in maxmslack retiming is
that there are two versions of the AAT and RAT computationgach vertex depending
upon whether the vertex drives/is driven by a register. Tdwestraints that are actually
enforced are determined by the retiming. Therefore, theneg) program seeks a solution

in which the values of retiming variables maximize worssealack.

Objective
Minimize : —M
V() (Ay — Ry)
subject to
Yu M < S(u)
VuV(fanins f of u)A, > A¢ + 7« HPWL(f,u) + D,
VuV(fanouts f of u)R, < Ry — 7%« HPWL(u,f) — D,
Vregister r, R, > clock_period
Vregister r, A, <0

Figure 7.7: Finding minimum slack using LP.

Figure 7.8 shows the MILP that combines the STA constrairitts ketiming. During
retiming, we only know the contents of thetiming graph(not the timing graph), because
any edge in the retiming graph can include a newly retimedstely Therefore, STA
constraints change depending on the retiming variableegaldowever, there are only two

possibilities for each retiming arc: either the arc corgamegister after retiming, or it does

146

not (and combinations of arcs are implicitly consideredjisBituation is modeled through
IF-THEN logic based on the retimed weight of the edge. If tlegght is greater than zero,
then the wirelengths involved in RAT and AAT computationsiefe to incorporate the
newly retimed register. For simplicity of presentation, teenporarily assume that the
new register will be placed at theenter of gravity (COGYf the neighboring gates of
Thus, the net connectingto [has lengttHPWL(u, COG(/)) and the net connectingo

v has lengttHPWL(COG(!), v). In the next section, we eliminate this simplification and
consider the static timing analysis of nearby gates whesutating slack-optimal register

locations.

if(w,(u,v) == 0)
R, < R, — 7« HPWL(u,v) — D,
A, > A, + 17 +«HPWL(u,v) + D,
(VII.8)
if (wy(u,v) > 1)
R, < R, — 7« HPWL(u, COG(l)) — D,
A, > A+ 7« HPWL(COG(l),v) + D,

This IF-THEN logic is incorporated into a linear programngsthebig-M formulation.
Under this formulation, a constraint< k takes the form < k+ Mwv;, whereM is a large
constant. Ifu; == 0, the constraint reduces to the originalyjf # 0 then the constraint
simply becomes a bound on the variabla.e.,v < Mwv;. Alternatively, IF-THEN logic

can be modeled usinigdicators—binary variables that turn constraints on and’ofi

our program, we define an indicatisisReg(u, v) as follows:

Indicators are supported by the commercial MILP engine CRILE.1.

147

if(w,(u,v) > 0)hasReg(u,v) = 1 (VI1.9)

if (w,(u,v) < 0)hasReg(u,v) =0

This variable can be set in a variety of ways. One way is tolusednstrainhasReg(u, v) <
w,(u,v) and maximize it. Ifw, (u, v) == 0 thenhasReg(u, v) = 0. If w,(u,v) > 1 then,
sincehasReg(u, v) is maximized, it is set td. However, maximization can sometimes
conflict with the objective, therefore we use the followirapstraints instead:

hasReg(u, v) < w,(u,v) (VII.10)

if(hasReg(u,v) == 0) w,(u,v) =0

The second constraint uses thes Reg variable as an indicator. Together, these two
constraints require thatasReg = 0, if and only if w,(u,v) = 0. For simplicity, we
omit the setting of this variable from our formulations. Ag wvill see in Section 7.3,
maximization of real and integer variables can also fail mtiee objective has conflicting
terms. Our formulation uses the constraints below to masergeneral variables (without

adding terms to the objective). We constrain the varidble max(A, B) as follows?

C>A, C>B, (C==A4)||(C==B8B) (VII.11)

Themin function is evaluated similarly. In Figure 7.8, the slaciiTRand AAT vari-
ables are real values while the retiming variables must tegar-valued. We utilize a
constant weighting factak™ to reconcile area with slack. The constéhtan be adjusted

based on the available area.

2The Logic-OR can be implemented using intermediary vagigbl, 65 and indicator variableg 4,
I with the following constraintsdy = C — A, ép = C — B, Ia < 64, if(J_LA==0)d4 =0,
I, <op, 6)if(Ip == 0) o =0,Ip+1Ip <1.

148

Objective
Minimize : —M+ 32, 1cp(K) wi(u,v)
subject to

V(u,v),r(u) —r(v) < w(u,v)
V(u,v), if('hasReg(u,v)

Ry <Ry — 7« HPWL(u,v) — D,
V(u,v), if(ThasReg(u,v))

A, > A, + 7« HPWL(u,v) + D,
V(u,v), if(hasReg(u,v))

Ry, < Ry — 7« HPWL(u, COG(l)) — D,
V(u,v), if(hasReg(u,v))

A, > A, + 7 % HPWL(COG(I), v) + Dy
VueV, M <S(u)

Figure 7.8: Max-slack retiming with STA embedded.

Note that the formulation in Figure 7.8 does not require thevdtion of thell or D
matrices that were described in Section 7.2. Instead, tjroaiculations are performed
within the MILP. Thus, the number of constraints is otlyj £|) for a retiming graph with
edge seft?.

Register placement. Registers have special significance in a timing graph becaus
their inputs are in a different clock cycle than their ouputhis facilitatesime borrowing
— the ability to shift delay from one timing path to another digcreasing the delay on
inputs paths at the cost of increased delay on output patksyiae versa. By physically
relocating registers, the interconnect delay around tegican be allocated to either the
input or output paths.

In this section, we describe a formulation that integraéggster placement with the
retiming described in the previous section. Register looatalter STA constraints by
changing interconnect length, and therefore, delays. ©h edge with a register, SPIRE

chooses the physical location that results in the best Iplessiack. The placement also

149

Objective :
Maximize L

subject to
Ve=(ul)€E, UL>al US>a
Ve=(ul)eE, L <o}, LS ay, Ul >q
Vi=(Lv)€E, Li<al, LI <a
Ve € By, LS < 8L < Ue
vt € E,LL <l <UL
Ve = (u,1) € B, Ry < Ry — 7(Ug — L + US — L¢) — D,
VE=(I,v) € Ej, A, 2A1+T(Ui—Li+U§y—Lfyy)+Dv
Ve=(u,]) €E, L<R,—-A,-D,
Vi=(Lv)eE, L<R,—A,—-Dy

u
y

Figure 7.9: Optimal register location relative to adjacgetes.

interacts with retiming in that the retiming variables wolptimize the STA constraints
while considering register locations for each edge.

In order to perform this integration, we utilize the sameetyjf case-logic as in the
previous section. First we modify constraints so that AAld ATs on edges with reg-
isters are calculated with respect to the placement. Reghiring along adjacent edges
further complicates the formulation. However, we utilibe formulation from [84], to
refine the placement of the shared register based on relatiedjt The retiming variables
are, as in the previous section, optimized to activate thstifi@ayorable STA constraints.
This interplay between retiming, placement, and STA is shiowFigure 7.1.

We first describe an LP formulation for local register retlomabased on a simplified
form of the LP in [84]. We then incorporate it into our retirgiformulation.

Suppose registércan be incrementally placed to improve slack while leavihgther
gates fixed. We define a timing graph = (V}, £;) that consists of vertices and edges that

are adjacent td. V; contains the driver, and sinks, of [. The edge sek; contains the

150

Objective
Minimize : —M+ 32, 1cp(K) wi(u,v)
subject to
V(u,v),r(u) —r(v) < w(u,v)
if (hasReg(u, v)) :
V(u,v), Ry <Ry —7+«+HPWL(u,v)—D,
V(u,v), A, >A,+7+*HPWL(u,v)+ D,
Let 1 be register on (u,v)
Ve=(ul)ek, L<R,—A,-D
vi=(Lv)eE, L<R,—A,-D,
1f(hasReg(u v)):
=), Us>af, US> af
(U., l)v LS < ag, L;)z < Ol;,l
UL >ay, U >a)
Qg@,@g@
(w),1% < 6l < U
vE=(1,v), Lf <p<Uf

e:mm@§@<m
e:(u,l),L;i<ﬁ1 < Us
f=(Lv),LL < gl < Ut
= (,),L < 6} <UL

Ry <R — 7 (UL —LL+ Ul — L) - D,
AV2&+¢*HK—L3H@—L@+DV

Figure 7.10: Max-slack retiming with relocation of registe
timing arcs that are adjacent to The LP formulation computes the variabléisand 3!,
the optimalr- andy-coordinates of. The variables in this LP are as follows:

e ay, oy fixed z- andy-coordinates of vertices € V.

e U;, Uy, L, Ly upper and lower bounds for the location of nets F;. These upper and
lower bounds determine the HPWL of the particular net dbscrby edge as follows:
HPWL(e) = (Uy — L3 + Uy — L;). As the location of the register changes, these net

boundaries also change, and, in turn, change the HPWL.

e R,, A,: the AAT and RATs of nodes if].

151

Objective
Minimize : —M+
> uer (K)RegCt(u, v) + 3 (u)IsCloned (u)

subject to
Vu,V fanins i of u, minPush(u) < w(i,u) — r(i)
Yu,V fanouts o of u, maxPull(u) > w(u,o) + r(o)
Vu, if(r(u) > O)maXPull() >r(u)
Vu, if(r () < 0)minPush(u) < —r(
V(u,v), if(w:(u,v) > 0)
RegCt(v) = w;(u,v), CloneCt = 0
Y(u,v), ('1sClone() && 'hasReg(u,v)) :
Ry, < Ry — 7« HPWL(u,v) — D,
V(u,v), if(lisClone(u) && hasReg(u,v)) :
R, < Ri — 7 % HPWL(u, COG(1)) — D,
V(u,v), if(isClone && hasClone(u,v)) :
Reione() < Ry — 7 HPWL(COG(clone(u)), v) — Dy
V(u,v), if(isClone(u) && !hasClone(u,v)) :
Ry, < Ry — 7« HPWL(u,v) — D,
V(u,v), if(lisClone(v) && 'hasReg(u,v)) :
A, > A, +7+HPWL(u,v) + D,
V(u,v), if('IsClone(v) && hasReg(u,v)) :
A, > A+ 7« HPWL(COG(1),v) + Dy
V(u,v), if(isClone(v)) :
A, > A, + 7+« HPWL(u,v) + D,
Adone(v) > A, + 7% HPWL(U, V) + D,
Vu, if(isClone(u))
M < Reone(u) — Actone(w) — Deione(w)
Yu, M <R, —A, —D,

u)

Figure 7.11: Gate cloning in max-slack retiming.

e L: the local worst-case slack (of the worst pinli).

The MILP to determine optimal register placement is showRigure 7.9. This pro-
gram sets the values 6f andﬁ; such that’ is maximized. Here4, of any vertexu € V;
thatdrivesregisterl is fixed. Similarly R, for any vertexv that isdriven byl is also fixed.

The only independent variables asé and 6; which determine thé/ and L variables.

These, in turn, determing,,, R,, for all nodes.

152

The program in Figure 7.9 is modified in Figure 7.10 to sirmatausly incorporate
retiming and placement, and no longer fixes the neighboriéh§ &d AAT variables. In
this figure, each edge, v) on which a register appears constrains the placement of the
register in question. It is assumed that all edges startingize., of the form(u, v), such
thathasReg(u, v) = 1 share the same registers. The register is placed in a locatiech
minimizes the slack of neighboring gates. Since the slatkeighboring gates in turn
affect those ofheir neighboring gates, and so forth, a ripple effect ensuestefdre, the
register is actually placed in an optimal location with msto the entire circuit. The key
here is to enforce a small set of local constraints for eage #aat interact with each other
such that globally optimal solutions are chosen.

Cloning to increase the scope of retimingA key insight in our work is thabpportu-
nities for backward register movements are often limitedidoyput branches in combina-
tional circuits. As illustrated in Figure 7.2, retiming movements are blatkden fanouts
of a gate do not share registers. We hope to increase thesgwpiies by cloning fanout
branches such that registers can move beyond the cloned/gatechieve this by relaxing
legality constraints in specific ways that allow extra registo move backwards. In addi-
tion, the fanouts of any cloned vertex are divided such thaiSTA on some of the edges
is computed with respect to the cloned, rather than origiagkex.

The legality constraints in retiming ensure that no edgenreggmtive weight. With
cloning, edges can indeed have negative weight due to eegiséing retimed backwards
through a cloned gate. However, forward retiming of regsstill follows traditional

legality rules.

153

Suppose node has fanout®) = {o0,09,...0r} and faninsl = {iy,is,...7,,}. We
represent this situation by imposing two constraints oméhiening variable r(u) for a node
u: one which is enforced wher() is positive, and one which is enforced whefu) is
negative. Ifr(u) is positive (i.e., the retiming is backward), then the maximnumber of
registers that are allowed to pass backwards is the greatedier of registers that appear

on any fanout branch af. If »(u) is positive, then the constraint is the same as before:

maxPull(u) = max,co(w(u, 0) + r(0))

minPush (u) = min;e; (w(i, u) — (7)) VI1.12)
if (r(u) > 0)r(u) < maxPull(u)

if (r(u) < 0)minPush(u) > —r(u)

Together, these two constraints can completely replacgaheral legality constraints.
The presence of registers is indicated by a positive weigltdroedge. Negative weights
indicate that the driver of the edge was cloned. The origilnsder is connected to the
retimed register on the (neighboring) edge(s) with nonatieg weight, and the cloned
driver drives the remaining sinks (as identified by edge#$ wegative weight). We use
the additional variabléasClone(u, v) which is set tol if f the register count on edge
(u,v) is negative. These variables can be set in a similar wawg3eg. Recall that all
constraints triggered under logical conditions can beripo@ted into an MILP through
indicator variables or big-M formulations.

The MILP incorporating cloning is shown in Figure 7.11. Fdarity, we illustrate
cloning incorporated into the basic STA-based program @iBG-based placements. In

practice, we simultaneously place and clone registers atebg

154

The slack is computed slightly differently in the presentelones. New variables in
Figure 7.11 include indicator variablésCloned (), Acone(w), Reone(w) fOr €ach vertex.
The variableisCloned(u) = 1 if hasClone(u,v) = 1 for one of the edges of the form
(u,v). The computation ofgone(u), Relone(u) are:

if(wy(i,u) — r(i) > 0)
Agone(u) = Ai + 7+ HPWL(i, COG(1)) + D,
if (we(u,i) —r(i) <0)

Aclone(u) > A+ T HPWL(Z, ’LL) + Dy

if (we(u,i) —r(i) <0)

Reione() < Ri — 7+ HPWL(COG(clone(i)), i) — Dy

For the new RAT variable, we assume that a node driven by @&dlas no registers on
the connecting edge. As illustrated in Figure 7.11, the rddfarences in slack computa-
tion include 1) the additional edde, clone(v)) for every edgéu, v) wherev is cloned, 2)
the use of the clone’s AAT] ,..(.), When computing the AAT of verticeswhere(u, v)

has a clone. We minimize the number of registers and clong®inetimed circuit using

two variablessCloned andRegCt, which is computed as follows:

if (wy(u,v) > 0) RegCt(u,v) = w,(u, v) (VI1.13)

7.4 Empirical Validation

For very small circuits, a single mixed integer linear peogrimplementing all of the
optimizations in SPIRE can be solved in a reasonable amduime. However, in order
to push the boundaries of the largest circuits that SPIRESob#, it is important to solve
instances in several phases. Each of the components of SfaliRBe solved separately

before being combined into a single mixed integer lineagpm. By saving the partial

155

STA+Retiming+ STA+ STA+Retiming+
= I =) = 0

Sl Cloning Placement Cloning+Placement

Figure 7.12: Our SPIRE flow proceeds in phases. First the NhiaPrepresents only static
timing analysis is solved without design changes. The whbferelevant
variables are saved and passed to the next stage which ruv$L&nthat
incorporates retiming and cloning. The retiming varialalessaved and fixed
in an MILP that allows latches to move. Finally, with knowrwes for latch
locations and retiming variables we run the complete lipeagram.

solutions and using them as a starting point for the nextestaqg are able to achieve a
significant speedup for large SPIRE instances without Baiag optimality. Figure 7.12
shows the flow we use to improve the speed of SPIRE. It begimarnying STA without
any design changes allowed. The solution of this programoieed and used to seed
the next stage, which adds retiming and cloning but fixes dbatlons of latches at the
center-of-gravity of connected components. The solutiotiis program is used to add
constraints to the next program, which allows latches toenbut not be retimed. Finally,
the solution of that program is used to seed the combineda@nog

Experimental environment. We integrate our optimizations into an industrial phys-
ical synthesis flow. Our benchmarks are the largest funatianits of a 45nm high-
performance microprocessor design. We operate on theshianks after timing-driven
synthesis, timing-driven placement, electrical cor@ttiand critical path optimization
(through buffering and gate sizing) are completed [7]. We ais industrial timing anal-
ysis tool to obtain initial conditions for AATs and RATs thughout the circuit [51]. Our
experiments were conducted on&uoore system witl2.8 GHz AMD Opteron854 CPUs
and80 GB of memory. Our MILPs were solved with ILOG CPLEI.1 configured to

use up taB cores in parallel.

156

Table 7.1 shows @ 7% improvement (on average) in worst-case slaek) @nd a69%
improvement irtotal negative slackZ’) when retiming with simultaneous placement. The
slack improvements are reported in terms of the clock pefied 174ps. 7 is computed
as shown in Equation VII.2 with threshold @f = 0. Percentage improvement in min-

slack M is computed as follows:

Mnow - Mold

M = >

« 100% (VIl.14)

In addition, we note that the slack numbers are reported regpect tdufferedwire
delay. Past literature reports unbuffered wire delay, etsback may improve more dra-
matically, but such improvements may be misleading due ¢oned for subsequent
buffering. In this experiment, the MILP for retiming withg@ement was given initial so-
lution seeds from the max-slack MILP retiming shown in Fgidr8. This helped CPLEX
to calculate MILP solutions quickly. The entire optimizatisequence took 41s on
each benchmark. Since our joint optimization was perforaiéer several iterations of
individual optimizations including placement, bufferjrand gate sizing, and was able to
significantly improve the slack, we can conclude that theviddal optimizations were
unable to find these solutions.

Table 7.2 evaluates the impact of cloning during retimimgthis experiment, we mea-
sure thetotal thresholded slack©r), as defined in Equation VII.3, with the threshold
T = 100ps. The threshold value represents the desired amount of gnaarding (protec-
tion) against process variations and NBTI, which can degtading. Empirical results

indicate that cloning can improve tt&, of the circuit by up to57% over just retiming

157

#std. Initial Retiming+Placement Overhead| Improvements
Design | cells | M, ps | Regs 7,ps | M,ps | Regs T,ps | Time, s % cells | % M % T
azurel 536 3.42 41 0.00 10.14 49 0.00 1.19 0.00 3.87 0.00
azure2 | 1097 -2.53 79 -15.17 2.95 155 0.00 4.46 6.93 3.15 | 100.00
azure3 | 1032 | -16.22 97 -212.69 | -6.49 108 -37.95 0.4 1.07 5,59 | 82.16
azured4 | 1125 -2.30 79 -2.30 3.82 96 0.00 7.66 1.51 3.52 | 100.00
azure5 | 1140 | -13.18 89 -114.54 9.39 161 0.00 40.71 6.32 | 12.97 | 100.00
azure6 | 1156 | -10.49 83 -91.39 7.14 149 0.00 10.80 5.71 | 10.13 | 100.00
azure7 | 1198 | -29.84 80 | -3399.92| -17.02 | 145 | -259.67 20.73 5.43 7.37 92.36
azure8 | 2578 | -38.47 209 -391.03 | -28.64 287 | -265.68 24.87 3.03 5.65 32.06
azure9 | 2911 256 | 290 0.00 | 23.31| 318 0.00 7.12 0.96 | 11.92 0.00
average 3.66 7.73 68.87

Table 7.:2Minimum slack M) andtotal negative slackZ’) improvement during simultaneous
retiming+placement on macros oftanm microprocessor (see Eqgns. VII.1-VII.2).
Maximal 7 improvement (100%) is reached when design closes on tinfihgse
cases are indicated in bold.®b is computed as described in Equation VI1.14 with

P = 174ps.

#std. Initial Retiming+Placement Retiming+Cloning+Placemen{ Overhead]| Improved
Design | cells | Regs O, ps | Regs ©r,ps | Regs Or,ps | Time,s % cells % O
azurel 536 41 -4521.87 47 -2989.53 47 -2989.53 6.28 0.00 0.00
azure2 | 1097 79 | -15597.31| 153 -4537.57| 153 | -4537.57 | 7201.14 0.00 0.00
azure3 | 1032 97 | -15515.34| 105 -14333.89| 110 | -12739.10| 2252.07 0.48 11.13
azured4 | 1125 79 | -24206.70 81 -22226.57 83 | -21762.75| 3727.78 0.18 2.09
azure5 | 1140 89 | -35296.55| 148 -18881.61| 537 | -11333.49| 7202.15 34.12 39.98
azure6 | 1156 83 | -32183.65| 148 -27566.43| 588 | -11956.50| 237.10 38.06 56.63
azure7 | 1198 80 | -46265.55| 122 -33419.14| 620 | -17643.49| 3741.82 41.57 47.21
azure8 | 2578 | 209 | -39253.82| 296 -26272.53| 657 | -15117.06 | 7201.70 14.00 42.46
azure9 | 2911 | 290 | -13134.72| 317 -9539.07 | 522 | -4096.63 | 3905.28 7.04 57.05
average 15.05 28.51

Table 7.2:TOtal thresholded sladj© ;) improvement through simultaneous retiming, cloning
and placement (see Eqn. VII.3). Cloning also improveidon azure6 by3.5%,
while on remaining testcases the most-critical paths wetaffiected.

and placement. Thus, even when opportunities for clonintherritical path are limited,
the remainder of the circuit can be improved for increassdieace.

Unlike previous localized transformations, SPIRE scadedeisign partitions with over
1000 cells as shown in the #std cells column in Table 7.1. ERRH process larger circuits

by partitioning the design into windows of appropriate sizhich can have overlaps.

158

7.5 Extensions

SPIRE’s key advantage over existing physical synthesmstoamations is the syner-
gistic use of several types of optimizations. Our MILPs amerencostly than existing
transformations but also more powerful since they can béeapto larger windows than
many of the localized transformations used in the indusiaigy [74,84]. This flexibility of
SPIRE allows one to change size and scope of optimizationtiis rich trade-off oppor-
tunities between runtime and solution quality. Howeverréasing optimization strength
will likely change the trade-off between runtime optimibatwindow size. Additional

optimizations can be integrated into SPIRE as outlinedvielo

e To relocate combinational gates, create a variable for:thend y- location for each

gate and write the delay equations as in Section 7.3 in tefiti®se variables.

e To incorporate gate sizing in SPIRE, one must model nonlitisang characteristics
of individual gates or standard cells. This can be accoigtisy precomputing the
response to a set of discrete sizes (from the library) amtsied them using conditional
constraints. If a particular gate size is selected, a cpomding gate delay will be used

in the STA, as specified by a conditional constraint.

e Similarly, threshold voltagel{;) assignment is modeled by selecting gate delays with
Boolean variables. As lowering,, improves speed at the cost of power, the number of

low-V;, assignments must be upper-bounded.

e Common placement constraints including region conssantl obstacles can be rep-

resented in SPIRE. Region constraints are modeled witladibeunds on the- and

159

y-coordinates of each gate. To avoid obstacles, the pladeregion is divided into al-
lowable regions that hug the obstacles. A disjunctive (@&} constraint is then added
to require placement in one of the allowed regions. Routimiggestion can also be
represented as an obstacle using this mechanism to prewema@vable objects from

being added in congested regions.

By integrating several optimizations and applying them fodews with thousands of
objects, SPIRE offers a unique physical synthesis optitiwizahat lies between local op-
timization of individual objects (which is typical of cumetools) and global optimization

of the entire design.

7.6 Conclusions

State-of-the-art physical synthesis methodologies tendetrform a series of local
transformations to achieve a target clock period [7]. Haavethe persistent difficulty
of timing closure in high-performance designs callsrfetlist transformations that can ef-
fect more powerful changes in the circulb address these issues, we presented SPIRE, an
MILP-based physical synthesis optimization in which dyi@anetlist transformations in-
cluding retiming, cloning, and placement, can be perforaratico-optimized with respect
to an embedded static timing analysis program. We demdaedttiaat isolated transforma-
tions, such as retiming, often run into obstacles that cénlmresolved by other transfor-
mations, such as gate cloning. Empirical results show tR#RE is able to significantly
improve the worst-case and total slack in functional unfta d5nm high-performance
microprocessor after an industrial physical synthesis, ftmmsisting of several individual

optimizations, is performed.

160

CHAPTER VIII

Broadening the Scope of Optimization using Partitioning

Techniques covered in previous chapters have been dedegtojpearily to operate in
limited optimization windowsranging from several gates (Chapters I, V and VI) to func-
tional units of a CPU (Chapter VII). We extend their scope l@rger context — flat ASIC
and SoC netlists — and facilitate greater parallelism dudptimization. To accomplish
this, the designs are divided by netlist partitioning taonte windows of manageable size,
in which our earlier techniques can be applied. We evaluatdaw-partitioning in terms
of runtime and solution quality as a method to extend the sadpphysical synthesis

optimization.

8.1 Introduction

Many important optimizations in physical synthesis are hN#fpd, which motivates the
use of high-performance heuristics to achieve timing alesés outlined in Chapter II,
efficient (near-linear-time) heuristics, such as methodsdarge-scale standard-cell place-
ment, are applied to entire netlists with millions of netsl atandard cells. Alternatively,
by limiting optimization to a very local scope, more CPUensive algorithms can be

employed, including those that find optimal configuratiohsiccuit elements. For tasks

161

. Max Reported Subcircuit Size Approximate
Transformation .
(# standard cells) runtime
RUMBLE (Chapter 1) 18 0.1s
Ratchet (Chapter V) 164 10s
Interconnect-driven cloning (Chapter V|) 13 1s
SPIRE (Chapter VII) 2911 10s-2hrs

Table 8.1:Previously reported transformations and the maximum tepgasize of subcir-
cuit to which they are applied.

such as gate sizing, placement optimization within a siegluit row, and netlist parti-
tioning, exponential-time exhaustive enumeration may fy@@priate at scales of fewer
than a dozen gates, with strong branch-and-bound impletiens extending in scope to
no more than 30-50 gate®©ur techniques range from applying to a dozen gates, as in
interconnect-driven cloning, up to a few thousand gateh\éndase of SPIRE (see Table
8.1). Scaling these optimizations to larger circuits will reguapplying them selectively
within restricted windows of the design.

The controller/transformation approach to physical sgait optimization introduced
in Chapter Il does not lend itself naturally to optimizasonith large scope such as the
ones proposed in previous chapters. This is because demdrohoosesingle objectgo
optimize, and sequence such optimizations. However, otimggations apply to larger
numbers of objects and so there remains a problem of how imerate such subsections
of the design on which to apply our techniques. In this chapte first describe how
this was done for optimizations in Chapters Ill, V and VI, nh&e propose a strategy
for selection of larger subcircuits for optimizations inaper VII using top-down netlist

partitioning.

162

OPTIMIZE-CLUSTER-WINDOWS

> Input: VLSI Circuit ¢, Target Window Sizes,
Controller D, Transformation7,
ClusteringAlgorithm EXPAND
> Output: Optimized VLSI CircuitC’
1 while (gate = D.next())
2 window = gate
3 while (window.size()< S)
4 EXPAND (window)
5 T.optimize(window)

Figure 8.1:A generic iterative improvement physical synthesis alioni that applies a
transformation to a window based on bottom-up clusterinige performance
of this algorithm can be tuned through the choice of clustgstrategy, the se-
lection of a controller and transformation pair, and thiotige runtime solution
quality trade-off controlled by'. Chapter Il explores using arhop clustering
strategy and Chapter V was applied to windows selected irt-ordgcal-first
order.

8.2 Background

The state of the art in physical synthesis relies on the obfletftransformation model
to select circuit elements to optimize, as introduced ingiérall. The most natural ex-
tension of the controller/transformation model to largéndows involves constructing a
window around a given seed object that is designated byiegistntrollers. This method
is appropriate in the case of a well-optimized design witatheely few problem areas.
In this section, we review several methods to select windayvexpanding a subcircuit
around a given seed.

Breadth-first-search. In several important cases (gate sizing, buffer inser{age-
ment), the scope of simultaneous optimization among objscatietermined by the con-
nectivity and distance between the objects. Therefore,ime@expand the window with

objects that are directly connected to objects alreadyenatimdow. If the goal is to op-

163

timize the seed, it is also more likely that something coteatthrough a shorter path of
nets and gates will influence the timing of the seed. Theegfae consider the-hop
neighborhood as a good baseline strategy for expansionn-Fog neighborhood is tra-
versed efficiently in linear time by the breadth-first-séaatgorithm, as follows. Begin
with a window containing only the seed Add all neighbors of to a queue;. Dequeue
a gateg from ¢ and if it is not visited, add it to the window and mark it vigiteThen add
all of the neighbors of to q. Repeat this procedure until the window reaches the desired
size.
Most-critical-first. In cases where the goal is to fix a critical path, for exampeqgi
the techniques in Chapter V, it may be advantageous to eXpaadding the most-critical
neighbor to the current window. This strategy begins withrzdew containing the seed
Insert into a priority queue the list of neighbors 0§, sorted by their slack. Dequeue the
most critical gatey from ¢ and if it is not visited, add it to the window and mark it vigite
Then add all unvisited neighbors gfto q. Repeat this procedure until the window is the
desired size. Note that while thehop strategy radiates outward evenly around a gate,
this strategy is very likely to expand along a single pathmadte a long, narrow window.
Slack-improvement order. It some cases an analytical model can be used to quickly
estimate the amount of slack improvement that is possibéetathe addition of the next
gate. For example, a linear-delay model and coordinatedbeamsed to estimate how
much is the best-case improvement that can be provided by RURMMBeginning from a
window containing only the seed Insert into a priority queue the list of neighbors of

sorted by slack improvement. Dequeue the gdt®m ¢ with highest slack improvement

164

and if it is not visited, add it to the window and mark it visiteThen add all the unvisited
neighbors of; to ¢ (sorted by slack improvement). Repeat this procedure tinaivindow
is the desired size. This strategy requires a good slackowepnent estimation technique
and is therefore not always available. However, it proviae®fficient trade-off between
window size and solution quality.

The window selection strategies discussed in this sectiereiound to work well
in practice. Many other variants exist and, in general, thigcscuit selection strategy
will depend strongly on the transformation it is used withh& coupling a subcircuit
selection algorithm with a transformation, it is importémtunderstand the effects of the

transformation and what scope it needs to perform well.

8.3 Forming Subcircuits using Top-Down Netlist Partitioning

In the previous section, methods to select subsections esigl based on a seed ob-
ject were presented. Which method is appropriate for aqudati transformation depends
on its scope. For transformations that operate on a smahherhood to improve a target
gate or net, bottom-up clustering allows one to easily $elex set of nearby gates that
are most likely to facilitate improvement to the target gatechniques of this type were
used in Chapters lll, V and VI and successfully extended tio@e of such physical syn-
thesis optimizations as timing-driven gate movement,esuff), gate sizing and cloning.
However, optimization windows remained relatively smalthose cases, usually no more
than around a dozen gates, but up to 164 in the case of ChapteoMransformations
that apply to larger subsets there are too many combinatiogates for a comprehensive

clustering algorithm to explore practically. In such cases more appropriate to limit

165

interactions with circuit elements outside of the subdty@and therefore partitioning is a
good choice.

Netlist partitioning is an essential technique to modecataplexity in physical de-
sign systems. It enables algorithms and methodologiesib@s¢he divide-and-conquer
paradigm. The goal of a partitioning algorithm is to divideetlist into two or more
groups of gates such that every gate is in exactly one grawpsame cost function, such
as net-cut, is optimized. Given a hypergraph representétjmf a netlist, the:-way hy-
pergraph partitioning problem seekslisjoint partitionsof . In this work we map the
problem of finding subcircuits of a netlist to tlheway partitioning problem.

The Multilevel Fiduccia-Mattheyses (MLFM) framework is @lvstudied approach to
hypergraph partitioning and is presently the dominantriegle for large-scale netlist par-
titioning [36]. It begins with a coarsening phase during ethvertices of the hypergraph
are merged to form alusteredhypergraph which has fewer vertices, e.g., half as many.
The hypergraph is clustered repeatedly untdglevelnypergraph with 50-200 vertices is
found. Then d@op-level solutions constructed by means of a specialized solver designed
for problems this size. For example, the Randomized Engsbtethod places vertices
into partitions in largest-first order and tries to maintaalance as it proceeds. Follow-
ing top-level solution construction, ®finementphase begins, wherein the hypergraph
is unclustered, and the partitioning of the clustered hyyagah is projected onto the un-
clustered hypergraph. From this projected solution, aatitee improvement algorithm is
applied, with the Fiduccia-Mattheyses (FM) algorithm lgeihe most competitive today.

Unclustering and iterative improvement are repeated angartitioning of thebottom-

166

level hypergraph (i.e., the input hypergraph) is obtained. Addél passes consisting of
alternations of coarsening and refinement phases can bie@jplso-called V-cycles to
further improve results. One popular software impleméotadf MLFM, hMETIS, can
be obtained from [43].

In order to produce subcircuits of a target siZeof a netlist with hypergrapli: =
(V,E), we employ balancefl-way partitioning withk = ‘XP‘. We then optimize each of
the £ windows individually. Each technique will have a runtiméutmn quality trade-off

determined by the value d?. Table 8.1 shows a table of techniques reported in previous

chapters and the size of subcircuits they can be applied to.
8.4 Trade-offs in Window Selection
In addition to the scope of a given transformation as disisdbove, several other

considerations affect the choice of window selection téplm, such as the interactions

between the windows. Important factors include:
1. How subcircuit optimization is made relevant to the ojation of entire circuits
2. How overlaps between optimization windows affect soluality and runtime
3. Whether all circuit elements are included in some window

4. The relative sizes of different windows

We discuss trade-offs in window selection techniques iaitlieelow.
Interactions between transformations and window selectio methods. When the
objective of a particular transformation is to minimizearéo fix local constraints or to

repair design rule violations, optimizing subcircuitseditly improves the entire circuit.

167

However, when dealing witimon-localtiming constraints, relevant optimization objec-
tives for a subcircuit must be carefully formulated. Forraxée, when moving sequential
elements in RUMBLE, combinational timing paths that leawve subcircuit but renter at
a different point can strongly affect results. In Chaptémié refer to these types of con-
figurations agpseudomovable feedback pathad they must be carefully included into a
subcircuit to account for their timing impact on the solatidore generally, windowing
optimizations consider timing values on the bounddriexi while this may not be true in
practice. Each transformation must carefully manage sssimption and include every-
thing into the subcircuit that can change due to the effefdiseotransformation. As such,
having a smaller boundary reduces the possibility of chamnmgeacting the quality of op-
timization. This aspect of windowing is equally applicabdepartitioning and clustering
techniques. Trade-offs between these two window seletidmiques are summarized in
Table 8.2 and described next.

Window selection through clustering. Clustering techniqueper sedo not track
overlap between windows, but leave several possibiliti@se possibility is to construct
optimization windows one by one, optimize the subcircuitiigiven window, and then
go on to the next window. Without sufficient care, such a tepmn is likely to create
significantly overlapping windows, and some circuit eletsanay not be covered by any
window. Overlaps occur when nearby circuit elements aré aseseeds and expanding
windows around them include similar sets of gates. Thiseiases overall optimization
effort by repeating transformations on the same circuinelets multiple times, but may

sometimes improve solution quality by considering muétipbntexts for each circuit ele-

168

(@) (b)

© -~ a)

Figure 8.2: Venn diagrams illustrating different windowes#ion techniques. The outer
rectangle in each image represents the entire design wialgesl regions in-
side represent clusters or partitions. (a) Clustering graiwdows around a
seed object and typically creates overlapping windows dioamot cover the
circuit. (b) Partitioning divides the entire circuit intoindows of approxi-
mately equal size that do not overlap. (c) The windows forimegartitioning
can be expanded to deliberately create overlaps betweaneadjpartitions.
(d) Partitioning can be performed multiple times to find ogbnal partition-
ing solutions. In (d) two independent 4-way partitionintusions are overlaid,
the solution from (b) is augmented by an additional one waslebd cutlines.

ment and iterating improvement algorithms on theédverlapping optimization windows
cannot, in general, be processed in parallel — a serious ek when a large number
of networked workstations are availabl@ircuit elements omitted from optimization win-
dows may represent lost opportunities for optimizatiort, dmmetimes one can rule out
such opportunities, e.g., for elements with high slack, &ea or electrical parameters
that satisfy relevant constraints.

A second possibility, relevant when overlaps should bet&ohin order to conserve

runtime, is to mark each circuit element included in somedein asvisited so as to

169

PROPERTY CLUSTERING PARTITIONING
Substantial (captured by the
objective function and optimized
by high-performance algorithms
Substantial (nearby seeds can| None(but can be created throug

cause overlapping windows) | window inflation or repartitioning)
Incomplete (requires additional
steps to revisit skipped nodes)

Mediocre (optimized indirectly

WINDOW ISOLATION by greedy algorithms)

=)

WINDOW OVERLAPS

CIRCUIT COVERAGE Complete (by construction)

Poor (can be widely varying Good (balanced partitioning
BALANCED WINDOWS . . N ; .
depending on adjacent net degree) seeks similarly sized partitions)
AMENABILITY TO Mediocre (overlapping clusters Strong (All partitions
PARALLISM cannot be solved simultaneously) can be solved simultaneously)

Table 8.2:A comparison between window selection techniques.

prevent its inclusion in another window; a variant techeigiwes not markoundaryele-
ments of each window. Thus, it is possible to create (neady)overlapping windows by
clustering. However, in some cases this may leave cells natbnvisited neighbors, and
such windows may represent lost opportunities for optitioza If it is important to en-
sure that optimization windows cover the entire circuite @an perform iterations where
a new window is started for each circuit element not coveseéaslier windows.

From a solution quality perspective, it is typically advege¢ous to construct windows
of the largest size that can be efficiently processed by angipgimization (e.g., see Ta-
ble 8.1). In such cases, therefore, it is advantageous fodaws to be of similar size.
However, if efficiency concerns dictate that windows carowarlap, some windows may
have to be smaller. Also, some windows may represent weihdéd clusters of logic (e.g.,
multipliers or decoders) that are only loosely connecteth&remaining circuit. Such
windows can also be smaller than maximal reasonable size.

Window selection through balanced partitioning. Balanced partitioning addresses
concerns about interacting windows effectively. MultgéFiduccia-Mattheyses (MLFM)

partitioning exhibits near-linear runtime complexity imetsize of netlists and runs effi-

170

ciently on the largest VLSI netlists [36]. The most commojecbve function of MLFM
partitioning is to minimize the number of nets that crossMeein two partitions. There-
fore, MLFM partitioning minimizes the sizes of boundariaad maximizes thesolation
of each window. Such isolation helps to ensure that optitigra found locally will be
preserved when taken in the context of the entire circuittitRaning also reduces the total
overlap between windows by construction and is guaranteed\er all elements in the
circuit. Because of balance constraints in the partitigriormulation, all windows will
have similar sizes and minimizing net cut ensures the logfilsizveach window will be
well-connected on average. These properties suggestdlaatded partitioning is better-
suited to identifying minimally-overlapping windows foon-local optimizations.

In cases when some overlap between partitions is desiredpmie solution quality,
clustering techniques seem to hold an advantage overipaitity techniques. In par-
ticular, clustering techniques are better equipped to ¢oenpairs of connected circuit
elements (e.g., gates) together in at least one common wirfskoategies employing par-
titioning techniques can address this limitation by perfimg several partitioning starts
to obtain multiple solutions (increasing the likelihoodthwo given connected circuit

elements will appear in at least one common optimizatiorday).
8.5 Empirical Validation
For experiments reported in this section, we used the sam@w@ational facilities

and EDA infrastructure as in Section 7.4, but added a largsigtiazurel10 with 4144

standard cells. For a given design, we partition the nétlist: partitions of approximately

10One hybrid technique begins by partitioning windows to $erahan the desired size then expands each
using clustering to both cover the circuit and create ogerla

171

0f. | | " azure08 TNS ——1 |
-1e5 | baseline |
a) 2
(£ -2e5 ¢t H ,
3e5 | m ! U UHD pptoyl]
e gV ﬂ o001
0 5 10 15 20 25 30
#partitions
el [| | " azure09 TNS —— |
-4e5 + ¢ H baseline
® 2 gt]l "
e8| TN
1.4e6 ‘
0 5 10 15 20 25 30
#partitions
ol azure10 TNS —— |
baseline
%) -4e5
(C) E -8e5 a0 fefle--o-o=--0=208-"
-1.2e6 t
-1.6e6 |
-2e6 : L ! L L !
0 5 10 15 20 25 30
#partitions

Figure 8.3: An illustration of SPIRE’s effect ah (TNS) versus the number of approxi-
mately equal-size partitions of three industrial micraq@ssor design blocks
generated by the hMETIS partitioner [43]. (a) azure08 (bye@9 (c) azurelO.
The horizontal axis indicates the number of partitiénJ he vertical bars ex-
tend to +/- one standard deviation from the mean valué ofThe wicks of
candlesticks extend from the min to the max valu&Zof The baseline indi-
cates the value af without changes to the circuit.

equal size using the hMETIS partitioner [43], for valuescof 1...30. For each value
of k, we solvedk separate SPIRE MILP instances, and combined the solutidnsai
single solution for the testcase. We measured circuitoperdnce parameters after such
optimization for each value df and study the impact of the size of each partition on the
performance of the circuit.

The techniques in Table 8.1 all improve solution qualitytes tost of runtime when

called on larger instances. This runtime solution-quataye-off determines the best size

172

for subcircuits in practice. In this section we demonsteati@de-off between runtime and
solution quality by partitioning large netlists and applyiSPIRE (see Chapter VII).
Figure 8.3 shows an experiment incorporating the hMETIStparing software into
SPIRE [43]. Each design was divided inte< k£ < 30 partitions using 5 separate starts of
the hMETIS patrtitioner [43]. SPIRE was invoked on every piart, and statistics of the

resulting values of” are plotted. From this experiment, we observe:

e The best solution quality is obtained when the largest ds@are optimized.

¢ Using smaller windows sacrifices some solution quality,ibgtiickly converges in

two of the three cases.

¢ Additional partitioning produces smaller, faster instesc

e In some cases smaller windows can provide greater improvermdis can be ex-
plained by our use of a time-out. Smaller windows are morepietaly explored

within the time-out [37].

e Netlist partitioning is fast enough to apply to the largeSi&s and SoCs.

¢ In some cases the bars indicating +/- one standard deviegioextend beyond the
min or max value of7. This occurs when the distribution of solutions is highly

skewed toward its minimum or maximum.

e Solution quality can be significantly improved by applyireysral rounds of parti-
tioning and selecting the best seen results. Such additiomads can be performed
in parallel. Because the smallest (fastest) windows oftenige greater improve-

ment than mid-size (slower) windows, one good strategyrsely solving small

173

Number of Partitions

34

2

AR L of 1

0 UL, AL LT I IHHI:
q,“q?

\,’b‘o’\fb %@«q«,"o N D W > o
SR 'L'L P w2
w\P‘\, ﬂ?’q,““’ 'b"/'bb‘fb@'bq’@&”b?

TNS Improvement (usec)

Figure 8.4: A histogram of TNS improvement in partitions d¢hage ASIC.

windows first, then proceeding to larger windows. A time-outhe runtime solu-

tion quality trade-off can be used to determine stoppinigida.

Partitioning and clustering allow one to apply each of tle@sformations in this dis-
sertation efficiently to the largest available designs. By, balanced, non-overlapping
partitions are more amenable to parallelism. To this endparéitioned a design with
102063 standard cells into 1000 partitions and ran SPIREach ef them. SPIRE was
able to find improvement in 119 of the partitions totalingle8 ns of TNS improvement.
We plotted the amount of improvement in a histogram in Figude This experiment has
been performed on a pool of compute servers because all pattidons can be solved in
parallel. In addition, each partition is solved using ILOBLEX 12.1 configured to use

up to 8 processors in parallel.

174

8.6 Conclusions

In this chapter we have described a method to scale physycdhesis optimizations to
the largest commercial ASICs and SoCs. Working with sucigdeswe have applied our
transformations after commonly used local transformationluding buffer insertion, gate
sizing, and detailed placement as follows. We first dividedhtire netlist into windows of
appropriate sizes for a particular large-scope optinoratiWe then apply that optimiza-
tion within each window, leveraging inherent parallelisind@sjoint windows. We then
combine the solutions into a single optimized result. Theghrod runs in near-linear time
in terms of the number of windows and thus scales to a largeorunf windows. As long
as each window is sized appropriately, algorithms with hghtime complexity can be
applied while retaining affordable runtime on large design addition we have identified
three sources of parallelism compatible with our techrsgaenon-overlapping partitions,
using a multi-core MILP solver, and multiple independentiianing configurations.

We have shown that while increasing the scope of optimimgirovides improved so-
lution quality, a divide-and-conquer framework allows EB#ftware to broaden the scope
of heavy-weight physical synthesis optimizations and exlarallelism. By controlling
window size, we provide a trade-off between runtime and tgwiuquality that can be

tuned to make our large-scope transformations practicti®@fargest available designs.

175

CHAPTER IX

Co-Optimization of Latches and Clock Networks

Optimizations developed in earlier chapters affect mapgets of physical synthesis,
but often target sequential elements, which particularipact circuit performance. In
order to obtain synergies between these optimizations,xpee the infrastructure for
physical synthesis used by IBM for large commercial micogpssor designs. We focus
our attention on a very challenging high-performance destygle calledarge-block syn-
thesis(LBS). In such designs latch placement is critical to thdqremrance of the clock
network, which in turn affects chip timing and power. Ouregash uncovers deficiencies
in the state-of-the-art physical synthesis flow vis-akaish placement that result in timing
disruptions and hamper design closure. We introduce agenération EDA methodology
that improves timing closure through careful latch placetaad clock-network routing to
() avoid timing degradation where possible, dnd immediately recover from unavoid-
able timing disruptions. When evaluated on large CPU degigeently developed at IBM,
our methodology leads to double-digit improvements in keyuit parameters, compared

to IBM’s prior state-of-the-art methodologies.

176

9.1 Introduction

Design-complexity growth has consistently outpaced im@noents in design automa-
tion in the last 30 years. The shortfall is called thessign productivity gamnd tends to
increase the number of designers per project over chip ggoes [49]. However, the
economics of the semiconductor industry limits the sizeasfigh teams, and the shortfall
must be alleviated through increased design automation.

Modern CPU Design StylesHigh-performance microprocessors demand very labor-
intensive IC design styles. In order to cope with the higlydiencies of these designs (3-6
GHz), engineers have traditionally partitioned them interdrchies, with bottom-level
blocks containing fewer than 10,000 standard cells. Thihowology requires significant
manpower for several reasof§ the partitioning task is performed manually and it re-
quires an experienced design architéat, each designer can handle only around a dozen
blocks; the use of smaller blocks increases their numbetsiacessitates more designers,
and(zii) integratingblocks into higher levels of the design hierarchy requirds@icated
designer for eachnit-levelassembly that combines multiple bottom-level macros.

Large-Block Synthesis.In order to improve the automation of synthesized blocks in
high-performance microprocessor designs, a new desi@mistyeing pursued. Functional
units are beindlattenedand all macros inside are merged into a single large, flah-hig
performance block. The resulting entities are calkde-block synthesi@_BS) blocks.
The typical LBS testcase will have more than 25,000 thousatid and possibly as many
as 500,000 cells. The high-performance nature of such alesigkes physical synthesis

quite challenging. In particular, existing tools targeghrperformance designs (4 GHz

177

or more) with small blocks under 10,000 cells, or low-powesigns (400-800 MHz)
with blocks having millions of standard cells. To improve therformance of the LBS
methodology, current tools and techniques must be reviséégstended.

Latch and Clock Network Co-Design Challenges. The large-block synthesis de-
sign style creates several conditions that stress exigtiygical synthesis flows in new
ways. Like in high-performance small blocks, latches ig¢ablocks must be placed in
clusters near #ocal clock buffer(LCB) to limit clock skew and power [23]. However,
the placement region of a large block leaves significant ré@match to be displaced
by a greater distanceThe first major challenge in physical synthesis of large blocks
is limiting the displacement of latches when moving thenselto LCBs. In addition,
clock skew at every latch affects timing constraints for bamational logic. Therefore,
critical path optimization — the focus of preceding chapter must account for clock
skew, but this information is not known until clock netwoik® designed. The latter step
is commonly referred to aslock insertion If clocks are inserted before the latches are
properly placed, the timing picture will be overly pessititis Waiting to consider skew
until too late in the flow may result in suboptimal circuit cheteristics.The second ma-
jor challengeis the fundamental issue of optimizing timing in the preseoicclock skew,
which requires careful ordering of latch placement andictaetwork synthesis operations.
Traditional approaches to these problems suffer from Bagmt timing degradations dur-
ing sudden changes, e.g., moving a latch far across the ehigetlocation of an LCB.
The third major challenge is avoiding severe timing degradations that harm convesen

while managing latch placement constraints and optinonatonsidering clock skew.

178

Our contributions. In this chapter we develop specific techniques to addresshtle

lenges above. In particular we note the following contriidosg.

e A graceful design flow to achieve timing closure by avoidingrdptive changes
through careful reordering of steps. In some cases dismgptould not be avoided,
and in these cases we either revise the offending optiroizati mitigate the amount

of disruption immediately after the disruption is detected

e An algorithm to reduce the maximum latch displacement dueldok skew con-

straints by strategically inserting additional LCBSs.

e A technique to reduce the displacement of combinationatlmgresponse to mov-
ing latches to obey clock skew constraints. Compared todike latches and re-
running global placement, our technique reduces combinatiogic displacement

significantly.

e A novel optimization for control signals that drive LCBs Ifaking a timing degra-

dation caused by latch clustering.

The remainder of this chapter is organized as follows. 8e&i2 outlines a prior phys-
ical synthesis methodology for high-performance CPU deaitd the first major steps we
took to cope with the large-block synthesis design stylen&aing specific problems in
the flow that cause timing degradations are described ind®e8t3. Our new graceful
physical synthesis flow is detailed in Section 9.4. We denratesthe empirical improve-

ments in our flow in Section 9.5. Conclusions are drawn iniSe&.6.

179

Figure 9.1: The locations of cells during force-directedggiment at the clockopt place-
ment stage. (@) After one iteration of quadratic prograngriwilowed by
cell spreading, a graceful spreading of cells can be obder{&) The final
placement resulting from repeating these iterations tove@ence, followed
by detailed placement and legalization.

9.2 Background

In order to cope with the concerns of LBS designs, we adapygieal microprocessor
flow with several extensions designed for large ASICs. Thigien describes existing
physical synthesis techniques for multi-million gate desi and how they can be applied
successfully to high-performance CPU designs.

Force-directed PlacementThe current physical-synthesis methodology used at IBM
relies on a quadrisection-based quadratic placementigdgofor high-performance mi-
croprocessor designs [119]. This algorithm works by firstieg the quadratic program
that is typical in analytic placement algorithms, then d@s the cells into 4 groups by
drawing cutlines to satisfy a density constraint. Nextpives the quadratic program on
those regions individually and repeats the process in addatshion until the cells can
be placed by an end-case solver. The cut-based nature @igioisthm can cause small

changes in the netlist to translate into large changes leetiveo successive physical syn-

180

thesis runs. This behavior exhibited by a placement algoris calledinstability. To
avoid such disruptions, our next-generation flow incorfes@a more stabl@®rce-directed
approach that generally also results in better wirelentfie. force-directed approach pro-
ceeds by an even spreading of cells after each quadratie,soid this is the source of the
improvement in stability. Figure 9.1 illustrates the pregg of force-directed placement.
A more stable placement process is important to ensure dyspedh toward convergence
despite disruptive changes during physical synthesis.

Force-directed placement algorithms are typically getoedrd optimizing wirelength,
and do not take clock network synthesis into account. Asaltrdatches are likely to be
placed far from each other, spread throughout the placeabke In turn, clock power
and skew budgets can be exceeded when a high-performan&eetovork is synthesized
using such post-placement latch locations. Thereforericsebeyond wirelength must
be employed during placement to satisfy chip performangeirements and minimize
adverse impact on the clock network [94]. The following pplstcement optimization
problem is designed to mitigate timing degradations by mining latch displacement
while creating tight latch clusters that enable reducedicietwork power and skew.

Latch and Clock Co-Design. Latch locations are critically important to chip timing
and dynamic power. We formalize the problem of optimizinighalocations for timing

and power as follows.

Definition IX.1 The Latch and Clock Co-Design Problem: Given a placed and opti-
mized circuit layouts with [latches, a local clock buffer standard-cél’ B, a maximum

numberC' of latches that can be driven by a local clock buffer, and aimam distance

181

Coarse optimization

Unhidel

LCB cloning

Latch clustering

Net weighting

Global clockopt
placement

Unhide2

Opts after clockopt

Figure 9.2: The preexisting clock optimization flow exhsbgieveral disruptive features.
During Unhidel, the last level of the clock network is expbtetiming anal-
ysis, but the latches are not yet optimized. LCB cloning ta®additional
LCBs to limit the fanout of each LCB and latch clustering detimes which
LCB will drive each latch. Global clockopt placement ign®existing loca-
tions when determining a new location for each gate. Timéngasserted af-
ter placement in Unhide2. Finally, additional coarse opation is performed
based on new timing conditions.

D > 0 between any latch and the local clock buffer that drivesatjsdy all of the fol-
lowing constraints and minimize the following objectivasért[é} copies of LC'B into
the design, so as to drive at maStlatches with each.C' B, and place them to mini-
mize latch displacement. Move any gates necessary so tithekare located within
the required distancé > 0 from the local clock buffer that drives them. Minimize the
sum of displacements of gate locations in the new circuibuay?/ as compared td~,

> gec distance(location(G, g), location(H, g)).

Mercury is a state-of-the-art physical synthesis flow developedusmed at IBM that

is optimized for ASIC designs with over a million standardlselt achieves a fourfold

182

speed-up over previous approaches on designs that sizeevdgwhe Mercury flow was
not designed for high-performance blocks, and is still re#dion small blocks. Instead,
the default flow for small blocks is referred to as Perseudlow. Because LBS designs
are high-performance, we first tried adapting the Perseus fidich was designed for
high-performance blocks. However, the runtime scalinglieapthat the largest LBS de-
signs would require over one day of runtime in physical sgathalone, while the required
turn-around time for the entire flow is only 12 hours. In ortieachieve a speed-up on
LBS testcases, we applied the Mercury flow and enhanced <eed acceptable quality
of results. The Mercury flow is also inherently more gracefizin the Perseus flow, be-
cause directly after global placement, it quickly fixes &dotrical violations and returns
the timing environment to a meaningful state. Originalyg Perseus approach to electrical
correction alternated timing-driven buffer insertion ayade sizing. This flow experienced
convergence problems and was ineffective in fixing elegknmlations. Placement causes
degradations by creating long wires with electrical vimas, therefore we conclude that a
next-generation flow must include a post-placement clgastep that specifically targets

electrical violations, to ensure graceful convergence.

9.3 Disruptive Changes in Physical Synthesis

Recall that physical synthesis begins with a gate-leveistéhat is produced by logic
synthesis, then derives an optimized netlist and producdsgpalayout A number of sig-
nificant changes to the state of the design must occur whikebeing processed. For
example, when physical synthesis begins, gate locati@srdmown, and a global place-

ment algorithm must be invoked to find locations for all of gates in the design. This is

183

a disruptive change that will create vital new informatieweell as invalidate previously
held assumptions. Whereas logic synthesis relies on ciodeg models that abstract
way interconnect, accurate interconnect delay models afted placement are likely to
increase estimates of path delay. Whereas logic synthelgs ion crude timing models
that abstract way interconnect, accurate interconneetydabdels used after placement
are likely to increase estimates of path delay. How a phy/siggthesis tool reacts to dis-
ruptive changes alters quality of results significantly.tiis section, we discuss several
sources of disruptions during physical synthesis and pefisruptive changes.

Changes in the Accuracy of Interconnect-delay Models.RTL-to-GDSII design
methodologies begin with running logic synthesis on a roRgh netlist. Then, a de-
signer inspects the output of the logic synthesis toolaviss’ meeting timing constraints
under azero wire-load model This sanity check ensures that physical synthesis is not
invoked on a design where gate delays alone violate timimgtcaints. Subsequently, the
netlist must be placed to facilitate interconnect delainetion, e.g., usingImore-delay
formulas. The availability of physical information and teemergence of interconnect de-
lays introduces a large disruption in timing estimates.

Uncertainties in Global Placement. In the example above, we pointed out that the
input to physical synthesis is unplaced, and thus a glolzdgohent algorithm must be
run before physical optimization can begin. From a physsyaltthesis perspective, the
primary shortfall in state-of-the-art global placemergalthms is that they do not fully
comprehend timing or electrical characteristics of gate$&ires. Instead, they model

optimization of these circuit characteristics using warejth, on the assumption that good

184

wirelength correlates with other objectives but is eagsi@ptimize. As a result, timing and
electrical characteristics are often undermined by glptediement, even on an optimized
netlist! Without improving multi-objective placement itself, adaig this disruption in a
physical synthesis flow is very difficult.

Relocation of Latches Toward Local Clock Buffers. During synthesis, each clock
domain is given a singllecal clock bufferto drive all the latches in that domain. However,
each LCB is limited by a maximum capacitance that it can diwvel so later in the flow
LCBs must be cloned in order to limit their fanout. This is mlane during synthesis,
since latch locations have not yet been determined. We wikéddo minimize the total
length of clock interconnect between the LCB and the latéhesves, and this requires
placement information. In order to limit the load driven b .CB, and also reduce clock
skew, we place the latches very close to the LCBs. During L©RBing, the latches are
grouped together intlatch clustersand moved adjacent to the LCB that drives them. Such
latch movement is disruptive in several ways, especialiyttie placement and timing of
critical paths. It is not uncommon to see the worst-slack pagrade from around -50ps
to below -1ns in response to this step. Minimizing latch nmogat is a key contribution
of this chapter.

Early Timing Estimates based on Ideal Clocks.Since there is no placement infor-
mation available directly after logic synthesis, a clockwak cannot yet be routed. As
such, detailed analysis of clock skew is impossible, andheeefore calculate nominal
clock skews at latch pins witidealized clocksDifferent methodologies synthesize clock

networks at different stages. However, in high-perforneamethodologies at IBM, we

1In state-of-the-art flows, placement can be invoked sevienals following optimization.

185

consider the skew caused by the last level of the clock nétafber latches are placed and
LCBs are inserted. Nets with high load lead to high clock skelch can cause a serious
disruption in timing, so the placement of latches and LCBerisical. However, realis-
tic clock networks are necessary to optimize the latchatoH paths while accounting for
clock skew. Therefore, our work seeks to minimize the urdadolie disruption in timing
due to realistic clock networks.

Simplified Slew Propagation. Static timing analysis is one of the largest consumers
of runtime during physical synthesis, taking about 40% ¢fadal physical synthesis run.
One of the techniques used to mitigate this expense is cpiledlew propagation In
pin-slew propagation, instead of slew rates being progabatong paths, the slew rate
used at a particular point is computed usirdgfault slew rateasserted on its fan-in gates,
and propagated through one level of logic. This allows clkartg timing to propagate
only locally, which is considerably faster thaath-slew propagation However, this is
an approximation that results in a loss of accuracy. In otdexompensate, we switch
to path-slew propagation during a late high-accuracy apaition mode. At the switch
to path-slew, signal paths can experience major timingudissns and become severely
critical. We therefore develop a technique to improve theueacy of default slew rate to

mitigate this disruption.

9.4 A Graceful Physical-Synthesis Flow

In this section, we develop a next-generation physicatksgis flow that reduces or
eliminates many of the disruptions and timing degradatmuttined in the previous sec-

tion. Our research strategy is based on observing and anglgpecific timing degrada-

186

Coarse optimization

LCB cloning

Latch clustering

Expose LCB control timing

LCB fanin optimization

Net weighting

Incremental
clockopt placement

Unhide clocks LCB to latch

Add’l coarse optimization

Figure 9.3: Our next-generation clock optimization flowsisareful ordering of steps to
avoid the largest degradations. LCB cloning creates amfditiLCBs to limit
the fanout of each LCB and latch clustering determines whicB will drive
each latch, this is now done before clock timing is exposefterAnany new
LCBs are inserted, the control signals that drive them aeeting over an
unoptimized high-fanout net. We optimize these contrahalg paths in LCB
fanin opt. Incremental clockopt placement moves gatesttées #is possible
when ensuring that latches are placed close to LCBs. Claegkag is only
exposed after the LCB to latch load is reduced to acceptabkdd. Finally,
coarse optimization based on mercury is performed.

tions. After understanding the emergence of such degmauative first try to rearrange
relevant steps of the design flow and revise individual flospstso as to avoid degrada-
tions. When avoidance is impossible, we attempt to restleelegradations immediately
after observing them, using specialized design transfooms In the remainder of this
section, we describe the improvements that implement cugrgéstrategy.

Gradual Evolution of Clock Networks is paramount to our next-generation physical
synthesis flow and compliments techniques for latch placepr®posed in previous chap-

ters. To this end, we observe that in order to improve cloeksk high-performance de-

187

(@) I ! (b) I !

H ¥
Icb ctrll—-] Icb_ctrl |
- [|

clk clk

©) ’ T o y)

]
B
'—TI_. ‘I P
—> > > D—l — > ~ T
]

Ich_ctrl Icb_ctrl
[] []
clk clk

\V

Figure 9.4: Anillustration of the flow in Figure 9.3. At thediening of clock optimization
in (a) the clock is still idealized and latches are placediadothe chip. In (b)
local clock buffers (LCBs) are cloned and used to drive sVatches each.
To accommodate the timing impact of all the new LCBs, LCB oolrdignals
are optimized in (c). Global placement then moves latchesecto LCBs in
(d). Finally, leaf-level clock networks are inserted anolc&ls are unidealized.

sign blocks, it is important to place latches reasonablgesto driving local clock buffers.
This step is performed during a stage of physical synthedlisdclock optimizationdur-
ing which realistic clock-network models are generatedBk@re cloned, and latches are
placed close to LCBs. As described in the previous sectibof ¢hese changes are dis-
ruptive for timing closure, and significant care must be tattering this stage to ensure a
graceful flow.

The preexisting flow for this stage began by exposing theléast of the clock net-
work, then performed LCB cloning and latch clustering, aidted net weights, and finally

performed a global placement step calidockopt placementThis version of the flow is

188

more disruptive than necessary due to the ordering of opéitiwins. The main problems
are (i) the clocks are unhidden before the LCBs are cloned and sit@teemoved close
by, and thus the clock skews are very I&rged (ii) the net weights used for the global
placement are based on inaccurate timing estimates thdt fiesn unhiding the clocks

before optimization. This flow is illustrated in Figure 9a}(

We solve these problems through a careful reordering ofropditions that takes into
account which information is used by which step. In our newflvhich is shown in
Figure 9.3(b), the first step is to perform a new kind of LCBnit and latch cluster-
ing, which is described below undeength-Constrained Latch Clusteringt this point,
we have changed the clock network significantly and thisireguiming assertions to be
reread to get meaningful timing information. After that,keeping with the philosophy
that whenever we cause disruption we should repair it imatelyi, we introduce a new
step following LCB cloning and latch clustering called LCahfn optimization. This new
step is designed to repair the damage caused by LCB clomidgsalescribed below un-
derLocal Clock Buffer Fanin Optimizatioi.he timing should be completely recovered to
its previous state following LCB fanin optimization becauble LCB control signals are
not high-performance signals. At this point net weightiagperformed on a much more
appropriately optimized netlist, and a novel placemen stdled incremental clockopt
placement is performed as described below umderemental Clockopt Placemeriol-
lowing this placement step, LCBs are inserted and latcleeplaced near the LCBSs, so as

to minimize the disruption caused by unhiding the clocks

2Before LCB cloning, all latches on the chip are driven by ayki. CB with very high fanout, resulting
in very different latencies between different corners ef ¢hip.

189

i i i 4 ; I t
b |H' '|" h | 1”1'“']'[' | |
|'r ‘ | | | l
- , ! by
) | a t | b
I ' | b |
| } | ’
(@) (b) (c)

Figure 9.5: Adding LCBs (shown by vertical bars) reducesmiaimum latch displace-
ment (thin lines). This behavior is controlled by two paréeng(i) maximum
increase in the number of LCBs, as a percentage of the minimumber(i7)
maximum latch displacement, witli) taking precedence ovéii). (a) The
minimum number of LCBs is 56 and the maximum latch displaggnsehigh.
(b) By limiting parameteri) to 12.5% we get a maximum of 63 LCBs, and
this noticeably reduces the maximum latch displacement.We limit the
maximum latch displacement to a tight limit using paraméiér but relax
paramete(:) and end up with low latch displacement and 100 LCBs.

Idea 1: Length-Constrained Latch Clustering. At the beginning of the clockopt
stage, latches are placed without any clocking-relatedtcaimts using the techniques in
Chapter Ill. We consider these locations to be the ideahlbtcations from a signal tim-
ing perspective, and try our best to preserve these lotlmough the clockopt stage.
However the LCBs must be cloned to limit the capacitance treye, and latches must
be placed close to the LCBs to reduce the clock skew. Thexghee employ a geometric
clustering algorithm calle&@-means which finds groups of closely-placed latches to be
driven by the same LCB [110]. Pseudocode for our algorithgiven in Figure 9.6. To

reduce the disruption caused by moving latches close to | ®Bslefine a new parameter

190

CL

O©CoO~NOULEAWNPE

10
11
12
13
14

USTER-LATCHES

> Input: VLSI Circuit ¢', Maximum Number of Latches per LCB/
> Input: Number of LCBsi
o> Output: Sets of Latch Clustess Maximum Latch Displacemennt
centers.ADD(center of gravity of all latches)
foreach(0< i < K)
new_center = LOCATION(latch that is the furthest from any point ianters)
centers.ADD(new_center)
latch_list = list of latches
sortlatch_list by distance to any point inenters
while (!latch_list. EMPTY())
closest_center = CLOSESTFCENTER(centers, latch_list.FRONT())
S[closest_center].ADD(latch_list.FRONT())
latch_list.POK)
if (S[closest_center].s1ze() > M) > cluster is full
centers.REMOVE(closest _center)
sortlatch_list by distance to any point irenters
L = compute the maximum latch displacement for the clustegs in

CLUSTER-LATCHES-LENGTH-CONSTRAINT

A WNPE

maximum |

> Input: VLSI Circuit ¢', Maximum Number of Latches per LCB
> Input: Maximum Number of LCB3V, Latch-Displacement Target
> Output: Sets of Latch Clustess
k = ceil(number of latches A1)
while (£ < N and maximum latch displacemestp)

k=k+1

(S, L) = CLUSTER-LATCHES(C, M, k)

Figure 9.6: An algorithm for length-constrained latch clustering.

atch displacemeand relax the constraint on the number of LCBs until no latch

is more than this distance from an its LCB. The result is alisfaade-off between tim-

ing disrupti

power and

on caused by latch displacement, and additidoak buffers which consume

area. We have found empirically that, at the 32 nde nlatch displacement

can be reduced ta500 routing tracks at the cost of a 25% increase in LCB count.

Idea 2:

Local Clock-Buffer Fanin Optimization. LCBs typically support aenable

signal or other control signals that are used for clock gatiésfter LCBs are cloned, all

of the new

LCBs are connected to the same control signal thatdsiving the original

LCB. Immediately after LCB cloning, this net often expeen a severe timing violation

191

(b)

Figure 9.7: Using incremental clockopt placement signifilyereduces the disruption of
the clockopt placement step. In each plot, a vector indéddte movement of a
cell during the clockopt phase. Red vectors indicate degpteents by over 500
tracks. Yellow, green and blue indicate 200, 100 and 50 sraekpectively.
(a) Displacement vectors for all cells resulting from ttemtial force-directed
placement. (b) Incremental placement reduces the numbedafectors dras-
tically. Nearly all of the red vectors in this plot are due atches which must
be moved far to get to the nearest LCB.

caused by the heavy load of the high fanout. In trying to emsugraceful design flow,
we attempt to fix this unavoidable degradation immediatérat is created. To this end,
we have created a novel LCB fanin optimization step and apjtymediately after LCB
cloning. This step includegz) timing-driven gate placement for any logic in the control
of LCBs, (i7) timing-driven buffer insertion to optimize long nets thaayrbe created and
(7i7) timing-driven gate sizing to optimize the power levels ofegain the control logic.
We have found empirically that these three steps are suffitigestore timing to the level
observed before LCBs were cloned.

Idea 3: Incremental Clockopt Placement. In the process of timing closure intro-
duced in Chapter Il, physical synthesis is composed oftitera of (i) global placement,

(7) timing optimization, andiii) per-iteration net weighting guided by timing analysis.

192

However, running a complete global placement algorithrbgidlwith new net weights
influenced by the previous optimization, is a powerful digion to timing closure. In
the IBM Physical synthesis flow, the first iteration emplogsywcoarse models and con-
straints, e.g., relaxing the legality constraint for plaeat into looser, grid-based bin-area
constraints. The second iteration uses more realistic ln@ie requires a legal place-
ment. At the end of the second iteration, a new constraintiéed, the tool must then
clone LCBs and move the latches near an LCB. In order to aclisimiiis with mini-
mal design disturbance, we temporarily add two-pin net& Wwigh weights to connect
each latch to its driving LCB before global placement. Thesnglobal placement seeks
to minimize weighted net length, the fake nets cause it toereach latch closer to the
connected LCB, so as to shorten the fake nets. After placernten fake nets are re-
moved. The latches must be moved next to an LCB even if thidatisment is very large,
however, the bulk of remaining logic does not need to move Tarerefore, in order to
minimize timing disruptions, we develop a new placementmégue calledncremental
clockopt placementwhich begins with a set of locations and leverages a tecienigr
spreading and detailed placement calkedative local refinemendn it [115-117]. This
technique begins with a placement solution and overlaysdaled tile structure through-
out the layout area. Gates located in a particular tile o ¢inid can be moved to one of
eight neighboring tiles so as to improve wirelength whilemteining gate density. Cru-
cially, we add anaximum movement threshdddyond which any displacement causes a
high penalty to be imposed in the wirelength cost functionisallows the placer to bring

the latches close to the LCBs, and allows the rest of the kogadljust to the new locations

193

DESIGN TECHNOLOGY | INITIAL FINAL CycLE | DIMENSIONS
NODE(nm) | #GATES #GATES TIME(pS) (m)

LBS1 22 206369 | 251021 - 255495 1000 1000x900
LBS2 32 190777 | 234912 - 24837(328 1498x1930
LBS3 32 51159 64909 - 74525 230 378%x499
LBS4 32 88835 | 103514 - 122659 390 1000x 800
LBS5 32 22837 28238 - 29184 230 449x 225
LBS6 32 17322 26613 - 28779 460 180x397

Table 9.1: Large-block synthesis benchmark charactesisiihe FNAL #GATES column
shows the range of possible gate counts using data fromiexgais presented
in Tables 9.2 and 9.3.

of the latches, but prevents any large displacements i kbgit will harm timing unnec-
essarily. The result is a significant reduction in total oelvement, which ensures a more

graceful transition to tight latch clusters.

9.5 Empirical Validation

In order to validate our proposed methodology we ran theiphlsynthesis tool PDS
(commonly used at IBM) in various configurations to isolai@vidual flow improvements
presented in the previous section. We used LBS microprocegssigns being developed
at IBM for 32nm and 22nm technology nodes. Table 9.1 showstlirabenchmarks range
in size from 17,322 to 206,369 standard cells before opation. Physical synthesis
then inserts between 16.52% and 66.14% more cells duringnization, with a median
value of 27.33%. The increase is mostly due to buffers anertavs, but specific numbers
depend on local resynthesis and technology mapping. THerp®gance requirements of
these blocks are also an important characteristic, withetaclock frequencies ranging

from 1GHz to 4.35GHz.

194

Implementation Insight: Default Slew Percentile. The common practice in comput-
ing a default slew rate is to sample the slew rates of the titjgalrpins. For example,
one might calculate slew rates of the 800 most critical patit use the average as the
new default slew rate. Because we observe a degradation svhigrhing to path-slew
mode, we note that this must be an optimistic slew rate fosahmaths that are harmed,
and we seek to make this estimate more pessimistic. Takiagyarlset of pins to sample
from is likely to increase optimism because we are examittiegn in most-critical-first
order. Reducing the sample set will likely increase pessimbut increase sensitivity and
uncertainty that will make the result unstable. Insteadpvepose to automatically set the
threshold for slew rate averaging as a certain percentif@roglew rates (this threshold
can be computed in linear time using thid-elemenalgorithm available in the C++ Stan-
dard Template Library). For example, if default slew ratecpatile is set to 10%, and we
sample 500 pins, we will take the 50th worst slew rate fronstiraple set. After studying
this parameter, we have found that 35 percentile is the ladis¢ ¥o eliminate degradations
when switching to path-slew mode. However, this pessimismstmot be too great, for
this would cause unexpected timing improvement at the svidgath-slew mode. This
situation is problematic because earlier optimizationsivnard to solve timing problems
that disappear upon more accurate analysis, which wastéme) area and power.

Empirical Results. In Table 9.2 we compare the Perseus baseline to the following
additions(i) only Mercury,(ii) only force-directed placement (FDP), afid) only grad-
ual evolution of clock networks. In these designs we compawalit performance metrics

including the worst slack path in the design, amndhe sum of slacks below a threshold,

195

DESIGN MoDE | TIME | WORSTSLACK P WL AREA
Baseline | 40844 -76.641 -4203| 1.43e7| 0.5345

LBS3 Mercury | 26578 -25.680 -384| 1.45e7| 0.4965
FDP 37929 -55.015 -1519| 1.32e7| 0.5076

Clockopt| 37785 -7.536 -1214| 1.41e7| 0.5693

Baseline | 54442 -158.345| -81110| 2.57e7| 0.9942

LBS4 Mercury | 41726 -189.391| -58881| 2.47e7| 0.9420
FDP 52939 -167.016| -67799| 2.41e7| 1.0091

Clockopt | 56396 -148.050| -53442| 2.04e7| 0.8838

Baseline | 15274 -97.544 -6078| 6.93e6| 0.2382

LBS5 Mercury | 9449 -98.374 -6293| 6.98e6| 0.2423
FDP 16196 -82.391 -6288| 6.87e6| 0.2380

Clockopt | 13498 -87.287 -6265| 6.80e6| 0.2373

Baseline | 18476 -103.142| -16335| 5.40e6| 0.2218

LBS6 Mercury | 13265 -89.288| -15300| 5.74e6| 0.2213
FDP 18325 -88.207| -11755| 5.14e6| 0.2143

Clockopt | 19182 -103.682| -13958| 5.05e6| 0.2167

Average Mercury | 1.46X -14.87% | -30.27% | 1.18%| -2.72%
Improvement FDP 1.03X -13.19% | -26.21% | -4.93% | -1.75%
Clockopt| 1.04X -26.67% | -29.18% | -7.59% | -1.82%

Table 9.2: The impact of individual components in the grak#bw. TIME is the runtime
of physical synthesis in seconds. ONSTSLACK is slack of the worst path in
the circuit in picosecondsp is calculated as in Equation 1X.1 and is expressed
in picoseconds. WL is the sum of half-perimeter wirelengthd is expressed
in routing tracks.

which is computed as follows considering every timing endpo

¢ = Z min (0, worst_slack(i) — slack_target) (1X.1)

Where slack-target is an input parameter to physical sgighe

From the data in Table 9.2 we observe the following:

e Mercury accounts for nearly all of the speed-up of this flotvddes not achieve
the fourfold speed-up observed for million-gate designg,e1.42< speed-up is

significant for these designs which can take half a day.

e The use of force-directed placement adds stability to thve #lod contributes a sig-

196

DESIGN MoDE | TIME | WORSTSLACK P WL AREA
LBS1 Baseline| 54105 -76.943 -1635 7.10e7 1.52
Gradual | 45753 -72.229 -367 6.73e7 1.55
LBS? Baseline| 41106 -128.605 -2004 8.97e7 1.84
Gradual | 42959 -56.667 -2276 9.65e7 1.96
LBS3 Baseline| 25906 -28.102 -862 1.39e7 0.52
Gradual | 12846 -3.362 -66 1.39e7 0.44
LBS4 Baseline| 30691 -153.924| -51674| 2.55e7 0.99
Gradual | 22281 -70.667| -20025| 2.05e7 0.73
Average 1.22X 51.04% | -54.39% | -12.34% | -11.49%
Improvement

Table 9.3: The impact of our graceful flow on key design patanse TIME is the runtime
of physical synthesis in seconds. ONSTSLACK is slack of the worst path in
the circuit in picosecondsp is calculated as in Equation IX.1 and is expressed
in picoseconds. WL is the sum of half-perimeter wirelengthd is expressed
in routing tracks.

nificant improvement in wirelength.

e Gradual clockopt results in a significant wirelength redarctas a result of calcu-
lating net weights based on a netlist optimized for timing@ELCB cloning. This
good timing result is a direct consequence of avoiding déagran in our graceful

flow.

e Each component provides a significant overall improvemeigrims of timing and

area metrics.

In our next experiment we compare the baseline Perseus fldwowr entire method-
ology combining all of the features presented in this Chapide results are shown in

Table 9.3. We observe the following

e Every testcase demonstrates an improvement in worst slack.

e Both worst slack an@ average improvements are large, validating that the gnacef

197

methodology is an effective method to improve a timing ctedilow.

e Area gains are inconsistent, but reductions of at least 1086l area typically lead
to reduced power, lower routing congestion and the potefttianore aggressive

floorplanning in future designs.

¢ Significant wirelength reductions alleviate demand fortirggiresources, resulting

in improved routing congestion and improved downstreanpdedosure.

e All metrics show strong improvement as a result of our methagly.

These experiments demonstrate the impact of each component methodology,
and show that they ultimately translate into strong improgets in primary metrics of

circuit performance and cost.

9.6 Conclusions

In this chapter we have introduced a new strategy to mitigateeliminate disruptive
changes in a physical synthesis flow. In implementing thistegy, we have identified
key timing degradations that occur when new design parasmete introduced during
physical synthesis. We then carefully revised relevanissté the flow, made changes to
the ordering of steps, and developed new optimization dlguos that were subsequently
integrated into the overall flow. Our contributions are eaftd in the context of an indus-
trial physical synthesis flow at IBM and several recent,dacgmmercial IC designs that
defied previous-generation physical synthesis tools. @mrtbst challenging design type
available to us, large-block synthesis designs, our flovieaels double-digit (percentage)

improvements in all major circuit metrics considered.

198

CHAPTER X

Conclusions and Future Work

A physical synthesis flow reads a mapped netlist producedgig Isynthesis, then
computes physical locations for gates and improves theopednce of the circuit, un-
til timing constraints are met. We observe that state-efdtt flows consist of a series
of optimizations that operate at two distinct scales, tieaar time algorithms that ap-
ply to the whole netlist, and more expensive transformatitmat typically operate on a
handful of gates or interconnections. Such a limited viewhefsolution space of circuit
optimization leaves many transformations vulnerable toob@ng trapped in local min-
ima. We observe this phenomenon on large, high-performdesgns and improve upon
the state of the art by integrating optimizations that aaelitronally applied separately.
Our novel transformations achieve broad opportunitiesrforeased circuit performance
and can handle larger design subsections than existinggatingynthesis transformations,
thereby extending the scope of optimization. Given thatpllaeement of sequential el-
ements is a critical factor to the success of timing closwedevelop a next-generation
timing-closure flow that improves the placement of seqa¢etements and facilitates the

synthesis of high-performance clock networks.

199

10.1 Summary of Results

In this dissertation, we make several contributions thaaade the strength and capabili-
ties of modern software tools for IC physical synthesishwiite ultimate goal to improve
the quality of leading-edge semiconductor products. B@mith narrowly-focused op-
timizations, we identified obstacles to further improvetsen circuit performance and
addressed these obstacles with more powerful integraaadformations that outperform
chained individual optimizations. Scalability was acleiévn this approach by mapping
circuit transformations to formal mathematical optimiaas and through the use of effi-
cient analytical delay models. To further improve the scape efficiency of such hybrid
transformations we developed robust computational itrinature and powerful circuit-
analysis tools. Despite these enhancements, hybrid tnanafions remain somewhat ex-
pensive, motivating the development of divide-and-condreaneworks that can handle
large IC designs. When integrating our new transformatiotesthe physical-synthesis
infrastructure at IBM, we realized that these optimizasiwsith increased scope tend to in-
troduce disruptions into the design flow, and these disoagtadversely affect end results.
We therefore developed a next-generation physical-sgiglflew that ensures a graceful

improvement of key design parameters. Specific contribstare itemized below.

Simultaneous placement and buffering.
At advanced technology nodes, multiple cycles are requwedignals to cross the
chip, making latch placement critical to timing closure.eTgroblem is intertwined with

buffer insertion because the placement of such latchesndspan the location of buffers

200

on adjacent interconnect. In Chapter Il we detail our Im@@gramming-based algo-
rithm to compute the optimal location of pipeline latchedemna linear interconnect delay
model [83, 84]. We then extend our algorithm to move nearbylmoational logic gates
to improve the effectiveness and applicability of this aygwh to simultaneous placement
and buffering. Experimental results validate our transi@iion — our techniques improve

slack by 41.3% of cycle time on average for a large commeAS$dC design.

Bounded transactional timing analysis.

As local circuit optimizations become increasingly mulkijective in modern physical
synthesis flows, a tighter interaction between optimizasigorithms and timing analysis
is necessary. Such optimizations must employ heuristiseéoch for good implementa-
tions of subcircuits, but timing analysis offers no supgortretracting circuit modifica-
tions [85,86]. In Chapter IV we describe our extension tditranal static timing analysis
that records a history of incremental network delay comiparta in a stack-based data
structure, so that the timing can be returned to a previekistyvn state upon retraction
of a circuit modification. It also explicithoundshe scope of propagation to a local win-
dow in anticipation of retraction. These extensions gyeatiprove the performance of
static timing analysis for local circuit modifications inetpresence of retraction. For the
classical variant of STA, our experimental results demastan improvement of up to
246 x, while a factor of up t@.2x is achieved as compared to common lazy evaluation

techniques.

201

Simultaneous placement and gate sizing in a discrete domain
Gate locations that optimize timing depend on boundaryrtgn@onditions in the lo-

cal subcircuit. Similarly, the optimal drive strength of atg depends on the input slew
rate and output capacitance. But these two problems aredebecause the output ca-
pacitance of a gate depends upon the length of interconhécives. Given a set of
discrete candidate locations and power levels, we forrautepath smoothing problem
in terms of adisjunctive timing graphand develop a computation of optimal locations
by incorporating a generalization of static timing anadysito an efficient branch-and-
bound framework [74]. Empirically, our approach consiiieimproves solution quality
in a large-scale modern industrial benchmark. Experimeesalts in Chapter V indicate
that the techniques used in this chapter are accurate eriougtprove the critical path

optimization and slack-histogram compression stages ysipal synthesis.

Timing-driven gate cloning for interconnect optimization.

In a complete physical synthesis flow, optimization transfations that can improve
the timing on critical paths that are already well-optintibg a series of powerful transfor-
mations (timing driven placement, buffering and gate gkire invaluable. We develop
an innovative gate cloning technique to improve intercahdelay on critical paths dur-
ing physical synthesis [66]. Using the buffer-aware inb@rcect timing model introduced
in Chapter Ill, new polynomial-time optimal algorithms greesented for timing-driven
cloning, including finding both optimal sink partitions éidtifying the fan-outs) for the
original and the duplicated gates, as well as physical iocatfor both gates. In par-

ticular, for a gatey with m fanouts, Chapter VI describes in detail two polynomialgim

202

algorithms. For the case whenis fixed, we present aty(m)-time optimal algorithm
to maximize the worse slack @t for the case when the is movable, and one for the
case whery is movable. Ifg is fixed, ourO(mlogm)-time algorithm maximizes the
worst-slack ofy. For one hundred testcases at the 45nm technology node mandeate
significant timing improvement due to our cloning technigj@s compared to other ex-
isting timing-optimization transformations. Extensidoshandle other optimizations and
constraints, such as wirelength, total negative slack aacement obstacles are further

discussed.

Simultaneous performance-driven retiming, placement, bifering and logic cloning.
One of the most common situations in which the latch placeneehniques of Chapter
lIl are insufficient is a critical path wherein moving a gatemediately next to its most-
critical input is the optimal solution but does not meet timiconstraints. For example,
when relocating the latch adjacent to its only input stiblates a setup time constraint.
We develop SPIRE, a new physical synthesis transformatiatrsimultaneously incorpo-
rates retiming, gate relocation, gate duplication, andepurisertion to improve this situa-
tion [82]. The need for SPIRE is demonstrated by examplejmatirtg the integration of
all considered techniques to meet timing constraints. ERiiproves the performance of
partitions in a high-performance microprocessor desigmpical results on 45nm mi-
croprocessor designs shé# improvement in worst-case slack af@), improvement in

total negative slackfter an industrial physical synthesis flow was already completed

203

Broadening the scope of physical-synthesis optimizationsing partitioning.

The optimizations developed in this dissertation extengal-synthesis transforma-
tions beyond a handful of gates. Unfortunately, the contprial complexity of such
optimizations makes them too inefficient to apply to entedists of large ASIC and SoC
designs. Therefore, we develop a technique to identify@ppately-sized subsets of large
designs on which our transformations can be applied effigie@ur method utilizes ex-
isting hypergraph partitioning algorithms to divide thecait in a top-down fashion until
the subsets are the desired size. Empirical results deratmgtat this technique can work
in practice and illustrate a run-time solution quality &anff for SPIRE, the transforma-
tion developed in this dissertation that can optimize swodis with thousands of standard

cells.

Co-Optimization of Latches and Clock Networks in Large-Black Physical Synthesis.
Optimizations developed in this dissertation affect neaviery stage of a typical indus-
trial state-of-the-art physical-synthesis flow. In ordembtain synergies between them,
we explore the infrastructure for physical synthesis usgdBd for large commercial
microprocessor designs. We focus our attention on a verjectging high-performance
design style called large block synthesis (LBS). In suchgihesslatch placement is criti-
cal to the performance of the clock network, which in turreef§ chip timing and power.
Our research uncovers deficiencies in state-of-the-arsipalysynthesis flows vis-a-vis
latch placement that result in timing disruptions and handsign closure. We introduce
a next-generation EDA methodology that seeks a more gratiefing-closure process.

This is accomplished through careful latch placement andkehetwork routing tq(7)

204

S — [cowrimen]
v

Logic Synthesis Electrical Correction
y v I

Floorplanning Legalization
[

[Comnewot smiess ©)

Global Routing

Detail Routing

Design for Manufacturing

Figure 10.1: The optimizations in this dissertation im@oearly every stage of a state-
of-the-art physical synthesis flow. For example, we illatrthat Chapter 1V
deals with Timing Analysis by a adding a circled 4 to that stefne flow.

avoid timing degradation where possible, dind immediately recover from unavoidable
timing disruptions. Our methodology leads to double-digiprovements in key circuit

parameters of large CPU designs developed at IBM.

10.2 Future Work

The transformations developed in our work, along with pyaigite circuit analysis
techniques, have significantly improved the quality of nrodeery large-scale integrated
circuits developed at IBM. Much of this improvement is duetoeful integration into a
graceful physical-synthesis flow described in Chapter IXrtier work can address the

following challenges.

Dealing with modern interconnect.

With the explosion in the number of design rules, metal layand different routing

205

pitches at advanced CMOS technology nodes, routing cangastan increasing design
challenge and layer assignment significantly affects detynation. The use of RUM-

BLE (Chapter Ill) must take into account preexisting layssignments. Areas with high
wiring congestion may necessitate detours of criticalrgdenects, impacting circuit per-
formance and jeopardizing timing closure. Therefore,irmutiemand and layer assign-
ment must be analyzed early in physical synthesis and tdaithkeugh the physical syn-
thesis flow in response to certain types of circuit transtdrams. We see an opportunity
to formalize the handling of routing congestion in timingslire and develop effective
benchmarks and algorithmic solutions [81]. As a first stegtegplacement techniques
from Chapters Il and VII can be extended to avoid congestedsa More sophisticated
methods may be required in the methodology of Chapter IX@alewhen dealing with

clock trees and latch clusters.

Optimizing power.

Observe that in high-performance microprocessor desoymsk distribution is respon-
sible for a large fraction of power consumption. We beliehat bur techniques described
in Chapter IX improve not only circuit performance, but afsmver consumption. Con-
figuring an environment for rigorous evaluation of powerrelggeristics is an important

direction for future work.

Global placement to improve sequential slack.
Our transformations described in Chapter VIl make heavyoligdysical retiming to

improve combinational slack of circuits in question. Thimization was combined with

206

placement, buffering and logic cloning. A further oppoituims to perform global place-
ment so as to increase tpetential for such improvementd his potential is expressed
by the metric known asequential slack46]. Optimizing sequential slack during place-
ment can provide improved opportunities for clock skew dciiag and retiming, and
thus further broadens the scope of physical synthesis g@ion. We expect that new
global placement algorithms that optimize sequentialkstam increase the applicability

and effectiveness of retiming transformations developedhapter VII.

Handling of large macros and intellectual property (IP) blocks.

With billions of transistors integrated into a single chdesign complexity becomes a
major challenge, as it defies the efforts of the best engsnaed the capabilities of most
recent software tools. One method to limit that complexstjoi reuse design components
in the form of IP blocks, but placement of such blocks is &iijely done manually today.
Such blocks typically incorporate latches immediatelyobefand after primary outputs
and inputs. Therefore, one bottleneck in circuit perforogais the slowest sequential path
between two such blocks. Incorporating this informatioto ifftoorplanning and global
placement algorithms is a significant opportunity to imgdke design automation and

performance of complex SoC designs [3, 90, 93].

Parallel processing.
Parallel processing is currently pursued by most devetopEEDA software tools.
Techniques proposed in this dissertation lend themsekesaily to such extensions. In

particular, Chapter IV outlines parallel extensions foubded transactional timing anal-

207

ysis. Chapter VIl solves MILPs using the CPLEX tool in mudtre mode. Chapter VIII

develops divide-and-conquer techniques for physical®gis that partition the netlist and
can spawn parallel computing tasks. Further incorporaiinmghew transforms into physi-
cal synthesis tools and exploiting their inherent paraihelwill improve the speed of next

generation hardware as well as the physical synthesistseld to design them.

Dealing with process variability.

To account for the impact of variations in the manufactugimmgcess, IBM has de-
veloped a robust statistical timing environment calledSEat [118]. However, statistical
timing analysis is currently only used for sign-off timinghereas optimization relies on
the more conventional static timing analysis tool EinsTintextending statistical timing
analysis with features from Chapter IV and incorporatingtio physical-synthesis trans-
formations (e.g., from Chapters V and VI) will likely redupessimism in early design

stages, accelerate timing closure, increase chip yieldeshette manufacturing cost.

208

BIBLIOGRAPHY

209

BIBLIOGRAPHY

[1] R. P. Abato, A. D. Drumm, D. J. Hathaway, and L. P. P. P. vaim@ken, “US Patent
5,508,937: Incremental Timing Analysis,” 1996.

[2] A. Abou-Seido, B. Nowak and C. Chu, “Fitted EImore DelaySimple and Accu-
rate Interconnect Delay ModellEEE Trans. on VLSI System#ol. 12, no. 7, pp.
691-696, 2004.

[3] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. ktar, “Unification of
Partitioning, Floorplanning and Placemen€CAD 2004, pp. 550-557.

[4] A. H. Ajami and M. Pedram. “Post-Layout Timing-Driven I[C&lacement Using
an Accurate Net Length Model with Movable Steiner Points3P-DAC2001, pp.
595-600.

[5] C. J. Alpert et al., “Fast and Flexible Buffer Trees thavigate the Physical Layout
Environment,"DAC 2004, pp. 24-29.

[6] C.J. Alpertetal., “Accurate Estimation of Global Buffeelay Within a Floorplan,”
IEEE Trans. on TCADvol. 25, no. 6, pp. 1140-1146, 2006.

[7] C. J. Alpert et al., “Techniques for Fast Physical Systeg in Proc. of IEEE 2007,
vol. 95, no. 3, pp. 573-599, 2007.

[8] C. J. Alpert, C. Chu, and P. G. Villarrubia, “The ComingAde of Physical Synthe-
sis,”ICCAD 2007, pp. 246-249.

[9] C. J. Alpert, A. Devgan and C. V. Kashyap, “RC Delay Medrior Performance
Optimization,”IEEE Trans. on CADvol. 20, no. 5, pp. 571-582, 2001.

[10] C. J. Alpert, A. Devgan and S. T. Quay, “Buffer Insertisith Accurate Gate and
Interconnect Delay ComputatiorD)AC 1999, pp. 479-484.

[11] C. J. Alpert, F. Liu, C. V. Kashyap and A. Devgan, “Closedm delay and slew
metrics made easylEEE Trans. on CADvol. 23, no. 12, pp. 1661-1669, 2004.

[12] R. Baldick, A. B. Kahng, A. A. Kennings and I. L. MarkoEfficient Optimization
by Modifying the Objective FunctionfJEEE Trans. on Circuits and Systewsl. 48,
no. 8, pp. 947-957, 2001.

210

[13] D. Bafieres, J. Cortadella and M. Kishinevsky,“Lay®ware Gate Duplication and
Buffer Insertion,” iInDATE 2007, pp. 1367-1372.

[14] K. D. Boese, A. B. Kahng, and S. Muddu, “New Adaptive Msiiart Techniques for
Combinatorial Global OptimizationsQperations Research Lettergol. 16, no. 2,
pp. 101-113, 1994.

[15] U. Brenner, A. Pauli, and J. Vygen, “Almost Optimum Riatent Legalization by
Minimum Cost Flow and Dynamic Programmin¢SPD 2004, pp. 2-9.

[16] D. Bronnenberg, “Static Timing Analysis Increases BFterformance,integr. Sys.
Dessign June 1999.

[17] M. Burstein and M. N. Youssef, “Timing Influenced LayoDesign,” DAC 1985,
pp. 124-130.

[18] K.-H. Chang, I. L. Markov, and V. Bertacco, “Safe Delapi®nization for Physical
Synthesis,ASP-DAC2007, pp. 628—633.

[19] T. H. Chao et al., “Zero Skew Clock Routing with Minimumii&ength,” IEEE.
Trans. on CASvol. 39, no. 11, pp. 799-814, 1992.

[20] W. Chen, C.-T. Hsieh, and M. Pedram. “Simultaneous Giteng and Placement,”
IEEE Trans. on CADvol. 19, no. 2, pp. 206-214, 2000.

[21] C. Chen and C. Tsui,“Timing Optimization of Logic NetvkoUsing Gate Duplica-
tion,” ASP-DAC1999, pp. 233-236.

[22] G. Chen and J. Cong,“Simultaneous Timing-Driven Phaept and Duplication,”
ISFPGA2005, pp. 51-59.

[23] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda and Q. Wang, “Retweare Placement,”
DAC 2005, pp. 795-800.

[24] W. Choi and K. Bazargan, “Incremental Placement for ifignOptimization,”IC-
CAD 2003, pp. 463-466.

[25] Y.-C. Chou and Y.-L. Lin, “A Performance-Driven StamdeCell Placer Based on a
Modified Force-Directed Algorithm|SPD2001, pp. 24-29.

[26] A. Chowdhary et al., “How Accurately Can We Model TimihgA Placement En-
gine?,”"DAC 2005, pp. 801-806.

[27] C.C.N. ChuandY.-C. Wong, “FLUTE: Fast Lookup Table Bd®kectilinear Steiner
Minimal Tree Algorithm for VLSI Design,1IEEE Trans. on CADvol. 27, no. 1, pp.
70-83, 2008.

[28] P. Cocchini, “Concurrent Flip-Flop and Repeater Itiser for High Performance
Integrated Circuits,JCCAD 2002, pp. 268-273.

211

[29] J. Cong, L. He, C.-K. Koh and P. H. Madden, “Performang®i@ization of VLSI
Interconnect Layout,Integration: the VLSI Journalol. 21, pp. 1-94, 1996.

[30] D. Daset al, “FA-STAC: A Framework for Fast and Accurate Static Timingalysis
with Coupling,”ICCD 2006.

[31] A. D. Drumm, R. C. Itskin, and K. W. Todd, “US Patent 5,0437: Method and
Apparatus for Performing Timing Correction Transformatsoon a Technology-
Independent Logic Model During Logic Synthesis,” 1991.

[32] W. E. Donath and D. J. Hathaway, “US Patent 6,202,192tribiuted Static Timing
Analysis,” 2001.

[33] W. E. Donath and D. J. Hathaway, “US Patent 6,557,15%tributed Static Timing
Analysis,” 2003.

[34] W. E. Donath, P. Kudva, L. Stok, P. Villarrubia, L. N. Risd A. Sullivan, and
K. Chakraborty, “Transformational Placement and Syn&)eBIATE 2000, pp. 194-
201.

[35] K. Eguro and S. Hauck, “Enhancing Timing-Driven FPGA&tment for Pipelined
Netlists,”"DAC 2008, pp. 34-37.

[36] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Histic for Improving Net-
work Partitions,"DAC 1982, pp. 175-181.

[37] P. FiSer and J. Schmidt, “It Is Better to Run Iterativesignthesis on Parts of the
Circuit,” IWLS2010, pp. 17-24.

[38] Y. Gao and D. F. Wong, “A Graph Based Algorithm for OptinBuffer Insertion
Under Accurate Delay ModelsDATE 2001, pp. 535-539.

[39] R. Goering, “Timing Analysis Needs Overhaul, SpeakaySEE TimegFebruary,
2005).

[40] B. Halpin, C. Y. R. Chen and N. Sehgal, “Timing Driven &anent Using Physical
Net Constraints,DAC 2001, pp. 780-783.

[41] D. Hill. “Method and System for High Speed Detailed Riatent of Cells Within an
Integrated Circuit Design{JS patent 63706732002.

[42] R. B. Hitchcock, G. L. Smith, and D. D. Cheng, “Timing Agsis of Computer
Hardware,”IBM Journal of Research and Developmd@83, vol. 26, no. 1, pp.
100-105.

[43] hMETIS: http://www-users.cs.umn.edu/ ~karypis/metis/hmetis/

[44] B. Hu, Y. Zeng and M. Marek-Sadowska, “mFAR: Fixed-ReinAddtion-Based
VLSI Placement Algorithm”Proc. ISPD2005, pp. 239-241.

212

[45] Y. Hu etal., “Simultaneous Time Slack Budgeting andiRetg for Dual-Vdd FPGA
Power Reduction,DAC 2006, pp. 478-483.

[46] A. Hurst, P. Chong, A. Kuehimann, “Physical Placementén by Sequential Tim-
ing Analysis,”ICCAD 2004, pp. 379-386.

[47] J. Hwang and A. El Gamal,“Optimal Replication for MindCPartitioning,”ICCAD
1992, pp. 432-435.

[48] International Technology Roadmap for Semiconduct@@01 edition. [Online].
Available: http://public.itrs.net.

[49] International Technology Roadmap for Semiconduct@@09 edition. [Online].
Available: http://www.itrs.net/.

[50] M. A.B. Jackson and E. S. Kuh, “Performance-driven BPraent of Cell Based IC’s,”
DAC 1989, pp. 370-375.

[51] J. A. G. Jess et al.,"Statistical Timing for Paramelfield Prediction of Digital In-
tegrated Circuits,JEEE Trans. on CADvol. 25, no. 11, pp. 2376-2392, 2006.

[52] A. B. Kahng, S. Mantik, and I. L. Markov, “Min-Max Placeant for Large-Scale
Timing Optimization,”ISPD 2002, pp. 143-148.

[53] A. B. Kahng and I. L. Markov, “Min-max Placement for Largcale Timing Opti-
mization,”ISPD 2002, pp. 143-148.

[54] L. N. Kannan, P. R. Suaris, and H.-G. Fang, “A Methodgi@mnd Algorithms for
Post-Placement Delay OptimizatiomAC 1994, pp. 327-332.

[55] M. A. Kazdaet al,, “US Patent Application 20080209376: System and Method for
Sign-Off Timing Closure of a VLSI Chip,” 2008.

[56] A. A. Kennings and I. L. Markov, “Smoothening Max-terraad Analytical Mini-
mization of Half-Perimeter WirelengthYLSI Designvol. 14, no. 3, 2002, pp. 229-
237.

[57] H. Kim, J. Lillis and M. Hrki¢,“Techniques for ImprowePlacement-Coupled Logic
Replication,”"GLSVLS] pp. 211-216, 2006.

[58] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GRN: VLSI Placement
by Quadratic Programming and Slicing OptimizatiofBEE Trans. on CADvol.
10, no. 3, pp. 356-365, 1991.

[59] T. T. Kong, “A Novel Net Weighting Algorithm for Timingdriven Placement,IC-
CAD 2002, pp. 172-176.

[60] R. KuzZnar and F. Brglez, “PROP: A Recursive ParadigmAfieea-Efficient and Per-
formance Oriented Partitioning of Large FPGA Netlists, 1GCAD 1995, pp. 644-
649.

213

[61] K. N. Lalgudi, M. Papaefthymou “Retiming Edge-triggelr Circuits under General
Delay Models,"ICCAD 1997, pp. 1393-1408.

[62] J. fuw Lee and D. T. Tang, “An Algorithm for Incrementailnfing Analysis,” DAC
1995, pp. 696-701.

[63] D. Lee, D. Blaauw, and D. Sylvester, “Static Leakage &dihn Through Simul-
taneous V/T,, and State Assignmentl[EEE Trans. on CADvol. 24, no. 7, pp.
1014-1029, 2005.

[64] W. N. Lee, “Strongly NP-Hard Discrete Gate Sizing Pehb,” ICCD 1993, pp.
468-471.

[65] C. E. Leiserson, J. B. Saxe, “Retiming Synchronous @irg,” Algorithmicg no. 6,
pp. 5-35, 1991.

[66] Z. Li, D. A. Papa, C. J. Alpert, S. Hu, W. Shi, C. N. Sze andZ¥iou, “Ultra-fast
Interconnect Driven Cell Cloning for Minimizing Criticalah Delay,”ISPD 2010,
pp. 75-82.

[67] Z. Li, C. N. Sze, C. J. Alpert, J. Hu and W. Shi, “Making E8&wuffer Insertion Even
Faster via Approximation Technique&SP-DAC2005, pp. 13-18.

[68] J. Lillis, C. K. Cheng and T. Y. Lin,“Algorithms for Optal Introduction of Redun-
dant Logic for Timing and Area Optimization,” i 8CAS1996, pp. 452-455.

[69] T. Luo, D. Newmark and D. Z. Pan, “A New LP Based Increna¢iiming Driven
Placement for High Performance Desigri3AC 2006, pp. 1115-1120.

[70] T.Luoand D. A. Papa and Z. Liand C. N. Sze and C. J. Alpedt. Z. Pan, “Pyra-
mids: An Efficient Computational Geometry-based Approagh Timing-driven
Placement,” inCCAD 2008, pp. 204-211.

[71] R. E. Mainset al,, “Timing Verification and Optimization for the PowerPC Pessor
Family,” ICCD 1994, pp. 390-393.

[72] M. Marek-Sadowska and S. P. Lin, “Timing Driven Placenjein ICCAD, 1989, pp.
94-97.

[73] A. Marquardt, V. Betz, and J. Rose. “Timing-Driven Réatent for FPGAs,Proc. of
FPGA2000, pp. 203-213.

[74] M. D. Moffitt et al, “Path Smoothing via Discrete OptimizationDAC, 2008,
pp. 724-727.

[75] M. D. Moffitt, M. E. Pollack, “Optimal Rectangle Packing Meta-CSP Approach,”
ICAPS2006, pp 93-102.

[76] A. Mondal, P. P. Chakrabarti and C. R. Mandal, “A New Apach to Timing Anal-
ysis Using Event Propagation and Temporal LogizATE 2004, pp. 1198-1203.

214

[77] R. Nair, C. Berman, P. Hauge and E. Yoffa, “GeneratioPefformance Constraints
for Layout,” TCAD8(8), 1989, pp. 860-874.

[78] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and K.Yildiz, “The ISPD2005
Placement Contest and Benchmark Suit®PD 2005, pp. 216-220.

[79] R. Otten, “Global Wires Harmful?JSPD, 1998, pp. 104-109.

[80] S. L. Ou and M. Pedram, “Timing-Driven Placement BasadRartitioning with
Dynamic Cut-Net Control,DAC, 2000, pp. 472-476.

[81] D. A. Papa, S. N. Adya and I. L. Markov, “Constructive Bamarking for Place-
ment,” GLSVLSR004, pp. 113-118.

[82] D.A.Papa, S. Krishnaswamy and I. L. Markov, “SPIRE: AliReng-based Physical-
Synthesis Transformation SystenfCCAD 2010.

[83] D. A. Papa et al., “RUMBLE: An Incremental, Timing-Dew, Physical-Synthesis
Optimization Algorithm,” ISPD 2008, pp. 2-9.

[84] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li, G.-J. Nai@. J. Alpertand I. L.
Markov, “RUMBLE: An Incremental, Timing-Driven, Physic8ynthesis Optimiza-
tion Algorithm,” IEEE Trans. on CA2008, vol. 27, no. 12, pp. 2156-2168.

[85] D. A. Papa, M. D. Moffitt, C. J. Alpert and I. L. Markov, “Bmded Transactional
Timing Analysis,”Tau2010.

[86] D. A. Papa, M. D. Moffitt, C. J. Alpert and I. L. Markov, “®eding Up Physical
Synthesis with Transactional Timing Analysi$#£EE Design & Tes2010.

[87] S. M. Plaza, I. L. Markov and V. M. Bertacco, “Optimizirigon-Monotonic Inter-
connect using Functional Simulation and Logic RestruntilEEE Trans. on CAD
2008, vol.27, no.12, pp. 2107-2119.

[88] H. Renet al, “Hippocrates: First-Do-No-Harm Detailed PlacememSP-DAC
2007, pp. 141-146.

[89] H.Ren, D. Z.Pan, and D. S. Kung, “Sensitivity Guided Mé&ighting for Placement-
Driven Synthesis,JEEE Trans. on CA2005, vol. 24, no. 5, pp. 711-721.

[90] J. A.Roy, S. N. Adya, D. A. Papa and I. L. Markov, “Min-dafoorplacement JEEE
Trans. on CAC2006, vol. 25, no. 7, pp. 1313-1326.

[91] J. A. Roy and I. L. Markov, “ECO-system: Embracing thea@ge in Placement”,
ASP-DAC2007, pp.147-152.

[92] J. A. Roy and I. L. Markov, “Seeing the Forest and the $reSteiner Wirelength
Optimization in Placement/EEE Trans. on CADvol. 26, no. 4, pp. 632-644, 2007.

215

[93] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, J. F. Lu, A. Ng,N. L. Markov,
“Capo: Robust and Scalable Open-Source Min-cut Floorpla¢8PD 2005, pp.
224-2217.

[94] J. A. Roy, D. A. Papa, I. L. Markov, “Fine Control of Loc#/hitespace in Place-
ment,”VLSI Designvol. 2008, article 517919, 10 pp. DOI:10.1155/2008/51791

[95] J. A. Roy, D. A. Papa, A. N. Ng, I. L Markov, “Satisfying Vitaspace Requirements
in Top-down Placement/SPD 2006, pp. 206-208.

[96] S. S. Sapatnekar, “Efficient Calculation of All-Pairplt-to-Output Delays in Syn-
chronous Sequential Circuitd3CAS1996, pp. 724-727.

[97] S. S. Sapatnekafiming Kluwer Academic Publishers, Boston, MA, USA, 2004.
[98] S. Sapatnekar, “Timing,” Springer-Verlag, New YoriaQ2.

[99] S. S. Sapatnekar, R. B. Deokar, “Utilizing the RetimBkpw Equivalence in a Prac-
tical Algorithm for Retiming Large Circuits,TCADvol. 15, no. 10, pp. 1237-1248,
1996.

[100] P. Saxena and B. Halpin, “Modeling Repeaters ExpiaNithin Analytical Place-
ment,” DAC 2004, pp. 699-704.

[101] P. Saxena, N. Menezes, P. Cocchini, and D. A. KirkpkiriRepeater Scaling and
its Impact on CAD,"IEEE Trans. CADvol. 23, no. 4, 2004, pp. 451-463.

[102] L. Scheffer, L. Lavagno, and G. MartieDA for IC Implementation, Circuit De-
sign, and Process TechnolagyRC Press, Boca Raton, FL, USA, 2006.

[103] W. Shi, Z. Li, and C. J. Alpert, “Complexity Analysis dispeedup Techniques for
Optimal Buffer Insertion with Minimum CostASP-DAGC 2004, pp. 609-614.

[104] G. Sigl, K. Doll and F. M. Johannes, “Analytical Placent: A Linear or Quadratic
Objective Function?"Proc. DAC1991, pp. 57-62.

[105] D. P. Singh, V. Manohararajah, and S. D. Brown, “Inceetal Retiming for FPGA
Physical SynthesisPAC 2005, pp. 433-438.

[106] P. Spindler, U. Schlichtmann and F. M. Johannes, “Kwafk2 — A Fast Force-
Directed Quadratic Placement Approach Using an Accurate Medel,” IEEE
Trans. on CADvol. 27, no. 8, pp. 1398-1411, 2008.

[107] A. Srivastava et al., “On the Complexity of Gate Duption,” IEEE Trans. CAD
vol. 20, no. 9, pp. 1170-1176, 2001.

[108] A. Srivastava et al., “Timing Driven Gate DuplicatibpriEEE Trans. VLS| vol. 12,
no. 1, pp. 42-51, 2004.

216

[109] A. Srinivasan, K. Chaudhary, E. S. Kuh, “RITUAL: Pemitance Driven Placement
Algorithm for Small Cell ICs,"ICCAD 1991, pp. 48-51.

[110] S. Z. Selim, and M. A. Ismail, “K-Means-Type AlgorittenA Generalized Conver-
gence Theorem and Characterization of Local OptimalPAMI vol. 6, no. 1, pp.
81-87, 1984.

[111] W. Swartz and C. Sechen, “Timing Driven Placement farge Standard Cell Cir-
cuits,” DAC 1995, pp. 211-215.

[112] L. Trevillyan et al., “An Integrated Environment foedhnology Closure of Deep-
submicron IC Designs,JEEE Design and Test of Computerl. 21, no. 1, pp.
14-22,2004.

[113] R. S. Tsay, E. S. Kuh and C. P. Hsu, "PROUD: A Sea-Of-&&tacement Algo-
rithm”, IEEE Design & Test1988, pp. 44-56.

[114] L.P.P.P. van Ginneken, “Buffer Placement in Disttdal RC-Tree Networks
Forminimal Elmore Delay,ISCAS1990, pp. 865-868.

[115] N. Viswanathan and C. Chu, “FastPlace: Efficient Atiabl Placement using Cell
Shifting, Iterative Local Refinement and a Hybrid Net MOU#EEE Trans. on CAD
vol. 24, no. 5, pp. 722-733, 2005.

[116] N. Viswanathan, M. Pan and C. Chu, “FastPlace 2.0: Aicieht Analytical Placer
for Mixed-Mode Designs,ASP-DAC2006, pp. 195-200.

[117] N. Viswanathan, M. Pan and C. Chu, “FastPlace 3.0: A Mastilevel Quadratic
Placement Algorithm with Placement Congestion Cont®§P-DAC2007, pp. 135-
140.

[118] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walkand S. Narayan, “First-
order Incremental Block-Based Statistical Timing AnatysDAC 2004, pp. 331-
336.

[119] J. Vygen, “Algorithms for Large-Scale Flat PlacememMAC 1997, pp. 746-751.

[120] J. Vygen, “Slack in Static Timing AnalysislEEE Trans. on CADvol. 25 no. 9,
pp. 1876-1885, 2006.

[121] A. R. R. WangAlgorithms for Multilevel Logic OptimizatiorPhD thesis, Univer-
sity of California, 1989.

[122] Q. Wang, J. Lillisand S. Sanyal, “An LP-Based Methaxtp for Improved Timing-
Driven Placement, ASP-DAC2005, pp. 1139-1143.

[123] H. Zhou, “Deriving a New Efficient Algorithm for Min-p@d Retiming,”ASP-DAC
2009, pp. 990-993.

217

ABSTRACT

Broadening the Scope of Multi-Objective Optimizations

in Physical Synthesis of Integrated Circuits

by

David Anthony Papa

Chair: lgor L. Markov

In modern VLSI design, physical synthesis tools are prilpaesponsible for satisfy-
ing chip-performance constraints by invoking a broad rasfggrcuit optimizations, such
as buffer insertion, logic restructuring, gate sizing agldcation. This process is known
astiming closure Our research seeks more powerful and efficient optimiratio im-
prove the state of the art in modern chip design. In particwa integrate timing-driven
relocation, retiming, logic cloning, buffer insertion agdte sizing in novel ways to create
powerful circuit transformations that help satisfy setumpe constraints.

State-of-the-art physical synthesis optimizations apéclly applied at two scales: i)
global algorithms that affect the entire netlist and ii)dbtransformations that focus on
a handful of gates or interconnections. The scale of modeim @esigns dictates that

only near-linear-time optimization algorithms can be agphkt the global scope — typi-

cally limited to wirelength-driven placement and legafiaa. Localized transformations
can rely on more time-consuming optimizations with acaidglay models. Few tech-
niques bridge the gap between fully-global and localizetihapations. This dissertation
broadens the scope of physical synthesis optimizationdade accurate transformations
operating between the global and local scales. In particula integrate groups of re-
lated transformations to break circular dependencies acr@ase the number of circuit
elements that can be jointly optimized to escape local manim

Integrated transformations in this dissertation are dgesd by identifying and re-
moving obstacles to successful optimizations. Integnaisoachieved through mapping
multiple operations to rigorous mathematical optimizatproblems that can be solved
simultaneously. We achieve computational scalabilityuntechniques by leveraging an-
alytical delay models and focusing optimization effortsaamefully selected regions of
the chip. In this regard, we make extensive use of a linearénhnect-delay model that
accounts for the impact of subsequent repeated insertianin@egrated transformations
are evaluated on high-performance circuits with over 100 ghates.

Integrated optimization techniques described in thisattasion ensure graceful timing-
closure process and impact nearly every aspect of a typigaigal synthesis flow. They
have been validated in EDA tools used at IBM for physical Bgsts of high-performance

CPU and ASIC designs, where they significantly improved gagormance.

