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ABSTRACT

High-performance and Low-power Clock Network Synthesis

in the Presence of Variation

by

Dong Jin Lee

Chair: Igor L. Markov

Semiconductor technology scaling requires continuous evolution of all aspects of phys-

ical design of integrated circuits. Among the major design steps, clock-network synthesis

has been greatly affected by technology scaling, rendering existing methodologies inade-

quate. Clock routing was previously sufficient for smaller ICs, but design difficulty and

structural complexity have greatly increased as interconnect delay and clock frequency in-

creased in the 1990s. Since a clock network directly influences IC performance and often

consumes a substantial portion of total power, both academia and industry developed syn-

thesis methodologies to achieve low skew, low power and robustness from PVT variations.

Nevertheless, clock network synthesis under tight constraints is currently the least auto-

mated step in physical design and requires significant manual intervention, undermining

turn-around-time. The need for multi-objective optimization over a large parameter space

and the increasing impact of process variation make clock network synthesis particularly

challenging.
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Our work identifies new objectives, constraints and concerns in the clock-network syn-

thesis for systems-on-chips and microprocessors. To address them, we generate novel

clock-network structures and propose changes in traditional physical-design flows. We

develop new modeling techniques and algorithms for clock power optimization subject

to tight skew constraints in the presence of process variations. In particular, we offer

SPICE-accurate optimizations of clock networks, coordinated to reduce nominal skew be-

low 5 ps, satisfy slew constraints and trade-off skew, insertion delay and power, while

tolerating variations. To broaden the scope of clock-network-synthesis optimizations, we

propose new techniques and a methodology to reduce dynamic power consumption by

6.8%-11.6% for large IC designs with macro blocks by integrating clock network synthe-

sis within global placement. We also present a novel non-tree topology that is 2.3× more

power-efficient than mesh structures. We fuse several clock trees to create large-scale

redundancy in a clock network to bridge the gap between tree-like and mesh-like topolo-

gies. Integrated optimization techniques for high-quality clock networks described in this

dissertation achieve strong empirical results in experiments with recent industry-released

benchmarks in the presence of process variation. Our software implementations were

recognized with the first-place awards at the ISPD 2009 and ISPD 2010 Clock-Network

Synthesis Contests organized by IBM Research and Intel Research.
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PART I

Introduction & Background

CHAPTER I

Clock Network Synthesis in the Physical Design Flow

Synchronous systems consist of sequential registers (latches, flip-flops) and combi-

national logic connecting registers [76]. While the functional requirements of a digital

system are satisfied by the register transfer level (RTL) and logic synthesis, the overall

performance and timing constraints require insertion of pipeline registers to ensure that

the latencies of critical paths between registers satisfy timing constraints [76]. Clock sig-

nals are delivered from a clock generator to sequential elements by a clock distribution

network, which must optimize important parameters such as clock skew, slew rate, inser-

tion delay, power dissipation, area and sensitivity to variations [6, 43]. In a modern EDA

flow, the number, type and netlist of combinational logic and sequential elements are de-

fined after RTL and logic synthesis [8, 9]. The physical locations of sequential elements

1



become known after the placement stage, which consists of global placement, legaliza-

tion and detail placement [6, 43]. For ASIC and SoC designs, clock-network synthesis is

traditionally performed after placement [43].

A clock distribution network is typically the largest net in the circuit netlist and op-

erates at the highest speed of any signal within the entire synchronous system, hence

the clock network often takes a significant fraction of the power consumed by a chip

[26, 31, 66, 96]. Clock waveforms must be sharp and noise-free since all the data signals

are referenced by the clock signals. Technology scaling has made long global interconnect

wires significantly more resistive as wires become thinner [34]. Clock signals are particu-

larly affected by this increased wire resistance, and precise control of clock-signal arrival

times has grown in importance since they severely limit the maximum performance of the

entire system.

To ensure performance and reliability, proper design and effective optimization of

clock distribution networks are crucial; therefore, clock network synthesis is excluded

from other signal-net routing and processed by specialized algorithms and techniques prior

to global routing of signal nets [6, 43].

1.1 Industry trends

Processor-based systems fueled the development of electronics since the 1960s. PCs

were the main driver of growth in electronics in the 1990s, and in the 2000s mobile phones

and other battery-powered consumer devices became a significant market segment, fol-

lowed by automotive electronics. These electronic systems are controlled by synchronous

CPUs and ASIC chips, whose clock frequency has steadily increased for many years.
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However, semiconductor scaling in the 1990s made clock optimization more challenging.

While transistors continued scaling, interconnect lagged in performance [34]. The max-

imal length of a wire that can be driven by an inverter started a steady decrease. This

phenomenon boosted demands for repeaters in clock networks, raised their power pro-

file, and complicated their synthesis. Research in delay-driven buffering of single signal

nets — arguably an easier problem and on a smaller scale — has blossomed well into the

late 2000s, leaving clock-tree synthesis a difficult, high-value target. As the accuracy of

compact delay models for transistors and wires deteriorated, clock-network design in the

industry moved to SPICE-driven optimizations [33, 82].

A variety of clock network topologies and deskewing techniques were developed for

microprocessors previously. Table 1.1 shows key parameters of clock networks in the mi-

croprocessors designed by IBM and Intel from the late 1990s to early 2000s [6, Chapter

43]. All those clock networks are regular, and only minimally adapt to sink locations.

IBM S/390 used two-level balanced H-like trees. The clock network of the IBM Power4

processor consists of tuned H-trees driving a single full-chip grid. Active deskewing and

wire-width tuning were employed to reduce skew. Alpha 21264 utilized hierarchical struc-

tures consisting of a global grid, six major grids and local clocks. The Intel Pentium series

used spine (tall tree) structures driven by balanced binary trees. Adaptive deskewing tech-

nique based on a delay-locked loop (DLL) reduced skew from 100 ps to 15 ps in Pentium

III. Deskewing by a 5-bit domain deskew register (DDR) was employed in Pentium 4. The

clock network of the Intel Itaniummicroprocessor series features three levels of global dis-

tribution by two identical and balanced H-trees, regional clock distribution by the regional
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clock driver (RCD) and regional clock grid and local clock distribution by local clock

buffers (LCBs) and local clock routings. A fuse-based deskewing technique was devel-

oped for Intel Itanium 2, reducing skew from 71 ps to 24 ps. In recent high-performance

microprocessors, clock signals are distributed using two-level hybrid networks consisting

of a global grid and local buffered gated trees connecting to the grid [81, 82].

Processors Year Node, Freq., Clock Deskew Skew,

nm MHz Topology ps

IBM S/390 1997 200 400 tree — 30

IBM Power4 2002 180 1300 tree+grid — 25

Alpha 21264 1998 350 600 grid — 65

Pentium 2 1997 350 300 spine — 140

Pentium 3 1999 250 650 spine active 15

Pentium 4 2001 180 2000 spine active 16

Itanium 2000 180 800 tree+grid active 28

Itanium 2 2003 130 1500 tree+grid fuse 24

ISPD 2010 2010 45 2000 tree — 7.5

Table 1.1: Clock networks in industry CPUs [6, Chapter 43] and ISPD 2010 benchmarks

from Intel and IBM (Table 2.1).

In the early 2000s, the emphasis in CPU design has shifted from high performance to

power-performance-cost trade-offs, including the advent of multicore CPUs and the grow-

ing popularity of low-power ARM CPUs. In the netbook market, the low-power 1.6GHz

Atom CPU from Intel is currently competing with ARM’s multicore 2GHz Cortex-A9

CPUs and the 1GHz Cortex-A8, but 98% of world’s mobile phones rely on ARM-based

CPUs [49] which offer better power-performance-cost trade-offs than Intel CPUs [90].

ARM cores often drive system-on-chip (SoC) designs, laid out using low-power ASIC

methodologies. Such methodologies perform automated clock-tree synthesis after place-

ment, whereas traditional high-performance CPU methodologies pre-design clock net-

works and use active deskewing to lower clock skew and susceptibility to process varia-
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tions [82]. Clock trees are more susceptible to variations than meshes (common in CPUs),

but are 2-4 times more power-efficient. This is significant because clock networks and cor-

responding sequential elements consume up to 50% of CPU power and can affect power-

performance comparisons between CPUs [83]. Unused parts of the clock network can be

temporarily turned off (clock gating), but this does not always reduce peak power.

1.2 Research challenges

In high-quality synchronous VLSI designs, clock network synthesis is becoming a

more important problem as it significantly impacts the performance, area and power dis-

sipation of the design. The trend of increasing system complexity in conjunction with

architectural-level pipelining increases the number of clocked elements [24, 108]. Semi-

conductor scaling facilitates smaller cycle times, but this trend assumes increasingly re-

liable clock distribution. The design of clock networks directly influences the maximum

operating clock frequency because it determines clock skew, slew rate and insertion de-

lay of the clocked elements [10]. Decreasing power consumption has become one of the

main objectives in IC design today. The benefits of voltage reduction and device size scal-

ing are often overwhelmed by the increase in the number of gates and clock frequency.

The high costs of system cooling have also increased the importance of low-power de-

sign. Clock networks consume a significant fraction of the total system power due to its

very high capacitive load and frequent switching. Being responsible for 30-50% of chip

power [27, 60], clock networks require careful optimization. With shrinking cycle times,

the impact of process, voltage and temperature (PVT) variation is becoming more serious

and complicates the design of reliable clock networks [82]. The time it takes to design
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and synthesize clock networks is becoming significant, because laborious accurate timing

analysis is often required to satisfy the tight constraints for clock signals.

Nominal clock skew is usually improved first during clock routing since in GHz-range

systems, performance can be seriously affected by skew in tens of picoseconds. For skew

optimization, highly accurate timing analysis tools (e.g., SPICE) are required, but they

are slow and dominate the runtime of clock network synthesis. Therefore, choosing ap-

propriate timing analysis tools and how to utilize them is also important in clock network

synthesis. Skew is affected by PVT variations. Hence, skew optimization based on only

nominal parameters (no variation, single corner) does not guarantee a reliable clock net-

work. We distinguish two approaches to the design of reliable clock networks. First,

one can use strong devices or thick wires that are less affected by variations. Second,

one can build a redundant clock network with multiple paths from the clock source to

each clock sink, or only some clock sinks. The impact of variation on one path can be

compensated for by the clock signals from the other less-affected paths. In modern clock

network design, this is mostly done by using mesh/grid type structures. However, neither

method can avoid increase in total capacitance, which results in an increase in total power

consumption. In general, making a more robust clock network requires a significant in-

crease in power consumption. Since reducing power dissipation is another primary goal

of clock network synthesis, careful analysis of the optimal point between reliability and

power consumption is mandatory in modern clock routing. Mesh/grid structure is utilized

when a tree structure is insufficient to ensure a robust clock network, even after best pos-

sible optimizations. However, meshes require a dramatic resource overhead compared to
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tree structures. Although some publications propose adding cross-links to harden the tree

structure [36, 37, 50], recent studies suggest that these proposals are unworkable. There-

fore, designing effective clock tree structures that combine the reliability of a mesh with

the small footprint of a tree remains an open challenge.

Clock network synthesis for commercial designs is verified with respect to multiple

process corners (or scenarios). Each corner represents a different operation environment of

the chip and commercial clock network synthesis tools try to optimize the clock network

based on multi-corner optimization. However, this multi-corner analysis cannot model

intradie-process variations and decreases the accuracy of skew analysis as the impact of

variations increases. One can utilize Monte-Carlo simulations for accurate estimation of

the impact of variations, but this method is too time-consuming and remains impractical

within clock network synthesis. Statistical timing analysis can model the impact of timing

variations more efficiently, but remains relatively unexplored in the context of state-of-the-

art clock network synthesis.

In a physical design flow, clock routing is performed after cell placement, which de-

termines the physical locations of registers [6, 43]. Most academic/commercial placement

tools do not distinguish clocked elements from combinational logic cells [20, 64, 103].

Hence, even though it is possible to improve the quality of a clock network (especially

in terms of power) by modifying the locations of registers, clock network synthesis tech-

niques are often prevented from altering the locations of registers. Some researchers pro-

posed techniques like leaf-level register clustering [16, 75], but finding optimal register

locations during placement remains an open challenge.
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Producing high-quality clock networks is becoming more difficult, and related chal-

lenges may soon overwhelm those at other stages of a physical design flow because of

conflicting objectives. Novel multi-objective methods are needed that can generate clock

networks satisfying tight design constraints. Our solutions to these challenges are ad-

dressed in this dissertation, whose structure we outline next.

1.3 Our contributions

The contributions of this dissertation can be summarized as follows.

SPICE-accurate SoC clock network synthesis. Most existing algorithms and tech-

niques establish fundamental methodologies for clock network synthesis, but perform

large-scale optimization using analytical models that lose accuracy at recent technology

nodes, and are not always validated by realistic SPICE simulations on large industry de-

signs. In Chapter III we propose specialized optimization algorithms necessary to bridge

the gaps between existing point-optimizations. We develop an EDA methodology for in-

tegrating clock-network optimization steps and describe a robust software implementation

called Contango. We then extend our implementation to large industrial clock networks.

Optimization of clock trees for microprocessors. Clock networks account for a sig-

nificant fraction of system power dissipation while limiting CPU performance. Therefore,

power-performance-cost trade-offs are becoming a major issue in modern high-performance

CPU clock design. On the other hand, the increasing impact of process variation makes

clock network synthesis particularly challenging. Mesh structures are often utilized to im-

prove robustness to variations, but significant additional power consumption is unavoid-
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able. In Chapter IV we propose a tree-based solution for CPU clock routing that improves

power consumption under tight skew constraints in the presence of variations. We intro-

duce the notion of local-skew slack for clock trees, modeling and optimization of varia-

tional skew, a path-based technique to enhance robustness, a new time-budgeting algorithm

for clock-tree tuning and accurate optimizations that satisfy budgets. Our strong empirical

results suggest that clock trees constructed using accurate variational skew modeling and

optimizations have distinct advantages in power consumption and similar robustness as

meshes.

Clock network optimization during placement. Most of the existing literature for

clock network synthesis assumes that register locations are given and cannot be changed.

While clock networks can be improved by finding better register locations during place-

ment, most publications do not propose such optimization, hence the quality of resulting

clock networks is limited by un-optimized locations of the clocked elements. In Chapter V,

we propose to optimize the locations of registers at the placement stage for power-efficient

high-quality clock networks.

Closing the gap between tree and mesh structures. Common clock-network topolo-

gies can be categorized into two major types: trees and meshes. While older chips re-

lied on trees, mesh structures were utilized to satisfy tight variation-related constraints in

high-performance microprocessor designs where performance is emphasized over power

consumption. However, implementation of mesh-type clock networks requires substantial

amount of total wire/buffer capacitance, which significantly increases power dissipation.
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In Chapter VI, we propose a novel flexible structure that maintains many advantages of

tree structures, but is more robust to variations. Through in-depth structural analysis of

a given clock tree, we quantitatively diagnose where and why it fails to satisfy variation-

related constraints. We then go on to enhance the tree structure to attain required power-

performance-robustness trade-offs.

1.4 Organization of the dissertation

The remaining part of the dissertation is organized as follows:

• Part I reviews relevant background in clock-network synthesis in Chapter II.

• Part II lays the foundation for our research. Chapter III describes our method for

SPICE-accurate SoC clock network synthesis. Chapter IV describes optimizations

of clock trees for microprocessors.

• Part III proposes new techniques that broaden the scope of optimization for clock

network synthesis. Chapter V introduces placement optimization for registers to

reduce clock-network size and total power consumption. In Chapter VI, we propose

algorithms and techniques for a novel non-tree clock network structure that bridges

the gap between trees and meshes.

• The dissertation concludes in Chapter VII with a summary of contributions and an

outline of future research directions.
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CHAPTER II

State of the Art in Clock Network Synthesis

As clock networks distribute clock signals to numerous clocked elements all over the

chip, they consume a sizable portion of routing resources. Their high switching activity

implies significant power consumption. Hence clock networks must be carefully designed

to optimize the performance of the chip, routing resource usage, and power.

This chapter covers basic terminology, core algorithms, prior work and other prereq-

uisite topics in clock network design. Additional background information relevant to our

contributions appears in further chapters. Section 2.1 discusses key parameters of a clock

network and reviews the ISPD clock network synthesis contests which were held in 2009

and 2010. In Section 2.2, general types of clock networks are presented. Section 2.3

covers algorithms for clock-tree generation. In Section 2.4, existing techniques for clock

network optimization during/after placement are discussed.

2.1 Key parameters of a clock network and the ISPD contests

Clock skew between two clock sinks connected to the same clock source is the abso-

lute value of the difference in transition arrival times. The clock skew of an entire clock

network is the maximum pairwise clock skew between any two sinks (more details and fur-
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ther definitions are given in Section 4.2.1). Clock jitter refers to the time variation of the

clock period at a given clock sink on the chip. The term slew characterizes how quickly

a rising-edge or falling-edge transition occurs in a given wire. For 0V to 1V transition,

10%-90% slew can be measured by the time taken to change the value from 0.1V to 0.9V.

Clock skew, jitter and slew are major issues in digital circuits, and can fundamentally limit

the performance of a digital system. Therefore, clock-network synthesis must limit skew,

jitter and slew. When a clock network is designed to have zero nominal skew, permanent

(static) skew can occur as a result of manufacturing device and interconnect variations

(i.e., process variations). Temperature gradients across a chip also contribute to skew. On

the other hand, power-supply variations are the major source of jitter in clock distribution

networks.1 In this dissertation, we evaluate our clock networks using Monte-Carlo simu-

lations with PVT variations to effectively measure clock skew affected by jitter. In other

words, when we improve robustness of clock networks, we reduce not only permanent

skew induced by process variations, but also temporal skew and jitter induced by voltage

and temperature variations.

FF FFLogic FF FF

(a) (b)

Figure 2.1: Eligible clock sink pairs. (a) There is combinational logic between two sinks,

which make the skew between these two sinks affects the useful portion of

clock cycle time. (b) This sink pair is not eligible because the sinks are not

logically dependent.

1Another major contributor to jitter is a clock-signal generator, but optimization of such a generator is

beyond the scope of this dissertation.
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Sink pairs eligible for local-skew calculation. In a large clock network, skew between

adjacent and connected sinks is a more meaningful optimization objective than global

skew [32, 81]. When two clock sinks are connected by combinational logic (Figure 2.1a)

the clock skew between two sinks directly affects the useful portion of clock cycle time for

the combinational logic. Otherwise, where there is no combinational logic between two

sinks (Figure 2.1b), the skew between them is not a source of performance degradation,

therefore we do not need to optimize the clock network to reduce the skew between those

sink pairs. Eligible sink pairs for skew can be defined based on the netlist after Register-

Transfer Level (RTL) synthesis so that only sink pairs that are connected by combinational

logic are considered for skew calculation. In the ISPD 2010 Clock Network Synthesis

(CNS) Contest, local skew distance limit was introduced to define the eligible sink pairs

and local skew [95]. If the Manhattan distance between two sinks is less than the local

skew distance limit, it is assumed that there is combinational logic between the two sinks

and otherwise, there is no logic dependency. We use the same notion of local skew in

our work, but do not rely on the metric definition, and all our techniques apply in a more

realistic context where eligible pairs of sinks are derived directly from the netlist.

The ISPD 2009 clock-network synthesis contest organized by IBM Austin Research

Lab was based on a 45 nm technology [94]. Sink latencies were evaluated by SPICE. The

main objective was the difference between the least sink latency at 1.2V and the greatest

sink latency at 1V. This Clock Latency Range (CLR) metric was intended to capture the

impact of multiple power modes with different supply voltages [65], but nominal skew

was also recorded. Total power was limited and the 10%-90% slew rate of 100 ps was
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enforced. The CLR objective attracted significant criticism, which we share. Therefore

we also evaluate our techniques in terms of nominal skew. The benchmarks were derived

from industry SoC designs and include dozens to hundreds fixed rectilinear obstacles.

The ISPD 2010 high-performance clock-network synthesis contest used several 2 GHz

CPU benchmarks from IBM and Intel to compare tools submitted by 10 teams across the

world (down-selected from 20 initial registrants). To evaluate the quality of the clock

networks, difficult slew and skew constraints were checked against 45 nm Monte-Carlo

SPICE simulations that modeled PVT variations. The 100 ps slew constraints were un-

changed from the ISPD 2009 contest. Clock networks that cleared all constraints were

compared by their total capacitance — a proxy for dynamic power. Table 2.1 shows the

statistics of the ISPD 2010 contest benchmarks.

ISPD‘10 Pro- Area, Num. Obsta- ∆, Ω∆,

Bench. vider mm2 sinks cles µm ps

CNS01 IBM 64 1107 4 600 7.5

CNS02 IBM 91 2249 1 600 7.5

CNS03 IBM 1.51 1200 2 370 4.999

CNS04 IBM 5.73 1845 2 600 7.5

CNS05 IBM 5.9 1016 1 600 7.5

CNS06 Intel 1.74 981 0 600 7.5

CNS07 Intel 3.67 1915 0 600 7.5

CNS08 Intel 2.99 1134 0 600 7.5

Table 2.1: ISPD 2010 benchmarks based on 45 nm microprocessor designs. Ω∆ is the

local skew limit, and ∆ is the local skew distance limit respectively (see Section

4.2.1). Nominal voltage is 1.0V and on-chip variations (ν) are accounted by

15% voltage variation and 10% variation of wire parasitics [95].

2.2 Clock-network topologies

The choice between a tree and non-tree topology is a central question in modern clock-

network design. High-performance microprocessors typically use meshes due to their
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robustness to late design changes and process variations, but at a great cost in terms of ca-

pacitance. Tree topologies offer many advantages, including simplicity, symmetry, faster

timing analysis and amenability to incremental tuning. We start by surveying general types

of clock networks, and will describe details of relevant algorithms in Section 2.3.

Clock trees have been widely supported by academic and commercial EDA tools. Sim-

ple methods including H-tree [11], the method of means and medians (MMM) [40], the

geometric matching algorithm (GMA) [22] and path length balancing method (PLB) [42]

were commonly utilized before the deferred merge embedding (DME) algorithm [12, 28]

was introduced. Recently several methodologies for SoC clock-tree tuning have been

developed with robustness improvement. A clock-synthesis methodology for SPICE-

accurate skew optimization with tolerance to voltage variations was proposed in [51].

The Dynamic Nearest-Neighbor Algorithm (DNNA) to generate tree topology and the

Walk-Segment Breadth First Search (WSBFS) for routing and buffering were proposed

in [87]. A three-stage CTS flow based on an obstacle-avoiding balanced clock-tree rout-

ing algorithm with monotonic buffer insertion is proposed in [61]. A Dual-MST (DMST)

geometric matching approach is proposed in [63] for topology construction and recursive

buffer insertion. Modeling techniques and algorithms for microprocessor clock power

optimization subject to local skew constraints in the presence of variations are proposed

in [53].

Meshes. From the mid 1990s when the impact of PVT variation became significant, clock

networks were more affected by PVT variations than random logic, due to their struc-

ture and more stringent timing constraints. In a tree network, such unexpected changes

15



are likely to propagate to the sinks. Mesh (or grid) structures have emerged to address

the structural drawbacks of trees. In meshes, there are multiple paths from the clock

source to individual clock sink; thus, the impact of variations on one path can be averaged

out by multiple redundant paths [107]. However, meshes require significant overhead in

terms of on-chip resources and power. Published examples suggest that mesh-type clock

networks suffer much greater power consumption. Nevertheless, mesh structures were

utilized to satisfy tight variation-related constraints in high-performance microprocessor

designs where performance is more emphasized than power consumption [6, 43]. Some

methods to analyze the characteristics of mesh structures are proposed in [19, 106] and

a combinatorial algorithm to optimize a clock mesh is proposed in [98]. An obstacle-

avoiding clock mesh synthesis method which applies a two-stage approach of mesh con-

struction followed by driving-tree synthesis is proposed in [86,105]. A methodology based

on binary linear programming for clock mesh synthesis is described in [21].

Trees with cross-links. The dichotomy between meshes and trees is striking, and several

researchers attempted to find intermediate topologies that would retain the advantages of

meshes but reduce capacitance overhead. A key idea in the literature is to insert cross-links

into clock trees, creating redundant paths to sinks that contribute to nominal or variational

clock skew [77, 78]. These methods are later extended to handle buffered clock trees

in [79, 99]. Most publications discuss cross-links that directly connect pairs of sinks. Sur-

prisingly, none of these techniques were useful at the ISPD 2009-2010 clock-network con-

tests [94, 95] despite diligent attempts, as improved tree-tuning methods were sufficient.

Careful experiments and analytical estimates [67] have shown that direct cross-links are
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only effective in poorly tuned clock trees and/or at relatively short distances. However, in

high-quality clock trees it is rare to find a critical pair of sinks at a short distance. A recent

proposal [67] suggests adding cross-links higher in the tree to connect entire branches.

As several other publications with strong empirical results, [67] uses unrealistically large

composite buffers, and arranges them in a unique two-layer configuration (10+40 small in-

verters). Given that the ISPD 2010 contest infrastructure does not adequately model such

configurations, the competitiveness of cross-links in practice remains unclear.

2.3 Algorithms for clock tree construction and buffering

The first geometric algorithms for clock routing evaluated skew in terms of wirelength

from the source to sinks and produced minimum-wirelength trees for a given sink cluster-

ing using the deferred merging and embedding (DME) principle [12].

DME algorithms [43]. The deferred-merge embedding (DME) algorithm defers the

choice of merging (tapping) points for subtrees of the clock tree. DME optimally embeds

any given topology over the sink set S: the embedding has minimum possible source-

sink linear delay, and minimum possible total tree cost. The algorithm was independently

proposed by several groups - Boese and Kahng [12], Chao et al. [17], and Edahiro [28].

In the Manhattan geometry, two sinks in general position will have an infinite number

of midpoints, creating a tilted line segment, or Manhattan arc (Figure 2.2 [43]); each of

these midpoints affords the same minimum wirelength and exact zero skew. Ideally, the

selection of embedding points for internal nodes will be delayed for as long as possible.

The DME algorithm embeds internal nodes of the given topology G via a two-phase

process. The first phase of DME is bottom-up, and determines all possible locations of
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Figure 2.2: The locus of all midpoints between two sinks s1 and s2 is a Manhattan arc in

the Manhattan geometry. On the other hand, the midpoint is unique in Eu-

clidean geometry. (a) Sinks s1 and s2 are not horizontally aligned. Therefore,

the Manhattan arc has non-zero length. (b) Sinks s1 and s2 are horizontally

(left) and vertically (right) aligned. Therefore, the Manhattan arc for both

cases has zero length. Source: [43].

internal nodes of G that are consistent with a minimum-cost ZST T . The output of the

first phase is a tree of line segments, with each line segment being the locus of possible

placements of an internal node of T . The second phase of DME is top-down, and chooses

the exact locations of all internal nodes in T . The output of the second phase is a fully

embedded, minimum-cost ZST with topology G.

Tilted Rectangular 

Region (TRR)

Core

Radius

s2

s1

s2

s1

Figure 2.3: (a) Sinks s1 and s2 form a Manhattan arc. (b) An example of a tilted rectangu-

lar region (TRR) for the Manhattan arc of s1 and s2 with radius of two units.

Source: [43].

A tilted rectangular region (TRR) is a collection of points within a fixed distance of a

Manhattan arc (Figure 2.3 [43]). The core of a TRR is the subset of its points at maximum
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distance from its boundary, and its radius is the distance between its core and boundary.

The merging segment of a node v in the topology, denoted by ms(v), is the locus of

feasible locations for v, consistent with exact zero skew and minimum wirelength (Figure

2.4 [43]). The following presents the sub-algorithms used for DME.

u1

s1

u3

u2

s2 s3 s4

|eu |

ms(u2)ms(u1) ms(u3)

s1

s2

s3

s4

2

|eu |
1

trr(u2)

trr(u1)

Figure 2.4: A bottom-up construction of the merging segment ms(u3) for node u3, the

parent of nodes u1 and u2, given the topology on the left. The sinks s1 and s2

form the merging segment ms(u1), and the sinks s3 and s4 form the merging

segment ms(u2). The two segments ms(u1) and ms(u2) together form the

merging segment ms(u3). Source: [43].

The bottom-up phase of DME (building a tree of segments) starts with all sink loca-

tions S given. Each sink location is viewed as a (zero-length) Manhattan arc. If two sinks

have the same parent node u, then the locus of possible placements of u is a merging seg-

ment (Manhattan arc) ms(u). In general, given the Manhattan arcs that are the merging

segments of two nodes a and b, the merging segment of their parent node is uniquely de-

termined due to the minimum-cost property, and is itself another Manhattan arc (Figure

2.4 [43]). The edge lengths |ea| and |eb| are uniquely determined by the minimum-length

and zero-skew requirements. As a result, the entire tree of merging segments can be con-

structed bottom-up in linear time (Figure 2.5 [43]).

19



s1

s2

s8

s7

s6

s5

s0

s1

s2

s3

s4

s8

s7

s6

s5

s0

s3

s4

s1

s2

s3

s4

s8

s7

s6

s5

s0

(a) (b)

(c) (d)

s1

s2

s8

s7

s6

s5

s0

s3

s4

Figure 2.5: Construction of a tree of merging segments (DME bottom-up phase). Solid

lines are merging segments, dotted rectangles are the tilted rectangular regions

(TRR), and dashed lines are edges between merging segments; s0 is the clock

source, and s1 − s8 are sinks. (a) The eight sinks and the clock source. (b)

Construct merging segments for the eight sinks. (c) Construct merging seg-

ments for the segments generated in (a). (d) Construct the root segment, the

merge segment that connects to the clock source. Source: [43].

In the DME top-down phase (finding exact locations), exact locations of internal nodes

in G are determined, starting with the root. Any point on the root merging segment from

the bottom-up phase is consistent with a minimum-cost ZST. Given that the location of a

parent node par has already been chosen in the top-down processing, the location of its

child node v is determined from two known quantities: (1) |ev|, the edge length from v to

its parent par, and (2) ms(v), the locus of placements for v consistent with a minimum-
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cost ZST. The location of v, i.e., pl(v), can be determined as illustrated in Figure 2.6 [43].

Thus, the embeddings of all internal nodes of the topology can be determined top-down in

linear time (Figure 2.7).

ms(v)
pl(par)trr(par)

Possible locations of v

|epar|

Figure 2.6: Finding the location of child node v given the location of its parent node par.
Source: [43].

The Deferred Merge Embedding (DME) algorithm was extended to the bounded-skew

tree (BST) problem. BST/DME algorithms [23,38] generalize merging segments to merg-

ing regions. When BST/DME algorithms were introduced in the early 1990s, many chip

designs included one large central buffer to drive clock signals through the entire chip. To-

day traditional clock trees cannot satisfy slew constraints in large ICs because the maximal

length of unbuffered interconnect decreased significantly due to technology scaling [34].

Furthermore, the Elmore delay model used by published clock-tree optimizations lost ac-

curacy due to resistive shielding and the impact of slew on delay.

BSTs allow one to trade off a small increase in skew for reduced total wirelength.

Figure 2.3 shows that BSTs are shorter than ZSTs. However, BSTs are less balanced than

ZSTs and Elmore delay used in BST generation is inaccurate, thus the capacitance saved

on wires can be lost when compensating for skew with accurate timing analysis. After

initial buffer insertion, slow sinks and fast sinks are more clustered in ZSTs. Since our

21



s1

s2

s8

s7

s6

s5

s0

s3

s4

(a)

(c) (d)

s1

s2

s8

s7

s6

s5

s0

s3

s4

(b)

s1

s2

s8

s7

s6

s5

s0

s3

s4

s1

s2

s8

s7

s6

s5

s0

s3

s4

Figure 2.7: Embedding the clock tree during the DME top-down phase. Gray lines indicate

merging segments, dotted lines show connections between merging segments,

and black lines indicate routing segments. (a) Connecting the clock source

to the root merging segment. (b) Connecting the root merging segment to

its children merging segments. (c) Connecting those merging segments to its

children. (d) Connecting those merging segments to the sinks. Source: [43].

skew optimization techniques exploit these clusters, BSTs need greater resources to reach

near zero-skew than ZSTs. Table 2.2 shows the impact of BST skew bounds on final

results (CLR is defined in Section 2.1). The skew bounds during BST construction are

based on Elmore delay, and the final results are based on SPICE simulations. Based on

overwhelming empirical evidence against BSTs, Contango does not use them.

Obstacle-avoiding clock trees. The concept of merging regions in BST/DME was ex-
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(a) ZST (b) 3 ps BST (c) 9 ps BST

Figure 2.8: Min-wirelength trees with zero and bounded skew (Elmore delay). Only frag-

ments of actual clock trees are shown.

Skew Initial After skew and CLR optimizations

Bound, ps CLR, ps CLR, ps Skew, ps Cap., fF

0 52.01 13.75 1.633 77653

3 57.87 16.33 3.106 74606

6 68.06 18.91 6.004 79955

9 69.64 31.51 18.403 78779

Table 2.2: The impact of skew bounds on ispd09f22.

tended to obstacle-avoiding trees in [44], where (i) obstacles were assumed rectangular,

(ii) no routing over obstacles was allowed, and (iii) buffering was not considered. The

authors noted that obstacle processing slowed down their BST/DME algorithm and hinted

at more advanced geometric data structures. Unlike in [44], the ISPD 2009 contest allowed

routing but not buffering over obstacles, with SoCs in mind. ISPD 2009 benchmarks in-

cluded abutting obstacles that formed monolithic rectilinear obstacles.

Fast buffer insertion. L. van Ginneken introduced an algorithm for buffering RC-trees

[30], which minimizes Elmore delay and runs in O(n2) time, given n possible buffer

locations and buffer specification. While not intended for clock trees, it minimizes worst

delay rather than skew. TheO(n log n)-time variant of van Ginneken’s algorithm proposed

in [84] is more appropriate for large trees. A key insight into van Ginneken’s algorithm and

its faster variant makes them applicable to our work — while trying to minimize source
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to sink latencies, these algorithms insert almost same number of buffers on every path and

therefore result in low skew if the initial tree was already balanced.

Other buffering techniques have been proposed as well, e.g., a linear-time algorithm

from [7] that minimizes the number of buffers while bounding capacitive load and slew

rate, but does not minimize delay or skew. A dynamic program from [3] inserts a limited

number of buffers subject to a maximal skew in buffer counts on source-to-sink paths. At

the ISPD 2009 contest, slew constraints were checked by SPICE, but capacitance limits

were relatively generous. Our competitors predominantly used greedy bottom-up buffer-

insertion algorithms that added each buffer as high in the tree as possible, while satisfying

slew constraints. Such technique seek to minimize capacitance as the top priority. How-

ever, we chose the (faster variant of) van Ginneken’s algorithm, which seeks to minimize

worst sink latency. Our rationale was that process variations can be moderated by lower-

ing sink latency and that it is relatively easy to slow down paths that are too fast, but it

is harder to speed up slow paths. It is difficult to make a rigorous comparison with slew-

based buffering. In particular, some of our competitors at the ISPD 2009 contest relied on

it and produced relatively poor results, but others did better. In any case, our overall results

compare favorably to the best published results, especially in terms of nominal skew, and

we were unable to improve them further by using slew-based buffering.

Several methodologies for clock-tree tuning have recently been developed for the ISPD

2009 clock-network synthesis contest which focused on ASIC and SoC designs. A clock-

synthesis methodology for SPICE-accurate skew optimization with tolerance to voltage

variations called Contango was proposed in [51]. Dynamic Nearest-Neighbor Algorithm
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to generate tree topology andWalk-Segment Breadth First Search for routing and buffering

were proposed in [87]. A three-stage CLR-driven CTS flow based on an obstacle-avoiding

balanced clock-tree routing algorithm, monotonic buffer insertion, as well as wire-sizing

and wire-snaking is proposed in [61]. A Dual-MST geometric matching approach is pro-

posed in [63] for topology construction, along with recursive buffer insertion and a way to

handle blockages. SoC methodologies often spend significant effort dealing with hundreds

of layout obstacles, while CPU layouts include very few obstacles. However, skew con-

straints are more difficult in CPU clock synthesis. Because of these differences and due

to the incorporation of process variation into the ISPD 2010 contest, most of the above

techniques were not adopted by the contestants.

2.4 Interactions between placement and clock-network synthesis

Power consumption is one of the primary optimization objectives for modern IC de-

signs [76]. It includes three basic components: short-circuit power, leakage power and

net-switching power [62]. Net-switching power is usually the largest contributor, and

clock networks are often responsible for over 30% of total power consumption due to

their high capacitance and frequent switching [26, 31, 66, 96]. The quality of clock net-

works is greatly affected by register placement, but mainstream literature on placement

and most commercial EDA tools have largely overlooked this fact by focusing on wire-

length of signal nets [48], routability [102] and circuit timing [35]. As far as we know,

high-quality register placement cannot be achieved by easy pre- or post-processing of ex-

isting techniques. To this end, most appropriate changes to cell locations that reduce the

clock network may depend on the current structure of the clock network, which is not
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accounted for in existing placement tools. However, over-emphasizing the placement of

clock sinks may harm the overall design performance by making signal nets longer.

To address the apparent conflict between clock-net optimization and traditional place-

ment objectives, some researchers proposed techniques and algorithms for better regis-

ter placement without intrusive interference in traditional placement objectives. Lu [64]

proposed several techniques including Manhattan ring-based register guidance, center-of-

gravity constraints for registers, pseudo-pins and register-cluster contraction. Cheon [20]

proposed power-aware placement that performs both activity-based register clustering and

activity-based net weighting to simultaneously reduce the clock and signal net-switching

power. In order to reduce the clock network size, Wang [103] proposed dynamic clock-

tree building (DCTB), multi level bounding box (MLBB) and multi level attractive force

(MLAF), and integrated them into a force-directed placement (FDP) framework [101].

Clock-network optimization after placement can be performed by clustering nearby

flip-flops [16, 75] to share inverters (inside flip-flops) and shorten the clock tree. This

clustering does not adversely affect signal nets, but is rather limited by the locations of

combinational gates. In high-performance CPUs flip-flops are often replaced by single

latches, which reduces savings from clock-sink clustering.
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PART II

Clock Network Synthesis for SoCs and

CPUs

CHAPTER III

Integrated Optimization of SoC Clock Networks

On-chip clock networks are remarkable in their impact on the performance and power

of synchronous circuits, in their susceptibility to adverse effects of semiconductor tech-

nology scaling, as well as in their strong potential for improvement through better CAD

algorithms and tools. Existing literature is rich in ideas and techniques, but performs large-

scale optimizations using analytical models that lost accuracy at recent technology nodes,

and have rarely been validated by realistic SPICE simulations on large industry designs.

This chapter offers a methodology for SPICE-accurate optimization of clock networks,

coordinated to satisfy slew constraints and achieve best trade-offs between skew, insertion

delay, power, as well as tolerance to variations. Our implementation, called Contango,
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is evaluated on 45 nm benchmarks from IBM Research and Texas Instruments with up

to 50K sinks. It outperforms all published results in terms of skew and shows superior

scalability on the ISPD 2009 benchmarks.

3.1 Introduction

Clock networks were among the first circuits to suffer the impact of process, voltage

and temperature variations. Systematic variations can affect paths to different sinks in dif-

ferent ways, making effective skew higher than nominal skew. Intra-die variations may be

stronger on some paths than on others, which would further increase effective skew. These

challenges have motivated research at the device, circuit and algorithm levels [45]. In gen-

eral, smaller sink latencies and shorter tree paths decrease exposure to variations. Some

researchers tried to increase the tolerance of buffers to CD changes and temperature varia-

tion [39], some proposed to tune wires or buffers based on post-siliconmeasurements [92],

and some developed methodologies for inserting cross-links into the trees [36, 37, 50], ar-

guing that such links can decrease the impact of variation on skew. Existing literature

tends to (1) rely on closed-form delay models during large-scale optimization, (2) fre-

quently focus on a single optimization technique in analysis and evaluation, (3) neglect

the difficulties in modifying highly optimized clock trees. Our work seeks to address these

omissions and develops a practical methodology for effective SPICE-accurate optimiza-

tion, rather than just elegant algorithms with provable abstract properties. With process

variation in mind, microprocessor designers combine regular meshes with local or global

trees [82]. However, meshes have much higher capacitance and use more power.
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This chapter focuses on clock-network synthesis for ASICs and SoCs, where clock

frequencies are not as aggressive as in high-performance CPUs, but power is limited, es-

pecially for portable applications. In this context, tree topologies remain the most popular

choice, but may require accurate tuning and further enhancements. The SoC context in-

troduces another twist — layout obstacles. SoCs include numerous pre-designed blocks

(CPUs, RAMs, DSPs, etc) and datapaths. While it may be possible to route wires over

such obstacles, buffer insertion is typically not allowed. One can fathom the difficulty

of such optimization through comparison to signal-net routing, where obstacle-avoiding

Steiner trees currently remain an active area of research [59]. Our contributions include

• A careful analysis of design steps and optimizations for high-performance clock

trees, including the range, accuracy, and substitutability of specific techniques

• Notions of slow-down & speed-up slack for clock trees

• Tree optimizations driven by accurate delay models

• A simple and robust technique for obstacle avoidance in clock trees subject to slew

constraints

• A provably-good sink-polarity correction algorithm

• A methodology for clock-tree optimizations that outperforms the best results at the

ISPD 2009 contest on every benchmark by 2.15-3.99 times, while reducing skew to

2.2-4.6 ps. On newer Texas Instruments benchmarks with up to 50K sinks, skew

remains < 11 ps.
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Selecting best parameters for each benchmark can further improve results, at the cost of

increased runtime. But global skew < 20 ps is considered very small for ASICs and SoCs.

In the remainder of this chapter, Section 3.2 describes our analysis of the clock-

network synthesis problem and introduces slow-down & speed-up slacks. Major opti-

mization steps are described in Section 3.3, and Section 3.4 presents empirical results.

Section 3.5 summarizes this chapter and raises several intriguing research questions.

3.2 Problem analysis and a strategy for solutions

The design of a clock network offers a large amount of freedom in topology selection,

spacing and sizing of inverters, as well as the sizing of individual wires. Traditionally, net-

work topology is decided first. Trees offer unparalleled flexibility in optimization because

latency from the root to each sink can be tuned individually, while large groups of sinks

can be tuned by altering nodes and edges high up in the tree.

Composite buffers can be built by stacking up inverters in parallel and/or in series. Par-

allel composition decreases driver resistance, but increases input pin capacitance, while

leaving the intrinsic delay intact. The spacing of buffers is largely responsible for pre-

venting slew violations and also affects clock skew. It is sensitive to driver resistances,

the maximal capacitance (wire and input pins) that can be driven by a given composite

buffer, as well as branches in the buffer’s fanout, which determine the number of input

pins driven. A single wire segment can be split into smaller segments, and each can be

sized independently.
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3.2.1 Optimization objectives and timing analysis techniques

Accurate clock network design is complicated by the fact that the optimization objec-

tives are not available in closed form and take significant CPU resources to evaluate. Skew

optimization requires much higher accuracy than popular Elmore-like delay models. For

example, a 5 ps error represents only 1% of 500 ps sink latency, but 50% of 10 ps skew.

Closed-form models do not capture resistive shielding in long wires, do not propagate slew

with sufficient accuracy, and do not account for slew’s impact on delay well. Newer, more

sophisticated models are laborious to implement and only available in modern commercial

tools. Our strategy is to use simple analytical models at the first steps of the proposed flow

— (1) to construct zero-skew clock trees and (2) to perform initial fast buffer insertion,

— but drive further optimizations by SPICE runs, Arnoldi approximation, or any other

available timing analysis tool/model.

To minimize the number of time-consuming SPICE invocations, we pursued several

techniques. Runtime can be significantly reduced using localization and batch-mode eval-

uation. During localization, one prunes large portions of the clock tree that do not affect

latencies to the sinks impacted by the changes in question [36]. This does not reduce the

number of SPICE calls, but rather decreases the complexity of each run. On the other

hand, a batch of changes can be evaluated by a single SPICE run, as long as multiple

changes do not affect the same path from root to a sink.

Another avenue to streamlined SPICE-driven optimizations is to use mathematical

properties of circuit delay, such as monotonicity, convexity, and linearity with respect

to some parameters. Monotonicity and convexity support binary search, where an optimal
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value is sought on a certain interval. At each step of the search, the middle point of the

interval is evaluated by SPICE (e.g., a wire can be sized half-way) and the result deter-

mines whether to recur to the left or right half-interval. Linearity enables extrapolation of

multiple values based on several SPICE runs.

3.2.2 Nominal skew optimization

An initial buffered clock tree is constructed early in the design flow. Assuming no

slew violations, the latency of each sink s (Ts) is known from SPICE simulations (or

faster techniques, such as Arnoldi-based delay calculations), at which point minimal and

maximal latencies (Tmax and Tmin) can be found.1 Since absolute sink latencies are not

as important as skew (Tmax − Tmin), skew can be improved by either decreasing Tmax

(speeding up the slowest sinks) or increasing Tmin (slowing down the fastest sinks).

Definition III.1 Consider a clock tree and its sink s. The slow-down slack Slackslow
s

(speed-up slack SlackFast
s ) of s is the amount in ps by which the sink latency can be unilat-

erally increased (decreased) without increasing clock skew. In other words, Slackslow
s =

Tmax − Ts and SlackFast
s = Ts − Tmin.

Slow sinks often cluster together, and so do fast sinks. Hence, clock skew can be

improved by modifying a few nodes or edges high in the tree. To find desired delay

change, we propagate slack information up the tree as follows.

Let Sinkse be the set of downstream sinks for edge e.

1Separately for rising and falling transitions, for each PVT corner.
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Definition III.2 Consider a clock tree and its edge e. The slow-down slack Slackslow
e

(speed-up slack SlackFast
e ) of e is the amount in ps by which the edge delay can be unilat-

erally increased (decreased) without increasing clock skew.

Lemma 1 For any edge e in the tree

• Slackslow
e = mins∈Sinkse

Slackslow
s

• SlackFast
e = mins∈Sinkse

SlackFast
s

Given slacks on n sinks, all edge slacks can be computed in O(n) time.

Lemma 2 For any edge e and its parent in the tree, Slackslow
e ≥ Slackslow

parent(e) and

SlackFast
e ≥ SlackFast

parent(e).

The flexibility of a tree edge is limited by each downstream sink. Therefore, for edges

close to the root we often have Slackslow
e = SlackFast

e = 0. It is important to note that the

validity of slacks-related calculations does not depend on the use of specific delay models

or SPICE simulations. When visualizing clock trees, we color their edges with a red-green

gradient, indicating low slack with red and high slack with green, as shown in Figure 3.4.

Lemma 2 suggests that, instead of changing the delay of an edge, one can change the

delay of its downstream edges by an equal amount, as long as only one delay change is

applied on each root-to-sink path. When choosing between tree edges on the same path,

we prefer (at early stages of optimization) to tune edges as high in the tree as possible, so

as to minimize (i) the amount of change, (ii) the risk of introducing slew violations and

(iii) power overhead. However, in a highly optimized tree, we tune bottom-level edges
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where we can better predict the impact on skew. The preference for high-level tree edges

can be formalized as follows.

Proposition 1 For each edge e in the tree, define ∆slow
e = Slackslow

e − Slackslow
parent(e). If

every edge is slowed down exactly by ∆slow
e , the tree’s skew will become zero, and both

slow-down and speed-up slacks will become zero.

Naturally ∆fast
e = Slackfast

e − Slackfast

parent(e), and a mirror statement holds. For a tree

edge e, it is possible that ∆fast
e > 0 and ∆slow

e > 0, facilitating conflicting optimizations.

If optimizations are not coordinated well, some edges may be sped up and some slowed

down, while the overall skew is unchanged. To avoid such conflicts, one can perform

rounds of speed-up and rounds of slow-down, separated by SPICE-based analysis and

slack update. In practice, it is easier to slow down an edge than to speed it up. Thus, any

possible speed-up, e.g., by using stronger buffers, is performed first. Rounds of speed-up

and slow-down are more conveniently performed top-down, so that when an edge cannot

be tuned by the desired amount, the remainder is passed to its downstream edges.

We found that after nominal skew is sufficiently optimized, both rising and falling

transitions can individually limit speed-up and slow-down slacks. We handle the two

transitions separately and define edge slacks as the smaller of rise-slack and fall-slack.

Furthermore, speed-up and slow-down slacks can be computed for each process corner

given (two in the ISPD 2009 contest). In order to improve the multicorner CLR objective,

a tree edge can be sped up conservatively by the minimum of its speed-up slacks, and can

be slowed down by the minimum of its slow-down slacks.
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3.2.3 Clock latency range (CLR) optimization

Our methodology pursues two objective functions —- nominal skew and the ISPD

2009 CNS contest metric, CLR, introduced in Section 2.1. Due to significant correla-

tion between CLR and nominal skew, some of the optimizations in our flow target skew

optimization, some target CLR, and some address both (see Table 3.3). In practice this

approach achieves a good trade-off between the two optimization objectives, and is repre-

sentative of multi-objective optimization required in many practical settings. Recall that

the CLR calculation is based on the sink latencies at two different supply voltage settings.

There are mainly two strategies to reduce CLR. First, reducing skew directly contributes

to reducing CLR until skew becomes very small (e.g. less than 5 ps). Let sink L be the

sink with the least sink latency @1.2V (T 1.2V
L ) and sink G be the sink with the greatest

sink latency @1.0V (T 1.0V
G ). Then CLR = T 1.0V

G - T 1.2V
L . When we consider the latency of

sink G @1.2V (T 1.2V
G ), then CLR = (T 1.0V

G -T 1.2V
G ) +(T 1.2V

G -T 1.2V
L ). We call (T 1.0V

G -T 1.2V
G )

the variational part of CLR and (T 1.2V
G -T 1.2V

L ) the skew part of CLR. The skew part of CLR

can be reduced by skew optimization techniques. Since the corner sinks of skew are not al-

ways same to the corner sinks of CLR (sink L and G), CLR needs to be measured after any

skew optimization to check CLR improvement. The second strategy for CLR optimization

targets the variational component of CLR. The detailed descriptions of optimizations for

the skew and variational part of CLR are discussed in Section 3.3.

3.2.4 Coordinating multiple optimizations

We found that different clock-tree optimizations exhibit different strength/range and

different accuracy (see Tables 3.3 and 3.6). For example, buffers can be inserted to in-
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crease delay with the purpose to decrease nominal skew. This optimization offers a great

range (significant strength) because a buffer’s intrinsic delay can be significant. However

its accuracy is low because buffer delay cannot be accurately controlled. Our strategy in

coordinating clock-tree optimizations is to start with optimizations that offer the great-

est range, and then transition to optimizations with greater accuracy. Each step should

decrease the main optimization objective sufficiently to be within the range of the next

optimization. For example, in the ISPD 2009 contest, top-down wiresizing can decrease

nominal skew from hundreds of ps to 10 - 20 ps. This is sufficient for top-down wires-

naking to take over and reduce nominal skew to 5 ps where more accurate techniques can

be used. Here we observed that wiresnaking also exhibits a significant range of optimiza-

tion, but we sequenced it after wiresizing because it offer a greater accuracy and because

it increases capacitance, whereas wiresizing decreases it.

3.3 Proposed SoC clock-synthesis methodology

Our proposed clock-network synthesis methodology and its major algorithmic steps

are shown in Figure 3.1. Contango first builds an initial tree using a ZST/DME algo-

rithm [23] and alters it to avoid obstacles. It then uses an O(n logn)-time variant of van

Ginneken’s buffer insertion algorithm [84] to ensure small insertion delay and to satisfy

slew constraints. A series of novel clock-tree optimizations are applied next.

3.3.1 Obstacle-avoiding clock trees

As we pointed out in Section 2.3, obstacle-avoiding clock trees can be built by repair-

ing obstacle violations in ZSTs. This approach is attractive when large obstacles abut the
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Figure 3.1: Key steps of the Contango methodology. Blue boxes represent skew reduction

techniques, red octilinear shapes show CLR reductions, and the green box with

thick border reduces both objectives. An Improvement- & Violation-Checking

(IVC) step follows each Clock-Network Evaluation (CNE) using circuit sim-

ulation tools, e.g., SPICE. “Fail” indicates no improvement or having slew

violations, leading to a transition to the next optimization.

chip’s periphery because ZSTs naturally avoid areas without clock sinks. This approach is

also attractive when obstacles are small or thin enough that a buffer inserted immediately

before the obstacle can drive the wire over the obstacle, so that no rerouting is necessary.

A third convenient case occurs when a wire can be rerouted around the obstacle without an

increase in length. Most obstacles are rectangular in shape, but such rectangles may abut,

creating rectilinear-shaped obstacles. When two obstacles abut, we cannot place a buffer

between them, and therefore handle them as one compound obstacle. Contango detours
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wires using the following algorithm, illustrated in Figure 3.2 for a composite obstacles.

Step 1. Identify all wires that intersect obstacles. For each point-to-point connection, per-

form shortest-path maze routing around the obstacles. For subtrees that cross an obstacle,

find L-shaped segments that link points inside and outside the obstacle. For each L-shape,

choose one of the two possible configurations that minimizes overlap with the obstacle.

Step 2. When a wire crosses an obstacle, Contango captures an entire subtree enclosed by

the obstacle (see Figure 3.2). The total capacitance of the subtree is then measured and

compared to the capacitance that can be driven by the driving buffer without risking slew

violations. Sub-trees that can be driven by the driving buffer do not require detours.

Step 3. For obstacles crossed by a subtree that cannot be safely driven by the driving

buffer, Contango establishes a detour along the contour of the obstacle as follows. First,

the entire contour is considered a detour. Then, to ensure that the clock network remains a

tree, one segment is removed between tree sinks adjacent along the contour. If we were to

minimize total capacitance, we would remove the longest segment of the contour between

two adjacent tree sinks. However, we minimize the longest detoured source-to-sink path,

and therefore remove the segment furthest from the tree source (counting distances along

the contour). In other words, we first find the sink most distant from the source along the

contour, and include in the detour the entire shortest path to the source. The other segment

incident to the sink is removed, but the shortest path from its other end to the source is

included (see Figure 3.2).

Modern SoC layouts are littered with obstacles, which upset regular structures such

as meshes and H-trees. In the ISPD 2009 contest, such layouts required numerous de-
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Figure 3.2: An illustration of our detouring algorithm. Small solid circle indicates the

source of detour, larger circles indicate sinks. The detour is shown with red

dotted lines.

tours. Detouring may significantly increase skew, but the subsequent skew optimization

techniques can compensate for that.

3.3.2 Composite inverter/buffer analysis

Most technology libraries support dedicated clock buffers or inverters that are larger

and more reliable than those for signal nets. Industry designs usually offer at least six

different sizes. Parallel composition of buffers increases driver strength, helping with slew

constraints and improving robustness to variations. Yet, buffer sizes must be moderated to

satisfy total power limits. For a given buffer library, we consider many possible composite

buffers. Using dynamic programming, we select several non-dominated configurations

that can be further evaluated during buffer insertion. Algorithmic details are omitted here

because the ISPD 2009 contest used only two inverter types — large and small. Table 3.1

shows that eight parallel small inverters exhibit smaller output resistance than one large

inverter, and smaller input/output capacitance. Hence Contango used 8× small inverters
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INVERTER INPUT OUTPUT

TYPE Cap., fF Cap., fF Res., Ω

1X Large 35 80 61.2

1X Small 4.2 6.1 440

2X Small 8.4 12.2 220

4X Small 16.8 24.4 110

8X Small 33.6 48.8 55

Table 3.1: Inverter analysis for ISPD 2009 CNS benchmarks.

instead of large inverters, in batches of 16×, 24×, etc. This benchmark-independent

optimization, along with buffer sizing, plays an important role in our methodology.

3.3.3 Initial buffer insertion with sizing

Given a clock tree with buffers, it is easy to increase the latency of a given sink, but

it is difficult to speed up a sink. Therefore, our strategy is to first make sinks as fast as

possible, and then reduce skew with wiresnaking and wiresizing. When buffers are

inserted into an Elmore-balanced tree, source-to-sink paths contain practically the same

numbers of buffers (can be off by one in some cases).

We adapted the O(n log n)-time variant of van Ginneken’s algorithm from [84]. Due

to its speed, it can be launched with different inverter configurations, effectively perform-

ing simultaneous optimization across multiple parameters. Our experiments indicate that

driver strength is a major factor in moderating the impact of supply-voltage variations.

Therefore, to reduce the variational part of CLR, Contango performs fast buffer insertion

with different composite buffers until it finds the best-performing solution with strongest

composite buffers within 90% of the power limit. Slew-constraint violations are not a

concern at this point since minimizing delay involves avoiding high slew-rate (recall that

there is positive correlation between delay and slew-rate). The experiments on various
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clock trees with initial buffer insertion suggest that even the worst slew-rate is well under

60% of the slew limit. We reserve γ = 10% of power budget to facilitate more accurate

optimizations.

The O(n log n) variant of van Ginneken’s algorithm [84] used in our work assumes

that all available clock buffers preserve polarity. However, when polarity-changing invert-

ers are used, as in the ISPD 2009 contest, it will typically produce trees with incorrect sink

polarity (inverted sinks). While the algorithm can be extended to account for sink polarity,

we found this unnecessary. Even a simple patch — placing additional inverters at each of

n× inverted sinks — works reasonably well, because the skew introduced by new invert-

ers can be fixed by downstream optimizations. This technique inserts inverters at half the

sinks (n/2) on average. To reduce the added capacitance in cases when n× > n/2, Con-

tango inserts one inverter at the top of the tree, leaving only n♯ = (n − n×) < n/2 sinks

with wrong polarity. The average number of inserted inverters would now be (n + 2)/4.

Instead, Contango traverses the tree bottom-up and marks each node (i) whose all sinks

have equal polarity, but (ii) whose parent does not satisfy (i). An inverter is inserted at

each marked node with downstream sinks of incorrect polarity. As a result, the number of

added inverters is significantly reduced, as shown in Table 3.2. The skew induced by new

inverters is not significant and fixed by the skew optimization algorithms later.

Proposition 2 The above algorithm runs in O(n) time, fixes all inverted sinks and mini-

mizes the number of added inverters, subject to ≤ 1 inverter on every root-to-sink path.
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f11 f12 f21 f22 f31 f32 fnb1

Inverted sinks 77 71 46 57 140 47 153

Added inverters 9 7 8 9 16 13 2

Table 3.2: Inverted sinks in ISPD 2009 benchmarks (after buffer insertion) vs. polarity-

correcting inverters.

3.3.4 Buffer sliding and interleaving

We now discuss targeted improvement of robustness to variations in device perfor-

mance. The iterative buffer sizing introduced in Section 3.3.5 is primarily used to reduce

the variational component of CLR, while buffer sliding and interleaving are applied as

preliminary steps. Extensive experiments suggest that the impact of variations on skew is

best reduced by (i) decreasing sink latency (insertion delay), and (ii) using the strongest

possible buffers. Since our initial buffer insertion algorithm focuses on the former metric

with the latter metric as a secondary objective, it is possible to further improve the varia-

tional component of CLR by emphasizing the latter metric. Therefore, based on the results

of initial buffer insertion, Contango attempts to size buffers up.

Sizing up a single inverter increases its input pin capacitance and can lead to slew

violations. To prevent such violations, it is often possible to slide the inverter up the tree to

reduce upstream wire capacitance and interleave an inverter when two inverters move too

far apart after sliding. The increase in downstream wire capacitance is balanced with the

increase in the inverter’s driving strength. Sizing a single inverter may increase the skew

and require further correction. Therefore, we focused on the top-most levels of the tree,

whose impact on skew is relatively small. Given a clock source at the chip boundary, DME

algorithms generate a long wire leading to the center of the chip, and the tree branches out

from the center. This long wire — the tree trunk — is later populated with a chain of
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inverters, which can be up- or down-sized without significant impact on skew because this

equally affects all sinks. However, since roughly 1/3 to 1/2 of sink latency is due to the

tree trunk, it accounts for a large fraction of variational impact on latency.

The trunk’s variational impact is different for voltage and process variations, and this

must be accounted for during optimizations. Stronger buffers in the trunk reduce the sen-

sitivity of latency to supply voltage (e.g., in the case of different power modes), and help

optimizing the CLR objective from the ISPD 2009 contest. However, process variations in

the trunk do not affect skew. In the ISPD 2010 contest, process variations were included

in the skew constraint, while the primary objective was to minimize total capacitance.

Therefore, one of successful strategies to weaken the buffers in the tree trunk and avail the

capacitance saved to other optimizations.

3.3.5 Iterative buffer sizing

After sliding and interleaving top-level buffers, we invoke iterative buffer sizing. First,

this algorithm sizes up buffers in the tree trunk. At the i-th iteration of buffer sizing,

Contango sizes up the composite inverters by at most pi = 100/(i + 3)%. The itera-

tions continue until results improve without slew violation. Buffer sizing in tree branches

incurs a greater capacitance penalty. To compensate, Contango borrows capacitance by

downsizing bottom-level buffers.

However, sizing up buffers after the trunk often makes the tree unbalanced in terms of

skew and results in greater load for the skew optimization algorithms. For better perfor-

mance of skew optimizations, typically 4 or 5 levels after the first branch are sized up by

capacitance borrowing buffer sizing algorithm.
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3.3.6 Iterative top-down wiresizing

Before skew optimization, Contango computes slow-down slacks at every edge as de-

scribed in Section 3.2, and the ∆slow
e parameters. This suggests the amount by which a

given tree edge can be slowed down before skew would be negatively affected. Since fast

sinks often cluster together, skew can be lowered by slowing down either many bottom-

level wires or few wires higher in the tree. Our top-down algorithm pursues the latter,

seeking to minimize tree modifications.

We build an ad hoc linear model based on the impact of downsizing a unit-length (lws)

wire segment. Contango chooses several independent wire segments with same length

(lws) in the middle of the tree and downsizes them to observe the impact on latencies of

downstream sinks, ensuring that every sink is affected by only one downsized wire. This

requires a single SPICE run and produces a single parameter Tws — maximal latency

increase by downsizing a unit-length (lws) wire segment. When downsizing a wire, the

scaling factor k is calculated based on Slacke divided by Tws and k × lws of the wire is

down-sized. When k is small, the latency increases almost linearly since the down-sized

length is much smaller than the length of the wire. Therefore we can estimate that the

maximum latency increase is equal to or less than k × Tws. To utilize this linearity, we

limit k by kmax. kmax is experimentally determined by observing the threshold at which the

linearity breaks significantly. Also, the scaling factor k can be limited by slew constraints.

Wiresizing typically increases slew rate because of increase in resistance. Even though

k < kmax holds, Contango does not allow any downsizing on a wire whose downstream

node has slew rate above 80% of the slew limit.
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Algorithm 1 IterativeWireSizing

Tws = TwsEstimation();

repeat

SaveSolution(); ComputeWireSlacks();

Q = {root}; RSlack = {0}; i = 0;
while i < size(Q) do
if (Slack[Qi] − RSlacki > Tws) then

k = (Slack[Qi] − RSlacki)/Tws;

DownSize(Wire[Qi],k); RSlacki+ = kTws;

end if

for j = 1 to Size(Child[Qi]) do
Q.push(Child[Qi][j]); RSlack.push(RSlacki);

end for

+ + i;
end while

SpiceSimulation();

until (no improvement || slew violation)

Since we selected Tws as the maximal latency increase from the SPICE simulation,

the actual increase (calculated by SPICE) is smaller — our modifications are intentionally

conservative to avoid excessive increase of latency, which increases the maximal latency of

the tree and consequently causes increase of slack for the entire tree. After running SPICE,

collecting sink latencies and recomputing slow-down slacks, Contango repeats top-down

wiresizing to reduce skew based on current data. This process is performed iteratively

until the objective function (CLR or nominal skew) stops improving. Iterative wiresizing

is detailed in Algorithm 1.

3.3.7 Iterative top-down wiresnaking

Wiresizing can reduce large skew by applying small changes, which is appropriate

after the initial tree construction. An experienced clock-network designer suggested to us

that a small amount of wire-snaking is often used to improve clock skew, as long as added

capacitance does not significantly affect power. Wiresnaking alters a given route so as to
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increase its length and can be applied on fast paths.

We develop an accurate top-down wiresnaking process, which we invoke after top-

down wiresizing. This step uses the same slow-down slack computation we described

earlier. A SPICE simulation is performed (other accurate delay model can be used) to

measure Twn, the worst-case delay of wiresnaking with unit length lwn. lwn affects the

accuracy of the wiresnaking algorithm; smaller lwn offers greater accuracy but typically

leads to more SPICE runs since skew reduction in each round of top-down wiresnaking

is smaller. lwn was set based on empirical analysis of the 45 nm technology used at

the ISPD contest before contest benchmarks became available. The applicability

of wiresnaking depends on the VLSI context. If the clock tree is competing for routing

resources with signal nets, then every effort should be taken to reduce the utilization of

routing resources. In particular, wiresnaking cannot be used in areas of routing congestion

(also, clock trees should avoid such areas to minimize crosstalk noise). On the other hand,

some ICs include abundant routing resources. This is the case for pad-limited designs and

designs whose area is determined by large IP blocks. The number of available metal layers

also plays a major role in the design of clock trees, and can vary dramatically between

different designs, ranging from 6 to 12 layers as of 2010. In some high-performance

designs, clock networks are given a dedicated metal layer, which makes wiresnaking much

more attractive.

One of the top-three teams at the ISPD 2009 clock-tree routing contest (NTU [87])

used dangling wires instead of wiresnaking. Rather than elongate a route, this strategy

adds a dead-end branch. The goal is to increase wire capacitance, and therefore increase
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ISPD09F11 ISPD09F12 ISPD09F21 ISPD09F22 ISPD09F31 ISPD09F32 ISPD09FNB1

CLR Skew CLR Skew CLR Skew CLR Skew CLR Skew CLR Skew CLR Skew

INITIAL 56.2 30.6 75.8 49.0 89.3 59.2 52.0 31.6 152 117 122 88.2 31.9 21.2

TBSZ 55.6 46.8 80.0 66.2 89.5 76.3 43.2 33.7 140 129 111 98.3 31.5 21.1

TWSZ 23.4 15.1 19.7 8.13 26.0 12.3 16.4 6.93 43.1 32.2 27.2 14.8 30.8 20.4

TWSN 13.8 2.93 16.2 3.38 17.6 2.83 12.6 1.99 12.8 3.91 17.9 4.59 13.9 3.15

BWSN 13.4 2.87 15.3 2.61 17.4 2.74 12.4 2.23 12.8 3.91 17.9 4.59 13.4 3.5

Table 3.3: Progress achieved by individual steps of Contango on ISPD 2009 benchmarks:

the first letter in each acronym indicates top-down (T) or bottom-level (B) op-

timization, second letter differentiates wires (W) from buffers (B), while “Sz”

stands for “sizing” and “Sn” stands for “snaking”. Gray highlights indicate

whether skew or CLR was the primary optimization objective.

the delay. In comparing dangling wires to wire-snaking, we note that the former does not

alter the resistance that affects propagation delay. Therefore, to achieve a particular slow-

down, a much longer wire-branch is needed. On the positive side, the dependence of delay

increase on branch length is linear, and this may allow for more accurate tuning. In other

words, this technique offers a potentially greater accuracy, but smaller range because the

range of such optimizations is limited by the capacitance budget. Therefore, if dangling

wires are found useful, they should be used at a later stage in the optimization flow.

3.3.8 Bottom-level fine-tuning & limits to further optimization

After two top-down skew reduction phases, skew becomes small enough to perform

bottom level optimizations. Bottom-level wiresnaking optimize the wires directly con-

nected to sinks. This technique is more accurate than the top-down optimizations since

each sink is tuned individually. Contango performs SPICE-driven bottom-level wires-

naking until the results stop improving. Typically the gain of bottom-level tuning is under

2 ps, but can be a significant fraction of remaining skew. We found that with skew < 5 ps,

the corner sinks of rising transition and falling transition are often different. This rise-fall

divergence makes further improvements to the clock tree very difficult. Indeed, reducing
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rising skew by slowing down a fast sink for rising transition may increase falling skew

due to excessive slowdown of a slow sink for falling transition. In the Contango flow, the

average skew after bottom-level tuning is 3.21 ps on ISPD 2009 CNS contest benchmarks.

Table 3.3 shows the improvement of CLR and skew by each optimization algorithm.

Note that after iterative buffer sizing (TBSz), skew is increased but CLR does not change

much. This implies that TBSz reduced the variational part of CLR significantly. The

increased skew is reduced below 5 ps after our skew optimizations.

3.4 Empirical validation: Contango 1.0

To validate our proposed techniques, we first present results on ISPD 2009 benchmarks

according to the contest protocol, then discuss the significance of specific optimizations

used by Contango, and then evaluate the scalability of our C++ implementation on larger

benchmarks from our industry colleagues. We measured runtimes on a 2.4 GHz Intel

QuadCore CPU running Linux, similar to CPUs used at the ISPD contest.

ISPD 2009 benchmarks include seven 45 nm chips up to 17 mm × 17 mm in size,

with up to 330 selected clock sinks [94]. Table 3.4 compares results of our software

Contango to the top three teams of the ISPD 2009 clock-network synthesis contest. On

average, Contango reduces CLR by 2.15×, 3.99× and 2.35× versus contest results by

NTU, NCTU and U. of Michigan respectively, excluding failures of NTU and NCTU

on benchmarks with many obstacles. All results are within the capacitance limits, but

Contango nearly exhausts the limits as a part of its strategy. On ISPD 2009 benchmarks,

maximum sink latency averages 1120 ps, while the average number of composite-buffer

locations is 223. A clock tree built by Contango is shown in Figure 3.4.
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CONTANGO(THIS WORK) NTU NCTU U. OF MICHIGAN

Benchmark 9/10/2009 3/30/2009 3/30/2009 3/30/2009

CLR Cap. � CLR Cap. � CLR Cap. � CLR Cap. �

ispd09f11 13.36 99.61 6488 26.71 85.53 14764 22.31 89.90 23358 32.29 73.86 3892

ispd09f12 15.27 99.99 6564 25.73 84.72 13934 22.18 87.86 14992 32.17 73.45 3944

ispd09f21 17.40 96.74 6673 30.54 80.79 14978 19.61 86.65 26420 34.31 74.30 4587

ispd09f22 12.36 97.43 3618 24.51 81.82 7189 16.38 85.01 9432 30.45 70.01 2005

ispd09f31 12.81 98.29 21379 45.07 73.49 40088 212.0 92.38 1.29 51.34 81.53 17333

ispd09f32 17.92 99.24 12895 36.90 80.14 3566 fail - - 40.32 77.39 10599

ispd09fnb1 13.40 78.38 778 fail - - fail - - 19.84 63.10 477

Average 14.65 95.66 8342 31.57 81.08 15753 58.49 88.36 14841 34.39 73.38 6120

Relative 1.0 1.0 1.0 2.15 0.85 1.89 3.99 0.92 1.78 2.35 0.77 0.73

Table 3.4: Results on the ISPD 2009 Contest benchmark suite. CLR is reported in ps,
capacitance in % of the limit specified in benchmarks, and CPU time in s. Best
results from the ISPD 2009 contest and best results overall are shown in bold.

Runtime is dominated by SPICE runs. It was not used for scoring at the ISPD

2009 contest and can be improved by using FastSPICE, Arnoldi approximation.

More recent results for ISPD 2009 benchmarks from ASPDAC‘10 [61, 63, 87] are

summarized in Table 3.5. The results in Table 3.5 show that Contango outperforms NTU

and NCTU by skew and CLR. HKPU [63] claims a 20% advantage in CLR, but more than

doubles nominal skew. Another interesting aspect of the HKPU work is that they rely on

SPICE very little in their optimizations and instead use the Elmore delay model, which

explains their low runtimes. The algorithms in [63] focus entirely on the optimization of

nominal skew, which does not explain the results — high nominal skew and low CLR. As

the authors of [63] have kindly provided their clock trees on our request, we observed that

those trees use very large buffers at the top levels of the tree (including but not limited to

the trunk) and small buffers toward the sinks. This strategy minimizes the impact of supply

voltage variations, but makes it more difficult to optimize nominal skew given a limited

capacitance budget.

Significance of individual optimizations. Several optimizations we have implemented

were superseded by more powerful techniques. For example, skew reduction by buffer

insertion was unnecessary and undermined the robustness to variations. However, it can
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Figure 3.3: The clock tree produced by Contango on ispd09fnb1. Sinks are indicated by

crosses, buffers are indicated by blue rectangles. L-shapes are drawn as “di-

agonal wires” to reduce clutter. Wires are colored by a red-green gradient to

reflect slow-down slacks, as described in Section 3.2.2. The impact of wires-

naking is too small to be visible.

CONTANGO NTU NCTU HKPU

Benchmark (this work) [87] [61] [63]

CLR Skew � CLR Skew � CLR Skew � CLR Skew �

ispd09f11 13.36 2.867 6488 19.71 4.478 4639 18.77 7.12 30787 12.2 — 180

ispd09f12 15.27 2.611 6564 17.46 4.088 4231 15.5 3.06 27622 10.9 — 213

ispd09f21 17.40 2.738 6673 19.92 3.868 4629 17.04 3.02 33056 12.1 — 210

ispd09f22 12.36 2.227 3618 16.47 3.671 3937 16.25 4.11 19136 9.9 — 113

ispd09f31 12.81 3.91 21379 31.13 4.762 11112 22.63 7.58 66588 13.4 — 777

ispd09f32 17.92 4.594 12895 23.04 4.234 7293 20.59 5.52 49907 11.5 — 420

ispd09fnb1 13.40 3.5 778 15.73 6.798 3719 14.32 3.77 7643 13.8 — 82

Average 14.65 3.207 8342 20.49 4.56 5651 17.87 4.88 33534 11.97 7.72 285

Table 3.5: Results from ASPDAC’10 clock routing papers on the ISPD 2009 Contest

benchmark suite [61, 63, 87]. Runtimes may be from different workstations.

CLR and skew are reported in ps and CPU time in s. Only average skew was

published for HKPU [63].

be used as a last resort when detours around obstacles introduce extremely high skew.

Our wiresizing can be refined, but probably not beyond the accuracy of subsequent wires-

naking. In practice, wiresnaking is very limited, so as to preserve the routability of signal

wires (unless clock wiring is given a dedicated metal layer). Dangling wires, used by NTU

instead of wire snaking, would be even less acceptable.
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ispd09f12 Full flow w/o TWSz w/o TWSn w/o BWSn

TWSz -58.11 - -58.11 -58.11

TWSn -4.740 -33.51 - -4.740

BWSn -0.773 0 -2.494 -

Skew 2.611 14.92 5.633 3.384

Table 3.6: The ‘Full flow’ column shows skew change at each step in the Contango flow,

and the final skew in ps. Acronyms are decoded in the caption of Table 3.3.

Subsequent columns show the impact of removing one optimization. These

results illustrate the range of each optimization and its impact on final results.

To further study the relative significance of optimizations in Contango, we show in

Table 3.6 the impact of removing each skew optimization step from the flow. It can be

seen that each step is necessary to achieve competitive results. Removing top-down wire-

sizing effects the greatest impact because this optimization offers the greatest range, and

subsequent optimizations cannot fully compensate for its omission.

Scalability studies. The ISPD 2009 contest was limited to unrealistically small numbers

of sinks due to limitations of the open-source ngSPICE software [71] it relied upon. To

evaluate the scalability of our optimizations, we replaced ngSPICE with industry-standard

HSPICE software [93].2 Working with a recent Texas Instruments chip sized 4.2mm ×

3.0mm, we identified locations of 135K sinks and randomly sampled them to create a

family of benchmarks. For this experiment, our algorithm used groups of large inverters

instead of groups of 8 parallel small inverters, improving runtime eightfold at the cost of

increasing CLR and skew by 1 - 2 ps and increasing capacitance by 15%. It produced

highly-optimized clock trees with up to 50K sinks. Table 3.7 shows that total capacitance

scales linearly with the number of sinks, and skew remains in single ps. The number of

HSPICE runs grows very slowly, but HSPICE remains the bottleneck.

2The numbers produced by ngSPICE and HSPICE were fairly close, with the main difference being

runtime and scalability.
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# sinks CLR, ps Skew, ps Latency, ps Cap., pF �, min

200 13.47 2.124 506.8 52.21 2.2 (21)

500 14.84 2.174 528.0 99.53 6.28 (20)

1K 17.53 3.138 543.1 162.3 12.5 (20)

2K 16.56 3.136 543.9 276.1 19.3 (15)

5K 23.20 3.853 538.5 591.1 99.6 (22)

10K 25.54 5.562 538.0 1130 352.8 (23)

20K 32.47 10.46 546.8 2243 1867 (35)

50K 31.52 8.774 545.1 5243 16027 (45)

Table 3.7: Scalability on Texas Instruments benchmarks. The “Latency” column repre-

sents maximum 1.2V latencies. SPICE runs are counted in parenthesis.

3.5 Summary

Existing literature on clock networks offers several elegant algorithms, but does not

describe end-to-end solutions to clock-network synthesis that can handle modern inter-

connect. Our work makes several contributions to this end. First, we develop special-

ized optimization algorithms necessary to bridge the gaps between well-known point-

optimizations. Our emphasis is on robust techniques, that do not require benchmark-

specific tuning and are amenable to embedding into design flows. Second, we develop an

EDA methodology for integrating clock-network optimization steps. Third, we describe

a robust software implementation, called Contango, that outperforms the best results from

the ISPD 2009 contest [94] by a factor of two.3 Fourth, we scale our implementation to

large industrial clock networks. Based on their strong empirical results, our techniques

may improve timing and power of future ASICs and SoCs [33]. In CPU designs, our trees

can be integrated with meshes [82]. Here, better trees may facilitate smaller meshes and

reduce power consumption, which can be traded off for higher performance or longer bat-

tery life in portable applications. Optimization techniques presented in this chapter serve

as a foundation for research reported in the remaining chapters of this dissertation.

3The use of two wire sizes, two inverter types, and two process corners at the ISPD 2009 contest is not a

limitation of our algorithms and methodology. Likewise, any accurate delay evaluator can be used, including

FastSpice, Arnoldi approximations, etc.
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CHAPTER IV

Low-power Clock Trees for CPUs

Clock networks contribute a significant fraction of dynamic power and can be a lim-

iting factor in high-performance CPUs and SoCs. The need for multi-objective optimiza-

tion over a large parameter space and the increasing impact of process variation make

clock network synthesis particularly challenging. In this chapter, we develop new mod-

eling techniques and algorithms, as well as a methodology, for clock power optimization

subject to tight skew constraints in the presence of process variations. Key contributions

include a new time-budgeting step for clock-tree tuning, accurate optimizations that satisfy

budgets, modeling and optimization of variational skew. Our implementation, Contango

2.0, outperforms the winners of the ISPD 2010 clock-network synthesis contest on 45

nm benchmarks from Intel and IBM. To support emerging SPICE-accurate circuit opti-

mizations, we propose Chop-SPICE, a divide-and-conquer technique for scaling SPICE

simulations to large, buffered RC trees, that trades off precision for speed.

4.1 Challenges addressed

Recent developments in embedded CPU design stress the need for low-power clock

trees, yet also impose stringent skew limits, especially in the presence of process, voltage
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and temperature (PVT) variation for sub-45 nm CMOS technology. Previous clock-tree

methodologies rely on symmetric and regular tree topologies, such as H-trees and fish-

bones [6, chapter 43], which do not require sophisticated design algorithms (see Section

1.1). However, these topologies experience difficulties with layout obstacles, non-uniform

sink distributions, and varied sink capacitances. Fully-automated clock-tree synthesis sup-

ported by commercial EDA tools offers clear advantages in terms of capacitance, but may

not be able to ensure sufficiently low skew for use in a 2 GHz CPU. For example, the

authors of [65] report clock trees generated by Cadence tools with skew that is orders of

magnitude higher than the single-ps skew provided by clock meshes.

4.1.1 Research questions

In this chapter, we pursue the following research questions.

• How far can the skew of a high-performance clock tree be optimized?

• How can one minimize the impact of PVT variations in a clock tree?

• Given a single-picosecond skew requirement, how competitive are clock trees with

clock meshes?

Our approach to answering these questions is inspired by the ISPD 2010 clock-network

synthesis contest, which used several 2 GHz CPU benchmarks from IBM and Intel to

compare tools submitted by 10 teams across the world (downselected from 20 initial reg-

istrants). To evaluate the quality of the clock networks, difficult slew and skew constraints

were checked against 45 nm Monte-Carlo SPICE simulations that modeled PVT varia-

tions. Clock networks that cleared all constraints were compared by their total capacitance
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— a proxy for dynamic power. In this context, we developed a suite of algorithms for the

design and thorough optimization of clock trees. The results of the ISPD 2010 contest

offer a rare opportunity to compare multiple strategies for clock-network synthesis — the

third-place team used symmetric trees [85], the second-place team used clock meshes, and

our team won the contest by optimizing clock trees built by the DME algorithm [12, 28].

Our comprehensive methodology for clock-network synthesis integrates the following

specific innovations.

• The notion of local-skew slack for clock trees.

• A tabular technique to estimate the impact of variations on skew between two sinks.

• A path-based technique to enhance the robustness of a clock tree to PVT variations.

• A time-budgeting algorithm for clock-tree tuning that distributes delay targets to

individual edges of the tree so as to improve skew with minimal power resources.

This algorithm can be used in the context of PVT variations and is not specific to

our methodology.

• Fine tuning of optimized clock trees by gentle wire snaking, sufficiently accurate to

satisfy delay budgets.

Our empirical results are compared to those of the winners of the ISPD 2010 clock-

network contest, where each team violated prescribed skew constraints (7.5 ps in most

cases) on at least some benchmarks in the presence of variations. However, results re-

ported in this chapter satisfy skew constraints on every benchmark. Our clock trees have
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4.2× smaller capacitance than clock meshes produced by CNSrouter [95], while exhibit-

ing smaller skew.

4.1.2 Trading accuracy for runtime in SPICE analysis

The SPICE circuit simulator has been routinely used to evaluate electronic circuits

since its initial release in 1973 [68]. SPICE represents circuits by nonlinear differen-

tial equations and then solves them numerically. While highly accurate, this technique is

prohibitively expensive for use in many circuit optimizations. Instead, the Elmore delay

model [29] is commonly used, but suffers several known shortcomings, such as its neglect

for the resistive shielding effect. More advanced compact delay models, such as fitted El-

more [1] and models based on higher-order moments — S2M [2], D2M [4], LnD [5], —

and more accurate models [72] [74] require heavier computation, but are still much faster

than SPICE. While such models have proven accurate and useful in certain well-defined

circumstances, the transition to the 45 nm technology node exposed a widening gap be-

tween the accuracy of SPICE simulation and available surrogates. In particular, many

closed-form models do not capture the impact of slew rate and the direction of signal tran-

sition. The impact of process variation is another major challenge to using non-SPICE

models. Additionally, accurate modeling requires a large number of device and intercon-

nect parameters included in SPICE inputs that are not accounted for by simpler models.

The need for fast SPICE-accurate circuit analysis was recently underlined by the ISPD

2009 and 2010 clock-network synthesis contests [95].

Achieving the necessary accuracy required by contest guidelines without SPICE-level

simulation proved difficult, partly due to the presence of numerous buffers in relevant
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clock networks and due to the impact of process variation. We also note that low-skew

clock trees are especially unforgiving to timing-analysis inaccuracies. For example, a 5 ps

error in a 500 ps path delay is only 1%, but two paths with similar delay from the clock

source to sinks may result in 10 ps skew, where a 5 ps error is 50%. On the other hand,

the 12-hour runtime limit could not be met with conventional SPICE-based RC clock tree

generation algorithm [51] because simulation must be invoked many times per benchmark

during the optimization process.

We developed the Chop-SPICE technique as a compromise (fast yet sufficiently ac-

curate) simulator for use by our implementation Contango 2.0. Our divide-and-conquer

approach is chosen among several other candidates for its flexible trade-off between run-

time and solution quality. Chop-SPICE not only enables Contango 2.0 to meet runtime

limits, but also delivers highly-accurate delay and slew estimates.

The remainder of this chapter is organized as follows. Section 4.2 describes optimiza-

tion objectives and variation modeling. Section 4.3 explains initial tree construction with

buffering. Section 4.4 details our techniques for robustness improvements. Section 4.5

outlines our skew optimization techniques. Section 4.6 describes our Chop-SPICE tech-

nique. Section 4.7 reports our empirical results. Summary is given in Section 4.8.

4.2 Modeling and objectives

Before introducing our clock-tree synthesis methodology in Sections 4.3—4.5, we re-

view key optimization objectives (global and local skew), define the notion of local-skew

slack, and propose a simple yet effective model of process variation.
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4.2.1 Global and local skew

Common terminology and notation are introduced next.

Definition IV.3 Given a clock tree Ψ, let λ(si) be the clock latency (insertion delay) at

sink si ∈ Ψ. Then the skew between two sinks si and sj ∈ Ψ is defined as

skewΨ(si, sj) = |(λ(si) − λ(sj)| (IV.1)

Global skew is defined as

ωΨ = max
si,sj∈Ψ

skewΨ(si, sj) = max
i∈Ψ

λ(si) − min
i∈Ψ

λ(si) (IV.2)

Nominal values of skewΨ(si, sj) and ωΨ are computed neglecting the impact of variations.

Global skew can be improved by decreasing maxi∈Ψ λ(si) (speeding up the slowest sinks)

or increasing mini∈Ψ λ(si) (delaying the fastest sinks). Previous publications on clock

network synthesis were focused on reducing global skew with or without the presence

of variations [12, 18, 38, 44, 51, 61, 63, 87, 97]. However, in a large clock network, skew

between adjacent and connected sinks is a more meaningful optimization objective [32,

81]. Local skew is defined by restricting eligible sink pairs to be within distance ∆ > 0,

which is determined for a given circuit after timing-driven placement.

Definition IV.4 Given a clock treeΨ and a local skew distance bound∆ > 0, let dist(si, sj)

be the Manhattan distance between sinks si and sj ∈ Ψ. Then the worst local skew [95]

is defined as

ωΨ
∆ = max

dist(si,sj)<∆
skewΨ(si, sj) (IV.3)
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Reducing skew down to single picoseconds in the presence of variations may require a

significant increase in power consumption. Since more than 30% of total power in modern

microprocessors is consumed by clock networks, minimizing clock-network capacitance

is as important as skew minimization. Therefore modern circuit designs can tolerate a

certain amount of clock skew, and power can be reduced provided that the clock network

remains below a given skew bound, even in the presence of variations.

Definition IV.5 Consider a clock tree Ψ, a local skew distance bound ∆ > 0, variation

model ν and target yield 0 < y ≤ 1. Let Ψν be the clock tree Ψ with variation ν and f(t)

be the cumulative distribution function of ωΨν

∆ . Then the worst local skew with variation is

defined as

ωΨ
∆,ν,y = f−1(y) (IV.4)

Viewing the local skew limit Ω∆ as a design constraint (see Table 2.1), we pursue the

following goals.

1. Building variation-tolerant clock networks with ω∆,ν,y < Ω∆, subject to slew con-

straints.

2. Minimizing clock-tree power.

4.2.2 Local-skew slack

Given a clock tree with known sink latencies, one can optimize it using delay bud-

gets derived from the sink- and edge-slack calculation [51, Section 3], followed by global

skew optimization to reduce global skew below Ω∆. This strategy is sound because local
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skew ω∆ cannot exceed global skew. However, global skew optimizations attempt to re-

duce skew between sinks more distant than ∆, which may require unnecessary increase

in power. To tune the clock tree on a tight power budget, we propose the concept of

local-skew slack.

Definition IV.6 Given a clock tree Ψ and local-skew constraintsΩ∆, the local-skew slack

σ(s) for a sink s ∈ Ψ is the minimum amount of additional delay in picoseconds for s, so

that the tree satisfies ωΨ
∆ < Ω∆.

The ∆-neighborhood of sink si is N (si) = { s ∈ Ψ | dist(s, si) < ∆}. It is used in

Algorithm 2 to calculate σ(s) for every sink. This algorithm uses varEst(si, sj) = 0 in the

absence of variations, and otherwise the definition in Section 4.2.3.

Once local-skew slacks σ(s) are computed for all sinks, we define local-skew slack of

tree edge e as the smallest slack of a downstream sink. Edge slacks in the entire tree can

be computed by one recursive tree traversal in linear time, giving the optimal amount of

tuning to improve worst local skew [51, Section 3]. Figure 4.1 illustrates the computation

of local-skew slack for sinks and edges.

A B C D E

664ps 675ps 687ps 671ps 681ps

A B C D E

13ps 7ps 0ps 5ps 0ps

6ps

7ps

5ps

A B C D E

677ps 682ps 687ps 676ps 681ps

(a) Sink latencies (b) Local-skew slack on sinks and edges (c) Sink latencies after optimization

Figure 4.1: Local-skew slack for sinks and edges when Ω∆ = 5 ps. (a) Sink pairs within

distance ∆ are enclosed by dashed lines. ω∆ = 12 ps based on sink latencies

and ∆. (b) Local skew-slack for sinks are computed by Algorithm 2. The

algorithm for edge-slack computation is described in [51, Section 3]. (c) ω∆ is

reduced to 5 ps after optimizations, which satisfies the local skew constraints.
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Algorithm 2 Computing local-skew slack for sinks

σ = 0; //Set of minimum local slack

SinkQ = ∅; //Sinks to be optimized

for each sink si do

for each sj inN (si) do

if ( λ(si) < λ(sj) and
skew(si, sj) + varEst(si, sj) > Ω∆) then

SinkQ.enqueue( si );

end if

end for

end for

while size(SinkQ) 6= 0 do

si = SinkQ.dequeue(); MaxSlack=0;
for each sj inN (si) do

if (MaxSlack < skew(si, sj) + varEst(si, sj) − Ω∆) then

MaxSlack = skew(si, sj) + varEst(si, sj) − Ω∆;

end if

end for

σsi
= MaxSlack;

for each sj inNi do

if ( sj /∈ SinkQ and λ(sj)+σsj
< λ(si)+σsi

and |(λ(sj) + σsj
- (λ(si)+σsi

)|+
varEst(si, sj) > Ω∆) then

SinkQ.enqueue( sj );

end if

end for

end while

4.2.3 Modeling process variation

Designing low-capacitance low-skew clock trees without considering process, volt-

age and temperature variations often results in significant skew in each chip. However,

variation-aware optimization has not been explored until recently and requires reliable es-

timation techniques. Monte-Carlo simulations are slow and not suitable to clock network

optimization. Instead, we develop a tabular technique to account for variation in single-

shot timing analysis.

Our key insight is that the impact of variations on skew between two sinks is closely
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correlated with tree path length and how the tree path is buffered. When two sinks can

be connected by a short path in the tree, variation of skew between them is small. On the

other hand, variational skew between sinks that are geometrically close can be significant

if the unique tree-path between them is long. This is illustrated in Figure 4.2. For a given

technology node, buffer library, wires and variation model, we propose to build a look-

up table with comprehensive information regarding the worst-case variation on skew for

various paths between pairs of sinks.

A(764ps)

B(766ps)

C(767ps)

D(765ps)

  

A(762ps)

B(766ps)

C(771ps)

D(773ps)

(a) Nominal sink latencies (b) Latencies with variation

Figure 4.2: The impact of variations on local skew. Sinks are indicated by crosses, the

clock source is indicated by a solid triangle. Nominal skew of 3 ps is shown

in (a). Full skew of 11 ps is shown in (b), where some tree edges are delayed

(thick red) and some are sped up (dotted green) by random variations. Only

sink A is within the local skew distance from sinks B, C and D.

Definition IV.7 Given a technology node T , buffer and wire library B, variation model ν

and desired yield 0 < y ≤ 1, let ΞT ,B,ν,y[w, b, t] be the variation-estimation table which

returns the worst-case increase in skew (with probability y) between two sinks connected

by a tree path of length w with b buffers and the buffer type t. When multiple buffer types

are used in the tree path, t is the smallest type in the tree path, so as to avoid under-

estimation of variation.
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To build the table, we generated a large number of test trees on public CNS benchmarks

and randomly generated benchmarks. The initial tree-construction method explained in

Section 4.3 with various buffer types is utilized for the test trees. The number of Monte-

Carlo SPICE simulations is determined based on the given variation model ν. Variational

skew between any two sinks during the simulations is recorded in the table with classi-

fication by w, b and t. The table is later restructured to represent a probability density

function for each (w, b, t) entry in order to look up with yield y. Building the variation-

estimation table requires extensive simulations, but once the table is built, it can be used

for many clock trees. To determine the impact of variation on skew between sinks in

a clock tree, a function varEst(si, sj) is defined as follows. Given a clock tree Ψ and

a variation table ΞT ,B,ν , let L(si, sj) be the total length of wires, bn(si, sj) be the total

number of buffers and bt(si, sj) be the largest buffer type in the tree path between two

sinks si and sj ∈ Ψ. The variation table is accessed by the function varEst(si, sj) =

ΞT ,B,ν [L(si, sj), bn(si, sj), bt(si, sj)].

To estimate the impact of variations when optimizing clock trees we utilize varEst()

when computing local-skew slack for each sink (Algorithm 2). Without considering varia-

tions, it is sufficient to satisfy skew(si, sj) < Ω∆ for all pairs of sinks within ∆. However,

in the presence of variations, we have the following result.

Theorem IV.1 ωΨ
∆,ν,y < Ω∆ only if

skew(si, sj) + varEst(si, sj) < Ω∆ ∀si, sj ∈ Ψ (IV.5)
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4.3 Initial tree construction and buffer insertion

We invoke the unmodified ZST-DME algorithm [23, 38] and perform initial buffer in-

sertion to minimize source-to-sink Elmore delay, rather than skew or capacitance [30,84].

Elmore delay is too inaccurate for skew optimization, but our approach creates signifi-

cant room for tuning the clock tree by delaying fast paths [51]. In the presence of layout

obstacles, proper obstacle-handling is required to avoid violations due to obstacles. The

ISPD 2010 benchmarks include obstacles over which wire-routing is possible but buffer

insertion is not allowed. We adapted a simple and robust technique for obstacle avoid-

ance in clock trees from [51] which repairs obstacle violations in the trees obtained by the

ZST-DME algorithm.

When multiple wire types are available, the choice of wires affects both total power

and susceptibility to variations. Under tight skew constraints in high-performance CPU

designs, thicker wires (on a given metal layer) are preferable because they limit the impact

of variations and still allow for future power-performance trade-offs by wire sizing. In less

aggressive ASIC and SoC designs, power optimization may motivate thinner wires. But

upsizing wires in a reasonably tuned clock tree may be of limited use because it increases

capacitance, potentially leading to slew violations.

Selecting buffer types for initial buffer insertion is also important. Given an initial tree

without buffers Ψ0, let t(si, sj) be the type of a buffer required for the tree path between

two sinks si and sj ∈ Ψ0 to satisfy varEst(si, sj) < Ω∆. t(si, sj) can be found from

the variation-estimation table ΞT ,B,ν with L(si, sj). Since bn(si, sj) is not available at this

step, it is difficult to find the exact required t(si, sj). However, because bn(si, sj) and
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L(si, sj) are highly correlated with each other, bn(si, sj) can be estimated by modeling

it with the average number of buffers corresponding to L(si, sj). Once bn(si, sj) is esti-

mated, t(si, sj) can be computed as described in Section 4.4. The initial buffer type (t0)

for a given initial tree is computed as

t0 = Avgsi,sj∈Ψ0
t(si, sj) (IV.6)

Once t0 is determined, we adopt the fast variant of van Ginneken’s algorithm from [84]

for initial buffer insertion. The main objective of van Ginneken’s algorithm is to mini-

mize insertion delay of a given RC tree. When clock-power reduction is more important

than insertion delay, the buffering algorithm can be modified to place buffers with worse

insertion delay but significantly smaller total capacitance. We modified the fast variant

of van Ginneken’s algorithm to minimize total capacitance subject to slew constraints in

three phases. First, parameters of input instances for the buffering algorithm are adjusted

to reduce buffer numbers based on given a slew constraint and a variation model. The fast

variant of van Ginneken’s algorithm [84] is utilized in the second phase. In the third phase,

sizes of inserted buffers are adjusted to further reduce total capacitance while satisfying

slew constraints.

After initial buffer insertion, bn(si, sj) ∀si, sj ∈ Ψ is determined, and more accurate

t(si, sj) can be obtained. For sink pairs that do not satisfy varEst(si, sj) < Ω∆, we use

the robustness-improvement algorithm from Section 4.4 to ensure that the tree eventually

satisfies ωΨ
∆ < Ω∆.
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4.4 Improving robustness to variations

The initial buffer insertion algorithm cannot accurately estimate buffer types required

for local-skew constraints for a given initial tree. Therefore robustness-improvement must

follow after initial buffer insertion so that ωΨ
∆,ν,y < Ω∆ holds after all the skew optimization

techniques are applied.

In an ideal situation in which we can reduce all the skew down to 0, varEst(si, sj) <

Ω∆ ∀si, sj ∈ Ψ is sufficient to satisfy ωΨ
∆,ν,y < Ω∆. In practice we must estimate nominal

local skew skewΨ
est after accurate optimizations, which we upper-bound by 5 ps based on

experience.

Theorem IV.2 If skewΨ
est is an upper bound of ωΨ

∆ and skewΨ
est+varEst(si, sj) < Ω∆

for all si and sj then

ωΨ
∆,ν,y < Ω∆ (IV.7)

The target buffer type for the tree-path between sink si and sj, t(si, sj) can be com-

puted as the smallest t such that

ΞT ,B,ν[L(si, sj), bn(si, sj), t] < Ω∆ − skewΨ
est (IV.8)

From the above method, the minimum size of buffer type which satisfies varEst(si, sj) <

Ω∆ - skewΨ
est is selected to reduce capacitance. Once t(si, sj) is determined, the buffers in

the tree path between sink si and sj are substituted with type t(si, sj) buffers. This step is

repeated for all eligible pairs of sinks within distance ∆.
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4.5 Skew optimizations

In this section, several local skew optimization techniques are described. Each tech-

nique is designed to reduce skew under different circumstances, but the primary objective

is to optimize the skew of given tree to below the local skew limit in the presence of varia-

tions. The target tuning amount for each edge of the tree can be determined by local-skew

slack including variation modeling described in Section 4.2.

4.5.1 Wire snaking

Wire sizing and wire snaking are popular techniques for skew optimization and are

often able to reduce global or local skew down to the practical skew limit. In this context,

however, we exclude wire sizing because narrowing down a wire in the middle of a clock

tree is risky due to the impact of variations. We extend the wire snaking technique from

[51] to improve its speed and accuracy, while limiting its use of routing resources.

The optimal tuning amount for each edge can be obtained by the top-down slack com-

putation explained in Section 4.2.2. Let Ttarget(e) be the amount of time in ps by which

the edge e must be delayed to achieve legal ω∆ under local skew constraints. Lsn(e) de-

notes the length of the wire determined by the wire snaking algorithm to delay the edge

e by Ttarget(e). Let Tactual(e) be the amount of time in ps which the edge e is actually

delayed by Lsn(e) of a wire. Ideally, the wire snaking algorithm can estimate Lsn(e) so

that Ttarget(e) = Tactual(e). Lideal(e) is the length which satisfies Ttarget(e) = Tactual(e).

The total additional capacitance from wire snaking TotalCapsn is

TotalCapsn =
∑

ei∈E

κ(Lsn(ei)) (IV.9)
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where κ(w) denotes the capacitance of a wire w, and the ideal total additional capacitance

TotalCapideal is

TotalCapideal =
∑

ei∈E

κ(Lideal(ei)) (IV.10)

Practically, Tactual(e) 6= Ttarget(e) unless extensive SPICE simulations are performed for

finding Lsn(e), which is unrealistic in terms of runtime for a clock network synthesis flow.

When Tactual(e) < Ttarget(e), another round of wire snaking is required to bring Tactual(e)

closer to Ttarget(e). Li
sn(e) denotes the length of the wire determined at ith iteration of the

wire snaking algorithm to delay the edge e. T i
actual(e) is the amount of time in ps by which

the edge e is actually delayed by Li
sn(e) of a wire. T i

target(e) is Ttarget(e) when i = 1 and

otherwise, it is T i−1
target(e) − T i−1

actual(e). After N iterations of wire snaking,

Tactual(e) =

N
∑

i=1

T i
actual(e), Lsn(e) =

N
∑

i=1

Li
sn(e) (IV.11)

Theorem IV.3 Tactual(e) ≤ Ttarget(e) if and only if

Lsn(e) ≤ Lideal(e)

Theorem IV.4 If Tactual(e) ≤ Ttarget(e) for every e in the clock tree, then

TotalCapsn ≤ TotalCapideal

If the wire snaking algorithm over-estimates Li
sn(e) and results in T i

actual(e) > T i
target(e)

for any edge e in any i-th iteration, then TotalCapsn exceeds TotalCapideal after all the

iterations of the wire snaking algorithm because it means there exists excessive delay of

a wire which results in excessive delay of some sinks and possibly increases local skew

68



around the sinks. Therefore the wire snaking algorithm must produce Li
sn(e) which satis-

fies T i
actual(e) ≤ T i

target(e) for optimized power consumption by the clock tree. However,

if the gap between T i
actual(e) and T i

target(e) is too big, more iterations will be needed for

Tactual(e) to approach Ttarget(e). We improve the accuracy of wire snaking in two ways.

Delay model for wire snaking. To keep T i
actual(e) ≤ T i

target(e) with optimal quality, we

define α where,

α ≤
T i

actual(e)

T i
target(e)

≤ 1.0 (IV.12)

Wire snaking algorithm aims for T i
actual(e) to satisfy the above inequality with the highest

α possible. When α is specified, the required worst-case number of iterations of wire

snaking N to make Tactual(e) to Ttarget(e) within error rate ε is

N =
⌈ log (ε)

log (1 − α)

⌉

(IV.13)

Closed-form delay models like Elmore delay are not accurate enough to keep T i
actual(e) ≤

T i
target(e) and α high. To enhance the quality of estimation by the wire snaking algorithm,

look-up tables for Li
sn(e) are built by performing a set of SPICE simulations for each tech-

nology environment which includes technology model, types of buffers and wires, varia-

tion specification. In the simulations, T i
actual(e) is tested with different snaking lengths

on various locations of nodes in various types of clock trees. The results of simulations

are stored in a look-up table, used by wire snaking during local skew optimization. We

achieved α values between 60% and 70%, therefore 4 ≤ N ≤ 6. Only one technology en-

vironment was used at the ISPD 2010 CNS contest, requiring a single set of simulations.

Optimal node selection for wire snaking. Figure 4.3 compares two different styles of

wire snaking. Figure 4.3(b) illustrates undesired delay of sinks after wire snaking on non-
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buffer-output nodes. The increased capacitance and resistance by wire snaking affects the

driving buffer which results in additional delay of slow sinks. Wire snaking at buffer out-

put nodes, as in Figure 4.3(c), is much more accurate than wire snaking at any branch.

Limiting wire snaking to buffer output nodes reduces the number of SPICE calls required

for clock-tree tuning. This also reduces the number of simulations for building the look-up

table by limiting the number of target nodes to be tested. Wire snaking usually increases

slew rate of input nodes of downstream buffers. To prevent slew violation, slew rate num-

bers of downstream buffers are checked and if the worst slew rate is more than 70% of the

given slew limit, the target node is excluded from wire snaking.

470ps 500ps 490ps 505ps 490ps 500ps

(a) (b) (c)

Figure 4.3: Comparison of different wire snaking strategies to satisfy Ω∆ = 10 ps. (a)

Unoptimized sink latencies are shown. 20 ps of additional delay is required for
the left sink. (b) Wire snaking at non-buffer output nodes results in undesired

delay at the right sink. (c) The snaked wire is isolated from the right sink by

the left buffer, therefore only the left sink is delayed and ω∆ satisfies local

skew constraints.

4.5.2 Delay buffer insertion

The local skew of a sink cluster driven by the same final buffer is often negligible.

However, highly unbalanced sink capacitances or layout obstacles in those clusters can

result in significant local skew. An alternative technique is needed because wire snaking

in Section 4.5.1 is inapplicable. In this case, inserting a buffer at the target node is very

efficient for two reasons. First, skew can be reduced by the delay of the inserted buffer.
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Second, further precise wire snaking is possible because the inserted buffer isolates the

target node from the remainder of the cluster.

Let W(B) be the set of sinks driven by a final buffer B and d(B) be the delay of the

bufferB. Delay buffer insertion is required if there exists si, sj ∈ W(b) where skew(si, sj)

+ varEst(si, sj) - Ω∆ > d(B).

For each path from the buffer to the sinks, inserting at most one buffer is sufficient

since the wire snaking algorithm in Section 4.5.1 can be invoked again at the output node

of inserted buffers. Figure 4.4 illustrates delay buffer insertion algorithm followed by wire

snaking. When a delay buffer is inserted, it is placed at the node so that the input capaci-

tance of a delay buffer is comparable to the sum of downstream sink and wire capacitance

of the target node, thus sink latency in the other path changes very little. See Figure 4.4b.

470ps 500ps 480ps 500ps 490ps 500ps

(a) (b) (c)

Figure 4.4: Delay buffer insertion and subsequent wire snaking whenΩ∆= 10 ps, the delay
of the buffer d(B)= 10 ps. (a) Unoptimized sink latencies are shown. (b)

Delay buffer insertion for skew reduction and isolation of the target node. (c)

The snaked wire is isolated from the right sink by the delay buffer.

4.6 Chop-SPICE: an efficient SPICE simulation technique

To ensure SPICE-accurate clock-network optimization that adequately accounts for

numerous relevant technology parameters, we embed a simulator in the optimization loop.

However, running SPICE directly requires unacceptably large runtime. Therefore, we

develop a technique to reduce SPICE runtime at the modest cost in terms of accuracy.
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4.6.1 Runtime versus accuracy

To select an appropriate approximation paradigm for faster circuit simulation, it is im-

portant to identify key problems with available solutions. SPICE produces highly accurate

results and is uncontested on very small (sub)circuits. However, its runtime scales worse

than linear as circuits grow [41]. Compact and algorithmic delay models scale much bet-

ter, but their accuracy lags behind SPICE results even for fairly small (sub)circuits. Sev-

eral factors contribute to loss of accuracy: (i) the combination of buffers and inverters in

clock trees makes it difficult to precisely calibrate technology parameters, (ii) closed-form

models do not account for sufficiently many technology parameters, (iii) many closed-

form models do not adequately model slew propagation and its impact on delay, and (iv)

systematic computational inaccuracies tend to snowball in RC trees, especially without

averaging or corrections.

Given our initial emphasis on runtime scaling, rather than actual runtimes, using SPICE

appears the best option on small (sub)circuits. To avoid non-linear runtime scaling, we par-

tition the original RC tree into sub-circuits, invoke SPICE on them, and assemble results

to approximate full SPICE simulation. Partitioning must be performed so that resulting

(sub)circuits are sufficiently independent. This step can be performed by splitting the

original tree at buffers, which effectively shields downstream capacitance from upstream

drivers. On the other hand, the tree topology prevents complicated min-cut configurations,

and sub-circuit selection can be based largely on the desired granularity as a means to

control the accuracy-runtime trade-off.
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4.6.2 The Chop-SPICE algorithm

The divide-and-conquer framework we propose is simple as well as practical. While it

is not as mathematically sophisticated as alternative delay models, it is considerably easier

to implement and inherits the accuracy and reliability of the SPICE simulator.

Using any tree traversal technique, such as BFS, Chop-SPICE divides the circuit based

on target granularity γ (number of probing points). Once γ is met, Chop-SPICE (i) stops

the tree traversal, (ii) performs the SPICE simulation on the sub-circuit, (iii) retrieves the

relevant simulation results, and (iv) propagates the delay and slew information to input

nodes of subsequent sub-circuits. Such iterations continue until the original RC tree is

exhausted. Further details of the Chop-SPICE algorithm are presented in Algorithm 3.

Formally, given an RC tree Ψ, let ωΨ be the set of probing points in Ψ, which are

defined as input nodes of buffers or sink nodes (Figure 4.5). Let λ(si) be the number of

fanouts at node si ∈ Ψ to probing points in ωΨ. Then, the maximum granularity α(Ψ) and

minimum granularity β(Ψ), and granularity range θ(Ψ) of Ψ are defined as

α(Ψ) =
∑

si∈Ψ

λ(si) (IV.14)

β(Ψ) = min
si∈Ψ

λ(si) (IV.15)

θ(Ψ) = α(Ψ) − β(Ψ) (IV.16)

Details of sub-circuit generation. In generation of sub-circuits, if a probing point

pi ∈ ωΨ is an input node of buffer(s), all fanout buffers are also explicitly included in

the current sub-circuit (Figure 4.6). Hence, sub-circuits are always delimited by buffers

and/or sinks, and a buffer at the boundary of a sub-circuit may also appear in another sub-

circuit. This is convenient for delay modeling because buffers effectively shield most of
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downstream capacitance (in terms of first-order analysis) from upstream circuit elements,

facilitating accurate reconstruction of circuit delay from sub-circuit simulation data.

Delay and slew propagation. Our implementation of Chop-SPICE relies on the stan-

dard Π modeling of interconnect [76]. After the probing points’ delay and slew are cal-

culated by SPICE, they can be propagated in order to accurately capture delay and slew

for probing points in subsequent sub-circuits. Note that probing points in ωΨ can become

input nodes si of sub-circuits at the subsequent stage, so long as they are input nodes of

buffers. Therefore, measured delays can be directly propagated to the following stages.

Delay from the root node s0 to another node sj is calculated in separate steps. First, we

find the sub-circuit containing sj. Second, we identify the shortest tree path from s0 to sj,

and the earliest node si in the sub-circuit that lies on this tree path. We now assume that

signal delay at si was computed at previous stages of Algorithm 3, i.e., recursively. The

delay from si to sj is obtained by SPICE simulation and added to delay at si.

Slew at a given node can be expressed as a function of input slews of an upstream sub-

circuit. Therefore, slew measured at the previous stage (up to the root node in a given

sub-circuit) should be accounted for when stimuli for the current sub-circuit are gener-

ated. Slew rate for stimuli should be the same as slew rate at the input node si of the

sub-circuit. Then, slew at a node is directly calculated by SPICE simulation.

Figure 4.5: Probing points in an RC network.
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Algorithm 3 Chop-SPICE

Circuit instance Ψ
Target granularity γ, where β(Ψ) ≤ γ ≤ α(Ψ)
Root node of RC tree=s0

Tree traversal queue Q=∅

1: Q.enqueue(s0)

2: while !Q.empty() do

3: si = Q.dequeue()

4; if si is sink then continue

5: Empty sub-circuit instance Ψ0

6: Probing point queue P=∅
7: Fanout node queue F=∅
8: F .push(fanout nodes of si)

9: while P .size() < γ do

10: Subsequent input node queue E={}
11: while !F .empty() do

12: fo = F .dequeue()

13: Copy the delay of si to the delay of fo

14: if fo is ∈ ωΨ then

15: P .enqueue(fo)

16: E.enqueue(fanout nodes of fo)

17: write the specification of the buffer / sink to Ψ0

18: else if fo is a wire segment then

19: write the specification of the wire segment to Ψ0

20: F .enqueue(fanout nodes of fo)

21: end while

22: F .enqueue(every e ∈ E)

23: end while

24: Generate stimuli based on slew of si

25: Invoke SPICE simulation on Ψ0

26: Retrieve simulation results

27: Update delay and slew information on P

28: Q.enqueue(every e ∈ E)

29: end while

4.6.3 Integration with Contango

While Chop-SPICE exhibits good fidelity of delay estimation as discussed in Section

4.7.4, source-to-sink delay errors reported in Table 4.4 cannot be ignored during skew

optimizations because typical target nominal skews are below 5 ps. Therefore we propose

a technique that estimates delay errors and compensates them for higher accuracy. Due to

high fidelity of Chop-SPICE, actual delays measured by full-scale SPICE can be estimated

from delays measured by Chop-SPICE.
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Figure 4.6: Sub-circuits are delimited by boundary buffers.

During SPICE-driven skew optimizations, we invoke Chop-SPICE in two steps. First,

before SPICE-driven skew optimizations, we run full-scale SPICE and Chop-SPICE and

compare sink delays measured by both methods. Then we calculate scaling factors for

each sink for delay compensation. For example, a delay from a source to a sink s may be

measured as 1010 ps and 1000 ps by full-scale SPICE and Chop-SPICE respectively. Then

we set the scaling factor for sink s to 1.01. Second, scaling factors are utilized to estimate

actual sink delays based on delays measured by Chop-SPICE. In the previous example, it

may turn out that the delay of sink s must increase at least to 1020 ps to satisfy a given

skew constraint. After iterations of skew optimizations, the delay of sink s is measured

as 1010 ps by Chop-SPICE. Based on the scaling factor 1.01, we estimate that the actual

delay of sink s is 1020.1 ps, which satisfies the target delay. We achieve nominal skews

under 5 ps based on the above method while runtime improvement is more than 2.5×.

4.7 Empirical validation: Contango 2.0

Our implementation, Contango 2.0, is written in C++ and is based on our software

Contango 1.0 [51] that shared the first place at the ISPD 2009 clock-network synthesis
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CNSROUTER NTUCLOCK CONTANGO 2.0

3/16/2010 3/16/2010 4/14/2010

Skew+Var Tot. Skew+Var Tot. Nom. Skew+Var Total Cap.

Mean 95% Cap. � Mean 95% Cap. � skew Mean 95% Yield (wire snaking) �

cns01 5.27 7.32 841 20 6.71 8.66 294 15 2.51 5.16 7.01 97.4% 198(2.6) 12015

cns02 6.27 8.33 1454 81 8.27 10.7 833 176 2.99 5.58 7.34 95.8% 376(1.3) 25006

cns03 2.07 2.70 163 8 6.82 8.63 167 6 1.5 3.03 4.18 99.6% 55.9(1.0) 3840

cns04 2.83 3.98 277 32 7.45 9.55 325 58 2.07 3.26 4.46 99.9% 71.84(1.46) 6075

cns05 2.88 4.38 176 7 5.30 6.98 130 11 1.50 3.01 4.41 99.9% 37.7(5.43) 2406

cns06 12.4 14.0 133 11 407 417 1577 10 4.29 5.03 6.05 99.9% 47.8(3.0) 2660

cns07 12.4 15.7 309 45 6.17 8.12 276 66 2.22 3.41 4.58 99.9% 72.7(1.1) 2351

cns08 6.15 7.33 223 19 5.94 7.64 166 7 3.42 4.15 5.15 99.9% 52.5(1.9) 1987

Rel. 4.22 4.13 1.0

Table 4.1: Results on the ISPD 2010 Contest benchmark suite. Skew numbers are re-

ported in ps, capacitance in pF and CPU time in s. ‘95%’ represents ω∆,ν,95.

The numbers in parentheses of the capacitance column refer to the fraction of

capacitance of the snaked wires in %. Skew constraint violations are shown in

strikethrough font. Otherwise, skew results are not comparable because skew

can be traded for capacitance, which was the primary objective of the contest.

All networks produced by these tools satisfy slew constraints imposed at the

ISPD 2010 contest. Due to limited page space, we do not include results for the

other teams, but significantly outperform them in solution quality.

contest. Contango 2.0 was the sole winner of the ISPD 2010 contest, but we now report

significantly stronger results.

4.7.1 ISPD 2010 benchmarks

Table 2.1 lists the statistics of all benchmarks from the ISPD 2010 contest. The

insertion-delay driven buffer insertion algorithm [84] is utilized to produce our clock trees

in this experiment. The contest limited slew to 100 ps, and all reported clock networks sat-

isfy this constraint. Slews in Contango 2.0 trees do not exceed 81 ps. Table 4.1 compares

Contango 2.0 with CNSrouter and NTUclock. Clock networks produced by our software

have smaller capacitance than CNSrouter and NTUclock on average by 4.22× and 4.13×

respectively. The contest imposed local skew constraints with yield y = 95%. Our clock

trees always yield > 95%, while CNSrouter violates yield constraints on three bench-

marks and NTUclock on all benchmarks except one. All three teams satisfied the 12-hour
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runtime limit for all benchmarks. Our data suggest that wire snaking usually increases

wire length by 1-3% (5.43% in one case), which is small enough to neglect the negative

effects of wire snaking. Figure 4.8 compares probability density functions (pdf) produced

by Monte-Carlo SPICE simulations of our clock trees to those of clock meshes produced

by CNSrouter. One such clock tree is illustrated in Figure 4.7. Despite the dramatic dif-

ferences in network topology and total capacitance between trees and meshes, some of the

plots in Figure 4.8 bear striking resemblance (cns01, cns02, cns04, cns05). To explain this

phenomenon, we recall that meshes cannot be buffered directly and are therefore driven

by a buffered clock tree. Such a clock tree can be constructed by the same DME algo-

rithm that we use, which is why the pdf profiles in Figure 4.8 reflect the pointset of sink

locations. Apparently, the mesh does not significantly change this profile.

4.7.2 Using our slew-constrained buffering algorithm

Table 4.2 compares our clock trees with the slew-constrained buffering algorithm in

Section 4.3 to the existing state-of-the-art clock networks [13,67] on the ISPD 2010 bench-

marks. Compared to our clock trees in Table 2.1, we reduce total capacitance by 32.8% on

average. Clock networks produced by our software exhibit smaller capacitance than the

clock networks in [13] and [67] on average by 23.0%, 1.2% respectively. All the results in

the Table 4.2 satisfy given skew and slew constraints.

4.7.3 Power versus robustness to variations

Figure 4.9 describes experiments on benchmark ispd10cns08with different local skew

constraints. When tight local skew constraints are given, large buffers are required to

ensure robustness to variations, increasing the capacitance of the clock tree. On the other
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[13] [67] CONTANGO 2.0

ISPD‘10 3/27/2011 3/27/2011 9/18/2011

Bench. Skew+Var Total Skew+Var Total Skew+Var Total

Mean ω∆,ν,95 Cap. Mean ω∆,ν,95 Cap. Mean ω∆,ν,95 Cap.

cns01 4.01 5.79 177.5 5.06 7.32 142.6 5.20 7.25 141.5

cns02 4.98 6.69 329.9 5.81 7.42 265.2 5.79 7.42 264.4

cns03 2.44 3.46 50.81 2.74 4.49 36.61 3.39 4.63 35.81

cns04 2.84 3.79 57.44 3.96 6.70 51.07 3.91 5.26 47.90

cns05 2.72 3.68 28.93 2.16 4.78 25.13 4.31 6.57 25.45

cns06 3.03 4.01 36.12 4.73 6.41 32.68 4.56 6.37 35.02

cns07 3.81 5.65 57.93 4.04 5.86 48.32 4.48 5.99 47.09

cns08 2.89 4.24 40.43 3.41 5.07 32.70 4.02 5.71 31.18

Relative 1.230 1.012 1.000

Table 4.2: Our clock trees for the ISPD 2010 benchmarks, buffered by our slew-

constrained algorithm, versus existing state-of-the-art clock networks [13, 67].

Skew numbers are reported in ps, capacitance in pF . All networks produced by

these tools satisfy slew constraints from the ISPD 2010 contest.

Figure 4.7: Our clock tree for ispd10cns07. Sinks are indicated by crosses, buffers are in-

dicated by blue rectangles. ∆ = 600µm is shown near the left-bottom corner.

hand, a large portion of capacitance can be saved when local skew constraints are loose.

To clarify the impact of variation, we plot variational skew (y-axis), defined as ω∆,ν,y - ω∆

for ∆, ν, y from Table 2.1.
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Figure 4.8: Probability density functions for worst local skew of our clock trees (blue line)

and meshes produced by CNSrouter (gray dashed line) for the eight ISPD 2010

benchmarks, calculated using 500 independent SPICE runs for each bench-

mark. The x-axis shows skew in picoseconds. Local skew limits (Ω∆) are

shown with red solid lines, and the 95%-ile of local skew (ω∆,ν,0.95) are shown

by dotted green lines (our work) and dashed gray vertical lines (CNSrouter).
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Figure 4.9: Trade-off between capacitance and robustness on ispd10cns08. The x-axis
represents total capacitance of a tree and y-axis represents the maximal varia-

tional skew at 95% yield.
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4.7.4 Empirical validation of Chop-SPICE

Runtimes and errors. Table 4.3 and Table 4.4 show Chop-SPICE runtimes and errors

as target granularity γ varies from α(Ψ) (full-scale SPICE simulation) to β(Ψ) on each

circuit. Delay and slew errors at each sink are measured by absolute difference with delay

and slew, respectively, from the full-scale SPICE simulation of each circuit. With decreas-

ing granularity and probing points in sub-circuits, delay and slew errors increase while

runtimes decrease. We observed runtime improvements of 1.2 - 4.6×, delay errors of 4.99

- 10.73 ps, and slew errors of 2.33 - 4.21 ps per benchmark for the smallest sub-circuits

considered in our experiments.

Fidelity of delay estimates. In addition to accuracy, we show that Chop-SPICE delay

estimates exhibit good fidelity, suggesting that Chop-SPICE is effective as a replacement

of full-scale SPICE during optimization. To this end, we analyze intermediate clock trees

produced by Contango2. During each iteration, we use Chop-SPICE and full-scale SPICE

to measure sink delays for clock trees before and after optimization, and compare the de-

lay differences. Let Ψk = clock tree at the kth iteration of Contango2 optimization. Then,

considering clock trees Ψk and Ψk+1, we calculate the delay difference for each sink be-

tween Ψk and Ψk+1, as measured by Chop-SPICE and full-scale SPICE. Let delayk(si) be

the delay of node si on RC clock tree Ψk, then ∆k(si) = delayk+1(si) – delayk(si) where

si ∈ ωΨ, k={0,1,..., K(Ψ)-1}, and K(Ψ) is the total number of optimization iterations.

Empirical results are depicted in Figure 4.10. For each datapoint, the x-axis represents

the delay difference measured by Chop-SPICE while the y-axis represents the delay dif-

ference measured by full-scale SPICE. Five to six optimization iterations of Contango2
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were used. Most ∆k(si) values are positive since the Contango2 optimizations increase

sink delays to meet the local skew limits.

For datapoints that fall on the straight line, Chop-SPICE and full-scale SPICE agreed on

delay differences; datapoints above the straight line indicate that Chop-SPICE underes-

timates the delay difference while datapoints below the line indicate that Chop-SPICE

overestimates the delay difference. As shown in the figure, the majority of datapoints fall

slightly above or below the line (a difference of a few picoseconds). Moreover, we have

shown in Section 4.7.4 that the delay and slew errors of using Chop-SPICE are within 10

ps. Therefore, Chop-SPICE can be reliably used instead of full-scale SPICE.
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Figure 4.10: Fidelity of Chop-SPICE estimates (γ = β(Ψ)) for CNS02, CNS07, and

CNS04 ISPD 2010 benchmarks.

4.7.5 Comparison with a commercial clock-tree synthesis tool

Table 4.5 compares our software to a commercial clock-tree synthesis tool, Cadence

First Encounter. We worked with a 121 µm × 121 µm circuit block based on a 65 nm

technology with a 5 ns target clock period. When skew requirement is set to 2 ps, En-

counter produces a clock tree with 97.0 ps worst insertion delay and 8.5 ps nominal skew.
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Figure 4.11: Trade-offs between accuracy and runtime.

α(Ψ) β(Ψ)+0.75·θ(Ψ) β(Ψ)+0.5·θ(Ψ) β(Ψ)+0.25·θ(Ψ) β(Ψ)
Bench. � D-err. S-err. � D-err. S-err. � D-err. S-err. � D-err. S-err. �

CNS01 227 0.383 0.804 213 0.728 0.731 148 0.963 1.001 133 2.413 1.225 76.6

CNS02 715 0.315 0.748 638 0.433 0.740 411 0.834 1.168 339 3.584 1.429 157

CNS03 43.9 0.238 0.313 41.3 0.365 0.720 31.0 0.630 0.944 29.6 1.564 0.979 24.8

CNS04 77.5 0.221 0.450 69.2 0.438 0.896 60.4 0.731 0.776 31.4 1.519 1.016 32.9

CNS05 26.1 0.330 0.580 24.1 0.579 0.439 23.5 0.764 0.470 22.7 0.950 0.594 21.6

CNS06 32.3 0.237 0.360 31.8 0.546 1.228 29.1 0.810 1.386 27.9 1.181 1.477 27.0

CNS07 81.7 0.262 0.427 71.7 0.543 0.595 61.9 1.123 0.827 38.9 1.624 0.911 33.6

CNS08 42.5 0.339 0.634 33.4 0.794 0.828 30.9 1.614 1.003 28.1 1.942 1.262 27.8

Ave. 1.0× 0.291 0.540 1.1× 0.553 0.772 1.6× 0.934 0.947 1.9× 1.847 1.112 3.1×

Table 4.3: Averages delay (D-err.) and slew error (S-err.) (in picoseconds) and runtimes

(in seconds) with varying the granularity on the ISPD 2010 CNS contest bench-

mark suite. The clock networks are synthesized by Contango2.

We export the locations of the registers and create a 45 nm ISPD-compatible benchmark

with chip size 84 µm by 84 µm and the target clock period 2 ns. Our software produces a

clock network with 62.6 ps worst insertion delay and 1.6 ps nominal skew. To compensate

for the differences in technology parameters, note that skew improvement considerably

outpaces insertion-delay improvement. The result shows that our nominal-skew optimiza-

tion techniques are more precise and reliable than Encounter when a given skew constraint

is difficult to satisfy.
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Bench. β(Ψ)+0.5·θ(Ψ) β(Ψ)+0.25·θ(Ψ) β(Ψ)
D-err. S-err. D-err. S-err. D-err. S-err.

CNS01 1.861 2.152 1.882 2.710 4.993 3.737

CNS02 6.775 3.847 6.757 3.839 10.745 4.214

CNS03 1.955 2.551 1.656 2.559 6.764 2.684

CNS04 1.462 2.423 7.623 1.885 7.623 2.609

CNS05 4.880 1.853 4.880 1.853 7.067 2.328

CNS06 7.063 2.860 7.063 3.107 7.063 2.908

CNS07 1.625 2.862 7.046 2.229 7.449 2.740

CNS08 7.107 3.132 7.079 3.637 7.074 3.645

Average 4.091 2.710 5.498 2.727 7.347 3.108

Table 4.4: Maximum delay (D-err.) and slew errors (S-err.) in ps, on the ISPD 2010 CNS

contest benchmark suite, as sub-circuit granularity varies.

Insertion Delay Nominal Skew

rise fall rise fall

min max min max

(ps) (ps) (ps) (ps) (ps) (ps)

ENCOUNTER 86.5 95.0 88.7 97.0 8.5 8.3

our work 59.9 61.2 61.0 62.6 1.3 1.6

Table 4.5: Comparison of our software on a design with 309 registers to a commercial

clock-tree synthesis tool, Cadence First Encounter. Skew limit 2.0 ps is used

to produce each clock network.

4.8 Summary

Power-performance-cost trade-offs are becoming a major issue in modern high-performance

CPU clock designs. Mesh structures often sacrifice power to improve robustness to varia-

tions. We propose a tree solution for CPU clock routing that improves power consumption

under tight skew constraints in the presence of variations. To this end, we introduce the

notion of local-skew slack for clock trees, a model for variational skew, a path-based tech-

nique to enhance robustness, a new time-budgeting algorithm for clock-tree tuning and

accurate optimizations that satisfy budgets. We have shown that clock trees can be tuned

to have nominal skew below 5 ps and total skew in single picoseconds in the presence of

variations. Our optimizations not only satisfy given skew constraints and target yield but
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also lead to 4.22× capacitance improvement on average over mesh structures proposed in

the ISPD 2010 contest. Furthermore, our clock trees had a higher yield than the meshes

because meshes are not as easy to tune for nominal skew. The comparison with a com-

mercial clock-tree synthesis tool shows that our nominal-skew optimization techniques are

more precise and reliable than an industrial tool when a given skew constraint is difficult

to satisfy. Our analysis does not consider gated clocks, inductive effects and short-circuit

power in meshes, but these factors generally favor trees over meshes. Our strong empir-

ical results suggest that clock trees constructed using accurate variational skew modeling

and optimizations have distinct advantage in power consumption and similar robustness

as meshes. Hence, our techniques may improve power of future CPUs without sacrificing

other performance metrics.
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PART III

Increasing the Scope of

Clock-Network-Synthesis Optimizations

CHAPTER V

Obstacle-aware Clock-tree Shaping during Placement

Traditional IC design flows optimize clock networks after placement and thus limit the

quality of clock networks by register locations. Existing publications also reflect this bias

and focus mostly on clock routing. The few known techniques for register placement ex-

hibit significant limitations and do not account for recent progress in large-scale placement

and obstacle-aware clock-network synthesis.

In this chapter, we integrate clock network synthesis with global placement by opti-

mizing register locations. We propose (1) obstacle-aware virtual clock-tree synthesis; (2)

arboreal clock-net contraction force with virtual-node insertion, which can handle multiple

clock domains and gated clocks; (3) an obstacle-avoidance force. Our work is validated
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on large benchmarks with numerous macro blocks. Experimental results indicate that our

software implementation, called Lopper, prunes clock-tree branches to reduce their length

by 30.0%∼36.6% and average total dynamic power consumption by 6.8%∼11.6% ver-

sus conventional wirelength-driven approaches. SPICE-driven simulations show that our

methods improve robustness of clock trees.

5.1 Introduction

Our analysis of prior work reveals serious limitations in published techniques. Some

methods coerce the placer into shortening the clock tree by capturing portions of the clock

tree with the half-perimeter wirelength (HPWL) objective, which is usually applied only

to signal nets [20, 103]. This idea overlooks the fact that low-skew clock trees exhibit

much greater wirelength than signal nets with the same bounding box. To make mat-

ters worse, the HPWL estimate does not offer much fidelity for clock-tree lengths, as we

show in Figure 5.2. Furthermore, a handful of existing publications that optimize clock

networks during placement (reviewed in Section 5.2) do not reflect recent progress in

large-scale placement and clock-network synthesis, and do not compare their results with

best-of-breed software. In most cases, they are evaluated on small benchmarks without

routing/buffering obstacles rather than on modern ASIC or SoC designs with many macro

blocks. Our research addresses these gaps in the literature by developing a set of new

techniques for clock-net optimization during placement and evaluating these techniques

against leading academic software. We extended the ISPD 2005 benchmark suite toward

clock-network synthesis, with the largest benchmark including 2.1M standard cells and

327K registers. The benchmarks include macros, which we interpret as routing obstacles.
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To optimize the trade-off between clock network minimization and traditional place-

ment objectives, we propose a new placement methodology based on obstacle-aware vir-

tual clock-tree synthesis that extends force-directed placement by adding an arboreal

clock-net force using virtual nodes. A key challenge addressed in our work is preserv-

ing the quality of global placement when adding clock-net optimizations. We also ac-

commodate multiple clock domains and gated clocks. Our algorithms are integrated into

the SimPL placer [47], which currently produces lowest-wirelength placements on the

ISPD‘05 benchmarks. The quality of register placement is evaluated by Contango 2.0 [53]

– the winner of the ISPD 2010 contest. Experimental results show that our method can

reduce clock-network capacitance by 30.0%∼36.6% while reducing the overall dynamic

power of the IC by 6.8%∼11.6% compared to conventional approaches.

Modern CPU designs demand low-power clock networks, yet also impose stringent

skew limits, especially in the presence of process, voltage and temperature (PVT) varia-

tion for sub-45 nm CMOS technologies. Clock networks that are robust to PVT varia-

tions are usually not power efficient. To this end, our proposed methodology integrates

variation-sensitive virtual clock-tree construction into the primary optimization objective

of global placement, and therefore produces more robust clock trees without increasing

power. Empirically, we increase clock-tree yield by 24.6% compared to state-of-the-art

wirelength-driven optimizations.

The remainder of this chapter is organized as follows. Section 5.2 covers limitations

of existing techniques. Section 5.3 reviews the optimization objective for clock-net opti-

mization in placement subject to dynamic-power reduction. Section 5.4 describes our tech-
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niques for high-quality register placement. Section 5.5 describes our methodology for in-

tegrating proposed techniques into a state-of-the-art placer used in industry and academia.

Our empirical results are described in Section 5.6. Summary is given in Section 5.7.

5.2 Limitations of existing techniques

Clock-net optimization during placement seeks better register locations but should not

harm total wirelength of signal nets. A naive method is to increase the weight of the clock

net and pull all registers together. Unfortunately, this method increases routing congestion

and hot spots, and also leads to poor signal-net wirelength when dealing with more than

several hundred registers [20,103]. To resolve the conflict between clock-net minimization

and traditional placement objectives, careful problem formulation is essential.

Prior approaches to clock-net minimization in placement form two families. Manhattan-

ring guidance methods commit registers to certain guidance locations and try to pull the

registers close to the nearest such locations during placement [64]. However, such methods

do poorly in the presence of numerous obstacles, e.g., macro-blocks, or when register lo-

cations found by the global placer are not uniformly distributed. In other words, guidance

rings cannot accurately predict ideal locations for register clusters. Figure 5.1 illustrates

how Manhattan-ring methods fail. In Figure 5.1(b), the sink group A is attracted by the

closest Manhattan ring. The sinks in A are erroneously guided toward the obstacle. The

sink group B and the related standard cells have heavy connections to the bottom macro

block. However, the two bottom Manhattan rings encourage the sinks in B to move away

from the center of B, which will likely increase signal-net wirelength significantly.

The second family of approaches performs clock-network synthesis using register lo-
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Manhattan rings

A

B

(a) (b)

Figure 5.1: Two examples of Manhattan rings proposed in [64]. (a) Zero-skew Manhattan

rings driven by an H-tree. (b) Manhattan rings on the design with obstacles.

Obstacles are indicated by darker boxes, two sink groups (A, B) are repre-

sented as ellipses.

cations from intermediate placement results. Specific techniques [20, 103] often simplify

the structure of the clock network and bias the placement process to optimize such sim-

plified networks. However, clock trees generated by those techniques are not realistic and

very different from those generated by leading software. In the DCTB algorithm [103],

the essential parameters of clock network synthesis, such as sink capacitance and wire

capacitance/resistance, are ignored, and the cost function is derived by only considering

Manhattan length between sinks or nodes. The quick CTS algorithm in [20] relies on sim-

ple heuristic clustering for topology generation and is more simple-minded than standard

DME algorithms, which minimize wirelength with zero or bounded skew based on Elmore

delay. Furthermore, all previous work ignores the presence of routing obstacles, common

in modern IC designs, and this ignorance can undermine end results (Sections 5.4 and 5.6).

Previous publications that simplify clock-tree synthesis during placement [20, 103]

cluster clock trees and represent these clusters with bounding boxes to model clock net-

work reduction by placement objectives. Typically, registers are clustered at one or mul-
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tiple levels based on the structure of the reference (simplified) clock tree, and bounding

boxes are created for each cluster. The experimental results of [20, 103] show that bound-

ing boxes are helpful for clock-net size reduction. However, we argue below that this

method fails to represent clock-net reduction problem in placement.

Bounding boxes are represented by fake nets during placement and are optimized to

reduce HPWL [47,91]. The HPWL objective is relevant to placement because it estimates

the lengths of signal routes reasonably well. However, clock routing is very different from

signal-net routing and requires longer routes to ensure low skew. Therefore, HPWL does

not offer accurate estimates of clock-tree lengths. Figure 5.2 shows that reducing HPWL

of the clock net may increase the total length of the clock tree, demonstrating that the

HPWL estimates lack not only accuracy, but also fidelity.

The authors of [103] adapted MLAF to compensate for the drawback of MLBB. How-

ever, we show in Section 5.4.2 that MLAF offers only a partial solution to this problem.

(a) (b)

Figure 5.2: Bounding boxes of two partial ZST-DME clock trees. (a) HPWL of the bound-

ing box is (15+12)=27. The total wirelength of the inside clock tree is 32.

(b) HPWL is (10+10)=20 and the total wirelength of the clock tree is 35.

The clock-net wirelength of (b) is greater than (a) although the bounding-box

HPWL of (b) is notably smaller than (a) while the source-to-sink wirelength is

15 for all sinks.
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5.3 Optimization objective

Let N be the set of signal nets, and let E be the set of clock-net edges. To optimize

clock networks in placement, we minimize the total switching power Psw, defined as the

sum of N ’s switching power PN and E’s switching power PE

Psw = PN + PE (V.1)

Given activity factors of signal nets and clock-net edges, the total signal-net and clock-net

switching power are

PN =
∑

ni∈N

αni
HPWLni

CnV
2f (V.2)

PE =
∑

ei∈E

αei
Lei

CeV
2f (V.3)

Here, αni
and αei

are the respective signal-net and clock-edge activity factors, Cn and Ce

are the respective unit capacitance for signal and clock wires, V is the supply voltage, f is

the clock frequency, HPWLni
is the HPWL of net ni, and Lei

is the Manhattan length of

edge ei. Activity factors of clock-net edges are required when multiple clock domains or

gated clocks are utilized for given designs, otherwise αei
= 1 as clock edges switch every

clock cycle. The handling of gated clocks is discussed in Section 5.5 in more detail. If the

activity factors of signal nets are not available, the computation of total switching power

relies on clock-power ratio β, i.e., clock-net switching power divided by total switching

power. In this case, the average activity factor of signal-net αavg can be derived as

αavg =
(1 − β)

∑

ei∈E
Lei

Ce

β
∑

ni∈N
HPWLni

Cn

(V.4)

αavg is utilized for the activity factors of all the signal nets.
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Compared to the work in [103], where the main objective does not capture the power

of signal nets, our primary objective function (Formula V.1) captures both clock-net and

signal-net switching power. The objective function in [20] considers clock-net and signal-

net power, but their estimation of clock-net switching power relies on bounding boxes

that cannot accurately represent clock-net wirelength. However, our analysis of clock-net

power in Section 5.4.2 allows us to explicitly represent clock-net power in the primary ob-

jective. Thus, the optimization of our primary objective effectively decreases total switch-

ing power as described in Section 5.6.

5.4 Proposed techniques

We propose a methodology and several new techniques to overcome limitations of

prior work and reliably optimize large IC designs with numerous layout obstacles. Our

approach consists of two major phases: (i) virtual clock-tree synthesis, (ii) arboreal clock-

net contraction force, which is corrected by an obstacle-avoidance force.

5.4.1 Obstacle-aware virtual clock trees

Our virtual clock-tree synthesis handles macro blocks as wiring obstacles and produces

obstacle-avoiding clock trees. The importance of utilizing obstacle-aware clock trees is il-

lustrated in Figure 5.3 (the contraction forces are described in Section 5.4.2). Clock-net

optimizations without obstacle handling pull clock sinks inside obstacles, which under-

mines global placement.

Experimental results in [53] show that the difference in total capacitance between ini-

tial zero-skew DME trees (based on Elmore delay) and the final SPICE-optimized trees
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(a) (b)

(c) (d)

Figure 5.3: An example of clock-net optimization with an obstacle. (a) The virtual clock

tree and corresponding contraction forces are created without considering the

obstacle. (b) The result of a placement iteration with the forces in (a). (c) The

obstacle is accounted during virtual clock-tree generation and when establish-

ing additional forces. (d) The result of (c).

is only 2.2% on average. Hence, initial trees produced by leading clock-network synthe-

sis tools offer reasonably accurate capacitance estimates. To quickly construct a virtual

clock-tree during placement, our methodology first performs traditional DME-based zero-

skew clock-tree synthesis with Elmore delay model, subject to obstacle avoidance. Several

techniques are known for this problem, including direct obstacle-avoiding clock-tree con-

struction [46] and incremental repair of obstacle-unaware trees [51]. Each approach can

be used in our methodology, but we found that incremental-repair techniques are simpler

and yet produce high-quality trees.1 Our clock trees target the 45 nm technology used at

the ISPD 2010 clock network synthesis contest [95].

1Extensive empirical studies and the experience of ISPD clock-network synthesis contests suggest that

when clock sinks are placed outside the obstacles, the overlaps caused by obstacle-unaware trees can often

be fixed with minimal impact on skew and total capacitance, compared to obstacle-aware trees.
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5.4.2 Arboreal clock-net contraction force

If the virtual clock network connecting to current register locations faithfully repre-

sents a realistic clock network, then optimizing it directly should improve the final clock

network produced by a specialized CTS tool after placement is complete. To this end,

we extend force-directed placement with new, structurally-defined forces that seek to re-

duce individual edges of the virtual clock network. This technique communicates current

clock-tree structure to the placement algorithm, and also allows the structure to change

with placement.

Figure 5.4(a) illustrates a sample virtual clock tree. To reduce the length of e1 directly,

all sinks downstream from e1 can be moved in the direction of reducing the length of e1.

For each downstream sink of e1, a force vector needs to be assigned. The force vectors

created for e1 should not affect other tree edges.

e
1

e
2

(a) (b)

Figure 5.4: Two types of forces for clock-net optimization. Registers are indicated by

crosses. (a) For each edge, the corresponding downstream registers are given

force vectors. Right arrows are the force vectors for reducing e1, and up arrows

are the force vectors for reducing e2. (b) Virtual nodes are inserted (squares),

and forces are created between each pair of connected nodes (dotted lines).
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The sum of magnitudes of force vectors induced by e1 (F sum
ei

) needs to be carefully

controlled to avoid excessive increase in signal-net wirelength. F sum
ei

may vary when the

activity factors of clock edges differ (e.g., in gated clocks). Figure 5.4(a) illustrates force

vectors. The force from e1 is weaker than the force from e2, Fe1
< Fe2

since the sum of

magnitudes should be same.

The main problem with this method is that the relative locations of branching nodes

from sinks are assumed to be same when the force vectors are created. However, opti-

mal relative locations of the branching nodes change during the optimization. Therefore,

placement iterations with fixed force vectors for sinks do not produce optimal locations.

To shorten clock wires, we propose an arboreal clock-net contraction force with virtual-

node insertion. Our approach creates forces between clock-tree nodes and structurally

transfer the forces down to registers. Virtual nodes represent branching nodes in the clock

tree and split the clock tree into individual edges, seen as different nets by the placement

algorithm. The virtual nodes have zero area and do not create overlap with real cells, so

they do not affect the spreading process in force-directed placers. Zero-area nodes may or

may not be allowed to overlap with obstacles (if such a node is placed over an obstacle,

its overlap has zero area). In our case, virtual nodes should not be placed over obstacles to

avoid routing over obstacles.

Compared to the fixed force vectors applied exclusively to sinks, our technique creates

forces between flexible nodes and each force seeks to reduce the length of the correspond-

ing clock edge. Unlike in the bounding-box based method, each force is integrated into

the placement instance as a two-pin pseudo net, as shown in Figure 5.4(b).
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To reduce dynamic power consumption of the IC, contraction forces are calculated

based on the activity factors of the signal nets. When activity factors of signal nets are

available, the average activity factor αavg over all nets is

αavg =

∑

ni∈N
αni

HPWLni
∑

ni∈N
HPWLni

(V.5)

and the weight of signal net ni is defined as

wni
=

αni

αavg

(V.6)

When activity factors of signal nets are not available, Equation V.4 is utilized to compute

αavg and wni
= 1 for all signal nets. A two-pin net representing clock-net contraction

forces for clock edge ei is given a weight

wei
=

Ceαei

Cnαavg

(V.7)

and the HPWL of a two-pin net from ei is equal to the Manhattan length of ei,

Lei
= HPWLei

(V.8)

Note that our primary objective function is a sum of signal-net and clock-net switching

power (Formula V.1). By combining Formulas V.2, V.3 and V.8, the total switching power

is expressed as

(

∑

ni∈N

αni
HPWLni

Cn +
∑

ei∈E

αei
HPWLei

Ce

)

V 2f (V.9)

By substituting αni
and αei

in terms of wni
and wei

(Equations V.5, V.7), Equation V.9 can

be rewritten as

αavg

(

∑

ni∈N

wni
HPWLni

Cn +
∑

ei∈E

wei
HPWLei

Cn

)

V 2f (V.10)
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Let K be αavgCnV 2f , M = N ∪ E . Then the total switching power of signal nets and

current clock nets is,

Psw = PN + PE = K
∑

mi∈M

wmi
HPWLmi

(V.11)

In other words, our techniques capture the switching-power minimization problem, which

can be solved by any high-quality wirelength-driven placer capable of net weighting. Fig-

ure 5.5 compares our technique and MLAF from [103]. MLAF is ineffective in shortening

clock nets that significantly differ from H-trees. Additionally, MLAF does not establish

exclusive forces that represent the edges between parents and children nodes. Instead,

bounding boxes (MLBB) are used with MLAF in [103]. We show in Section 5.2 that

bounding boxes cannot offer accurate estimates of clock-tree lengths. Also, the authors

of [103] did not explain how they assigned weights to MLAF but only hinted that the

magnitude of MLAF was similar to the magnitude of forces for signal nets. Detailed

comparison between our technique and MLAF is discussed in Section 5.6.2 (Table 5.5).

5.4.3 Obstacle-avoidance force

Given an obstacle-avoiding tree, we modify arboreal clock-net contraction forces to

promote obstacle avoidance. Contraction forces based on an obstacle-avoiding clock tree

do not necessarily improve every tree edge, as shown in Figure 6. In Figure 5.6(a), five

edges are derived from a virtual obstacle-aware tree built as in Section 5.4.1. If we create

forces for all the edges, subsequent optimization will produce the tree in Figure 5.6(b).

The force f4 associated with edge e4 is rendered ineffective by the obstacle. Our force-

modification algorithm for obstacle avoidance detects these obstacle-detouring edges and
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Lopper Lopper

(a) (b)

MLAF MLAF

(c) (d)

Figure 5.5: Comparison between our arboreal clock-net contraction force and MLAF of

[103]. (a) Arboreal clock-net contraction forces are generated. (b) The mod-

ified register and virtual clock-node locations when forces in (a) are utilized.

(c) The forces created by the MLAF algorithm. (d) The modified register and

virtual clock-node locations when forces in (c) are utilized. We can observe

that the edges between parents and children nodes are poorly handled for the

force creation in (c), and our method is more efficient on non H-tree structures

(which is common in modern designs).

e
1

e
2

e
3

e
4 e

5

(a) (b) (c)

Figure 5.6: Obstacle-avoidance force. (a) Five edges of an obstacle-aware virtual clock

tree. (b) The result when all the edges are utilized for contraction forces. (c)

The result when e4 and e5 are excluded from force construction.
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eliminates the contraction forces for them.2 In this example, e4 and e5 are excluded from

force construction, and the result is illustrated in Figure 5.6(c).

5.5 Proposed methodology

We integrate our techniques into SimPL, a flat, force-directed quadratic placer [47].

Recall that analytic placers first minimize a function of interconnect length, neglecting

overlaps between standard cells and macros. This initial step places many cells in densely

populated regions. Clock-net contraction forces are ineffective at this step for two reasons:

(i) the current virtual clock network may differ greatly from the final clock network, (ii)

the contraction forces may restrict the spreading of the registers at the center of the design

due to their high net weight. Therefore, our techniques are invoked between signal-net

wirelength-driven global placement and detailed placement. Our clock-net optimization

during placement is referred to as Lopper, and described in Figure 5.7.

5.5.1 The Lopper flow

At each iteration of Lopper, a new virtual clock tree is generated based on current

register locations. We discard the previous virtual clock tree based on the following obser-

vation. The topology of a clock tree and the embedding of its wires minimize (i) skew as

the primary objective, (ii) total wirelength as the secondary objective. When an iteration

of Lopper is performed, the locations of the registers are modified in order to reduce the

total wirelength of the given virtual clock tree. Since registers are displaced by different

amounts (due to different connectivities), keeping the previous clock-tree structure would

2Consider a clock-tree edge that does not cross a given obstacle. The edge detours the obstacle if the

straight line connecting the ends of the edge crosses the obstacle.
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Figure 5.7: Key steps of Lopper integrated into the SimPL placer, as indicated with darker

rounded boxes and a lozenge. Plain boxes represent the SimPL steps.

risk a large increase in skew. Therefore we regenerate the virtual clock tree for each iter-

ation to obtain an optimal virtual clock tree with the current register locations. The tree

topology typically undergoes only moderate changes, while branching nodes relocate to

reduce skew.

Early placement iterations may greatly displace the registers, suggesting that effective

clock-net wirelength reduction requires moving registers over the obstacles. In this case,

obstacle-aware virtual CTS and obstacle-avoidance force may undermine the potential

improvement. Therefore, Lopper ignores obstacles until average displacement of registers

becomes small.

Global placement typically continues while HPWL continues improving, but clock-

tree reduction in Lopper requires a different convergence criterion. After each iteration,

total switching power is calculated and compared to previous values. Lopper is invoked

repeatedly until total switching power (Equation V.1) stops reducing.
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Legalization and detailed placement are applied after Lopper is complete. It is im-

portant to preserve the virtual nodes and two-pin nets that represent the clock-net con-

traction forces during detailed placement because detailed placement algorithms usually

optimize wirelength and would not have preserved clock-optimized register locations if

guided only by signal nets.

5.5.2 Trade-offs and additional features

Quality control. Our techniques reduce the size of clock networks, but are likely to

increase signal-net wirelength. The activity factor of each signal-net αni
or clock-power

ratio β are required for Lopper to reduce total switching power. However, even clock-

power ratio β is hard to estimate before the design is completed and can vary with various

applications running on a CPU. Therefore, in our implementation the trade-off between

clock-net and signal-net switching power can be easily controlled with a single parameter

β. This simple quality control allows an IC designer to achieve intended total switching

power of a chip without changing the algorithm or its internal parameters. Relevant trade-

offs are illustrated in Table 5.3.

Gated clocks and multiple clock domains are well-known and often the most effec-

tive techniques to reduce clock network power dissipation [73]. To extend our techniques

to gated clocks and multiple clock domains, each register si is given an activity factor αsi

and the activity factors are propagated through the tree. The activity factor of an edge

is the highest activity factor of its child edge or register (see Figure 5.8). Without clock

gating, all registers are given activity factors 1.0, which are propagated to all tree edges.

Once activity factors are propagated to tree edges in each clock tree, they are used to

102



calculate net weights that represent clock-net contraction forces in Equation V.7. Registers

that switch less frequently due to clock gating will be more affected by signal nets than

normal registers without clock gating. Our technique does not track the locations of gaters

assuming that the final clock tree and the gaters are constructed after register placement.

While we have not experimented with gater placement, we do not believe that it will affect

results reported in our work.

1.0

1.0

1.0

0.6

0.6

0.6

1.0
Clock gating

Figure 5.8: Activity-factor propagation for gated clocks. Registers are indicated with

crosses. Tree edges and registers are labeled with activity factors.

Flexible integration. Through the Lopper flow, forces for clock-net optimization are

represented in placement instances by virtual nodes and nets. No support for clock-net

optimization is required in the placement algorithm. Therefore, Lopper can integrate

any fast obstacle-aware clock-tree synthesis technique into any iterative high-performance

wirelength-driven placer capable of net weighting.

Integration into timing-driven placement. Timing-driven placement optimizes cell

locations to satisfy timing constraints, while minimizing interconnect [43, Chapter 8].

During timing-driven placement, delays of timing-critical nets are carefully controlled to

prevent timing violations. Lopper can be integrated into timing-driven placers thanks to

the flexibility of proposed integration. For example, a common approach to timing-driven
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placement increases weights of critical nets.3 To this end, Formula V.6 can be extended to

include the criticality cni
of net ni which represents how important this net is to satisfying

timing constraints.

wni
=

αni
cni

αavg

(V.12)

If weights of critical nets exceed clock-net weights (i.e., wni
> wei

), the wirelength of

critical nets is affected less when reducing clock-net wirelength. During the Lopper flow,

only the wirelengths of less critical nets increase to reduce clock-net switching power.

Therefore, optimization for total switching-power reduction can be performed without

violating timing constraints.

High-quality register placement for robustness to variations. In practice, not only

low nominal skew but also robustness to PVT variations are essential for building high-

quality clock networks. When making a clock network more robust, one uses large buffers

and/or redundant wiring, which increases total capacitance and dynamic power. Because

clock networks consume a large portion of total power, it is important to limit the max-

imum clock-network power. When clock-network power is limited by design, one of the

most effective techniques to improve robustness to PVT variations is to optimize register

placement. Since our virtual clock-tree construction algorithm is variation sensitive4 and

integrated into our primary optimization objective during placement, our register place-

ment is sensitive to PVT variations. Extensive SPICE simulations confirm that the Lopper

3This approach is used in our work to illustrate the compatibility of Lopper with timing-driven placement.

Many other approaches exist [43, Chapter 8].
4When clock-network power is limited, the DME-based initial-tree construction algorithm in [53] is

variation sensitive in the sense that it generate low-skew trees with optimizing wirelength. When initial

wirelength of a clock tree is small, more optimizations for enhancing robustness are possible within given

power limit. Our virtual clock-tree construction algorithm is adapted from this variation-sensitive initial-tree

construction algorithm.
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flow significantly improves robustness of clock trees when clock-network power is limited

(see Section 5.6.3).

5.6 Empirical validation: Lopper

The benchmarks used in prior publications on clock-tree optimization during place-

ment exhibit the following problems: (1) Empirical validation of each existing publication

relies on one benchmark suite which is not utilized by any other work. Most of the bench-

marks are inaccessible to public, therefore comparisons to new techniques are impossible.

(2) The benchmark designs are based on unrealistically small placement instances. None

of the prior publications provide results on a design with more than 1M standard cells,

which is common in modern modern ASIC designs. (3) Macro blocks became essential

components, and many IC designs include more than hundreds of macros with fixed loca-

tions after floorplanning [6,43]. However, prior publications used the benchmarks without

macro blocks or ignored macro blocks present in the benchmarks [103]. (4) Reference

placement tools used for comparison are often outdated [64] or self-implemented [103].

Such comparisons risk not being representative of state-of-the-art EDA tools.

In this section, we propose a new benchmark set that addresses the above pitfalls.

Our experimental results offer full comparisons with leading academic wirelength-driven

placers and a known technique for register placement (MLAF). The quality of register

locations is validated by a leading academic clock-network synthesis tool.
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5.6.1 Experimental setup

The ISPD 2005 placement contest benchmark suite is being used extensively in place-

ment research, and the academic community consistently advanced physical design tech-

niques using the ISPD‘05 benchmarks. These benchmarks are directly derived from indus-

trial ASIC designs, with circuit sizes ranging from 210K to 2.1M placeable objects. We

adapted eight designs from the ISPD‘05 benchmarks and created register lists in which

15% of standard cells are selected to be registers. We selected the number 15% based

on the industrial designs introduced in [20], where the average 14.65% of cells are regis-

ters. The largest benchmark has 327K registers. Fixed macro blocks are viewed as routing

and placement blockages during clock-network synthesis.5 Some macro blocks that create

routing dead space are slightly resized and/or repositioned to eliminate dead space (see

Figure 5.9). This modification is so small that the impact on density and timing is negligi-

ble. The benchmarks are mapped to the Nangate 45 nm open cell library [70] to facilitate

clock-network synthesis with parameters from ISPD 2010 CNS contest. The standard-cell

height (or row height) is set to 1.4 µm according to the 45 nm library.6 Clock-power ratio

β is set to 0.3 for clock network optimization during placement based on the industrial

circuits from [20], where clock power is responsible for 31.9% of total power on average.

For each circuit, the average activity factor of signal nets is calculated based on the signal-

net and clock-net wirelength of the placement produced by SimPL [47] using Formula V.4.

The unit-wire capacitances for signal-net and clock-net (Cn, Ce) are set to 0.1 fF/µm, 0.2

5When macro blocks act as placement blockages but routing is allowed above them, the load-capacitance-

aware obstacle-avoidance algorithm in [51] can be utilized to detour the clock-tree wires that (i) cross macro

blocks, (ii) but cannot be driven by the buffers outside macro blocks.
6Unit length in the ISPD‘05 benchmark corresponds to approximately 117 nm in our benchmark set.
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Name Cells Regs Macros CoreX CoreY Area

(mm) (mm) (mm2)

clkad1 210K 32K 56 1.247 1.246 1.554

clkad2 255K 38K 177 1.640 1.638 2.686

clkad3 451K 68K 721 2.706 2.722 7.363

clkad4 494K 74K 1329 2.706 2.722 7.363

clkbb1 278K 42K 30 1.247 1.246 1.554

clkbb2 535K 84K 923 2.181 2.192 4.781

clkbb3 1095K 165K 666 3.231 3.242 10.47

clkbb4 2169K 327K 639 3.756 3.772 14.16

Table 5.1: The new CLKISPD‘05 benchmarks.

fF/µm respectively based on the 45 nm technology model from the ISPD‘10 contest [95]

and the Nangate open-cell library [70]. Supply voltage and clock frequency are set to 1.0V

and 2GHz. The coordinate of clock source is set to the bottom left corner of core area

except when it is blocked by macros. When the desired location is blocked, we move the

clock source to the closest unblocked coordinate. Since many academic placers handle the

ISPD‘05 benchmarks, a direct comparison of clock-network quality and signal-net wire-

length is possible. The new benchmarks (referred to as CLKISPD‘05, downloadable from

http://vlsicad.eecs.umich.edu/BK/CLKISPD05bench [57]) are described in Table 5.1.

Routing dead space

(a) (b)

Figure 5.9: An example of routing dead space that can be found in the ISPD‘05 bench-

marks. (a) Routing dead space is created by enclosing macro blocks. (b) One

macro block is modified to open the space.
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FASTPLACE3 MPL6 SIMPL 101 SIMPL+LOPPER

Bench αavg ClkWL HPWL Pwr ClkWL HPWL Pwr ClkWL HPWL Pwr ClkWL HPWL Pwr �

(mm) (m) (mW ) (mm) (m) (mW ) (mm) (m) (mW ) (mm) (m) (mW ) (min)

clkad1 0.11 214.7 9.12 285.5 248.2 9.09 298.3 209.1 8.97 279.9 152.3 9.23 263.0 3.6

clkad2 0.10 236.2 10.9 310.1 267.0 10.7 318.9 223.1 10.5 297.6 161.0 10.8 278.4 5.5

clkad3 0.09 469.3 25.0 640.8 467.6 25.0 640.8 468.5 24.0 624.7 326.9 24.9 583.0 11

clkad4 0.11 540.9 23.1 732.9 615.6 22.6 751.6 519.4 21.7 692.6 354.4 22.3 640.4 12

clkbb1 0.10 250.5 11.2 323.6 245.1 11.3 322.5 238.2 11.2 317.6 166.3 11.5 295.7 5.2

clkbb2 0.15 539.2 18.1 752.6 514.1 17.8 733.6 533.2 16.8 710.9 371.2 17.3 661.4 13

clkbb3 0.10 892.6 42.7 1236 1032 40.2 1240 866.3 39.2 1155 602.2 41.0 1085 30

clkbb4 0.09 1907 97.3 2575 2119 96.8 2650 1855 93.0 2473 1266 95.2 2279 87

Avg 1.03× 1.05× 1.04× 1.11× 1.03× 1.06× 1.00× 1.00× 1.00× 0.70× 1.03× 0.93× 1.8×

Table 5.2: Results on the CLKISPD‘05 benchmark suite. ClkWL represents total wire-

length of a clock network synthesized by the initial phase of Contango 2.0

[53]. HPWL is total HPWL of signal nets. Pwr is total net-switching power.

SimPL+Lopper is 4.16× faster than mPL6 and 1.51×, 1.81× slower than Fast-

Place3, SimPL respectively.

The quality of clock networks based on the final register locations of each placer is

evaluated by Contango 2.0 [53]. Contango 2.0 is the winner of the ISPD 2009 and 2010

Clock Network Synthesis (CNS) contests and produces clock trees with less than 7.5 ps

skew in the presence of variation on the ISPD‘10 CNS benchmarks. During our experi-

ments in Section 5.6.2 , we exclude SPICE-accurate tuning in Contango 2.0 for two rea-

sons: (1) the designs from the ISPD‘05 benchmarks are too large to run SPICE simu-

lations, (2) the average added capacitance during the SPICE-driven optimization on the

ISPD‘10 CNS benchmarks is 2.2% of total clock-net capacitance (including sink, wire

and buffer capacitance), suggesting that the initial trees optimized for Elmore delay pro-

vide good estimates of power consumption. In Section 5.6.3, we present experimental

results for clock trees with SPICE-driven optimizations on the modified benchmark set.

Insertion delay and skew from SPICE simulations are reported as well as total capaci-

tance of optimized clock trees with driving buffers. We also present robustness analysis

of different register placements when total capacitance is limited for clock networks in the

presence of variations.
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5.6.2 Empirical results

Table 5.2 compares results of our methodology to the leading academic placers on the

CLKISPD‘05 benchmarks. The results of SimPL [47] are used as reference for compar-

ison. αavg is computed for each benchmark based on the given β = 0.3 as described in

Section 5.6.1, and total wire-switching power is calculated based on αavg. Power con-

sumed inside macro blocks is ignored since it cannot be optimized during placement and

is not available in original ISPD benchmark data. On average, the combination of SimPL

and Lopper reduces total clock-tree length by 30.0%, total wire-switching power by 6.8%

while the total HPWL of the signal nets only increases by 3.1% compared to SimPL. Com-

pared to FastPlace3 [100] and mPL6 [15], our methodology reduces the total clock-net

wirelength by 32.1%, 36.6%, total wire-switching power by 10.5%, 11.6% respectively,

while the total signal-net HPWL is smaller than that produced by FastPlace3 by 1.4% and

very similar to that produced by mPL6. Our methodology shows consistent improvement

for the benchmarks considered, with various configurations of macro blocks. Figure 5.10

compares two clock trees based on register placements from SimPL and our method.

To further study the relative significance of clock-power ratio β, we show in Table 5.3

the impact of varying β on the benchmark clkad1. The average activity factor of signal nets

αavg is computed based on the reference layout and utilized for computing the total wire-

switching power. The performance of Lopper is improved when clock networks consume

a greater portion of total power. Table 5.3 also shows that reducing clock networks does

not necessarily reduce the total switching power. For example, the result for β = 0.6

consumes 109.6 mW for total wire-switching power, but if the same circuit is used for the
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β αavg Orig. P ClkWL HPWL Pwr

(mW ) (mm) (m) (mW ) (Rel)

Orig - - 209.1 8.968 - -

0.1 0.420 837.0 184.2 9.073 835.8 0.999

0.15 0.264 557.2 173.5 9.128 551.3 0.990

0.2 0.187 419.1 165.7 9.188 409.9 0.978

0.25 0.140 334.8 158.0 9.225 321.5 0.960

0.3 0.109 279.9 152.3 9.233 262.2 0.939

0.35 0.087 239.7 151.0 9.280 221.9 0.925

0.4 0.070 209.2 144.8 9.305 188.2 0.900

0.45 0.057 185.9 144.5 9.316 164.0 0.882

0.5 0.047 168.0 139.5 9.342 143.6 0.854

0.55 0.038 151.8 135.7 9.343 125.3 0.826

0.6 0.031 139.3 128.0 9.425 109.6 0.787

Table 5.3: The results on clkad1 with various clock power ratios β. The specifications

of the reference placement produced by SimPL are in the row Orig. αavg is

calculated based on β and reference placement produced by SimPL. Total wire-

switching power values of the reference placement with the corresponding β
are represented in the column Orig. P. The relative power ratios are indicated

with Rel.

applications with β = 0.1, the total wire-switching power computed by Equations V.1 -

V.3 is 842.9 mW , which is greater than the switching power of the reference placement

837.0 mW . This implies that clock-net optimization must utilize activity factors of signal

nets or clock-power ratios to reduce total switching power.

Table 5.4 shows the impact of obstacle-aware virtual clock trees (OAVCT) and obstacle

avoidance forces (OAF). When OAVCT is excluded, DME trees without obstacle handling

are utilized for the remaining flow. The results indicate that 9.5% of clock-net wirelength

can be reduced on average by utilizing obstacle-aware trees. The advantage of OAVCT

is reduced on benchmarks with very few obstacles such as clkbb1 where a few obstacles

exist at the top left corner of the chip. Obstacle-avoidance forces reduce clock-net length

by 4.1% and total switching power by 0.7%.

Table 5.5 compares results of our technique to the technique called MLAF on MLBB

[103]. We re-implemented their MLAF algorithm and integrated it into the SimPL placer
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[47] instead of the FDP framework [101] they utilized. Since their DCTB algorithm can-

not process obstacles, our obstacle-aware virtual clock-tree generation algorithm in Sec-

tion 5.4.1 is utilized for the MLAF algorithm. In terms of clock-net wirelength and net-

switching power, the average gain from the MLAF technique is limited by 43.5%, 30.6%

of the improvement of our technique respectively, which means that our arboreal clock-

net contraction force is 3.3× more effective for switching-power reduction than MLAF.

Our comparison to MLAF concludes that explicit and structural representation of clock-

net force and an accurate weighting function are important to achieve competitive register

placement.

Orig. Flow w/o OAVCT w/o OAF

Bench ClkWL Pwr ClkWL Pwr ClkWL Pwr

(mm) (mW ) (mm) (mW ) (mm) (mW )

clkad1 152.3 263.0 165.7 267.8 158.5 265.3

clkad2 161.0 278.4 170.9 285.5 163.7 278.7

clkad3 326.9 583.0 362.1 595.1 340.8 587.4

clkad4 354.4 640.4 403.1 657.2 379.8 649.4

clkbb1 166.3 295.7 172.6 297.4 169.1 296.4

clkbb2 371.2 661.4 411.2 673.8 389.9 666.7

clkbb3 602.2 1085 663.1 1104 627.2 1093

clkbb4 1266 2279 1412 2331 1328 2102

Avg 1.0× 1.0× +9.5% +1.8% +4.1% +0.7%

Table 5.4: Impact of excluding obstacle-aware virtual clock trees (OAVCT), obstacle

avoidance forces (OAF). OAVCT and OAF are excluded in the columns under

“w/o OAVCT”. Only OAF is removed in “w/o OAF”

5.6.3 SPICE-driven validation

Insertion delay and skew are important metrics when evaluating the quality of clock

trees. Accurate analysis of these metrics requires SPICE simulations. The CLKISPD‘05

benchmark set has up to 327K registers in one benchmark and it is impractical to per-

form SPICE-driven optimizations introduced in [53]. To construct high-quality SPICE-

accurate clock trees, we decrease the number of registers in the CLKISPD‘05 benchmarks
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SIMPL+MLAF

Bench ClkWL HPWL Pwr

(mm) (m) (mW )

clkad1 182.4 (46.9%) 9.194 (85.3%) 274.2 (33.7%)

clkad2 200.9 (35.8%) 10.76 (76.2%) 293.0 (24.0%)

clkad3 402.5 (46.6%) 24.71 (76.9%) 609.8 (35.7%)

clkad4 449.5 (42.4%) 22.24 (86.9%) 676.6 (30.7%)

clkbb1 203.8 (47.9%) 11.48 (84.9%) 309.7 (36.1%)

clkbb2 473.8 (36.7%) 17.16 (80.0%) 699.3 (23.4%)

clkbb3 743.5 (46.5%) 40.81 (91.0%) 1139 (22.9%)

clkbb4 1587 (45.5%) 94.77 (80.2%) 2399 (38.1%)

Avg 0.87× (43.5%) 1.03× (82.7%) 0.98× (30.6%)

Table 5.5: Results of the MLAF technique integrated into SimPL with comparison to our

technique. Average results are compared to the results for SimPL in Table 5.2.

The numbers in parentheses represent the amount of reduction(ClkWL, Pwr)

[increase(HPWL)] assuming 100% reduction [increase] for our technique. For

example, [209.1(SimPL) - 182.4(MLAF)] / [209.1(SimPL) - 152.3(Lopper)] =

46.9%.

FASTPLACE3 MPL6 SIMPL 101 SIMPL+LOPPER

Bench Regs Ins. D. Skew Cap. Ins. D. Skew Cap Ins. D. Skew Cap. Ins. D. Skew Cap.

(ps) (ps) (pF ) (ps) (ps) (pF ) (ps) (ps) (pF ) (ps) (ps) (pF )

clkad1 s 2114 386.3 2.702 29.90 388.2 2.629 34.09 381.7 3.730 26.61 369.0 0.962 16.70

clkad2 s 2550 406.8 3.329 35.95 414.2 2.471 36.24 405.8 3.152 31.52 402.9 2.163 20.53

clkad3 s 4516 453.7 3.921 68.08 468.0 3.642 77.36 453.4 3.770 65.95 452.3 2.208 45.00

clkad4 s 4960 455.4 3.502 77.84 470.0 2.065 86.28 454.8 3.568 71.66 446.6 2.216 44.44

clkbb1 s 2781 385.0 2.711 29.86 387.0 2.139 35.61 386.1 5.166 29.10 385.9 1.754 18.35

clkbb2 s 5578 445.1 8.153 78.34 444.4 5.984 83.77 444.4 1.876 75.18 431.4 2.537 47.18

clkbb3 s 10968 489.8 3.118 125.7 513.0 7.140 150.2 497.6 2.796 120.7 494.2 2.286 77.75

clkbb4 s 21773 523.9 2.318 268.6 522.7 2.956 284.0 523.5 3.511 250.8 510.9 2.852 156.0

Avg 1.02× 1.83× 1.68× 1.03× 1.77× 1.87× 1.02× 1.85× 1.57× 1.00× 1.00× 1.00×

Table 5.6: Results of SPICE-driven optimizations on the modified CLKISPD‘05 bench-

mark suite. Regs represents the number of registers in each benchmark. Ins.

D. is insertion delay and Skew is nominal local skew defined in [53] with local

skew distance limit 600µm. Cap. represents total capacitance of the clock tree

including driving buffers.

and invoke Contango 2.0 on various register placements. The experimental results with

SPICE-driven optimizations are described in Table 5.6.

We adapted wire and buffer libraries from the ISPD 2010 CNS benchmarks. The con-

cept of local skew defined in [53] is utilized to calculate exact skew with the local skew

distance limit 600µm. Unlike Table 5.2 that reports dynamic power based on only wire

capacitance, the total capacitance including driving buffers is reported in Table 5.6. Same
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buffering scheme is utilized for all clock trees in this table. The Lopper flow produces

high-quality register placement and it is already shown in Table 5.2 that the clock-network

wirelength is significantly smaller than other methods. Due to compact clock-net wire-

length, fewer driving buffers are required for clock-tree synthesis on our register place-

ment, hence the total clock-network capacitance including buffers is 57%∼87% less than

other register placements.

Table 5.6 also shows that insertion delay based on our method is 1.6%∼3.3% smaller

than other methods. Since insertion delay depends on the path length from the clock

source to sinks, the size of layout area is closely related to insertion delay. As shown

in Figure 5.10, the wirelength of clock trees is reduced mainly near leaves, hence the

improvement of insertion delay is not proportional to power improvement.7 In practice,

clock trees spend a lot of power near the leaves. The results show that Contango 2.0 can

reduce nominal skew down to 10 ps for any register placement. The quality of nominal

skew is not highly related to register placement but it depends on optimization performed

during CNS. However, compact clock trees are easier to tune therefore average nominal

skew reported in Table 5.6 is 77%∼87% smaller on our design.

Table 5.7 shows how the quality of register placement affects robustness of clock net-

works in the presence of variations. Since robustness analysis requires extensive SPICE

simulations, we rebuilt the CLKISPD‘05 benchmarks with fewer registers, so that we can

run hundreds of Monte-Carlo SPICE simulations. We imposed a capacitance limit when

running Contango 2.0, and clock trees are optimized to be as robust as possible within this

7When the clock source is at a corner of chip area, often 30%∼50% of insertion delay is due to the tree

trunk (the wire that connects the clock source and the root node of the clock tree [51]) and the length of the

trunk is largely unaffected by register placement in practice.
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SIMPL 101 SIMPL+LOPPER

Bench Regs Cap. Nom. Mean Yield Nom. Mean Yield

(pF ) (ps) (ps) (%) (ps) (ps) (%)

clkad1 v 1057 23 1.855 6.634 72.4 2.177 4.298 99.2

clkad2 v 1275 28 1.113 5.771 90.4 3.265 5.291 89.8

clkad3 v 1354 46 1.132 7.281 60.4 2.673 6.615 72.4

clkad4 v 1488 50 2.010 8.007 43.2 1.610 6.094 82.0

clkbb1 v 1390 26 1.014 6.342 78.8 0.994 5.104 94.6

clkbb2 v 1115 39 2.208 7.674 49.0 1.338 5.912 86.6

clkbb3 v 1096 49 1.532 7.246 58.4 1.379 6.071 82.4

clkbb4 v 1088 67 5.226 9.607 15.4 4.207 7.342 57.8

Avg 2.011 7.320 58.5 2.205 5.841 83.1

Table 5.7: Results of SPICE simulations in the presence of variations. Regs represents the

number of registers in each benchmark. Cap. represents the capacitance limit

for clock networks. Nom. represents nominal skew without variation and Mean

is average skew with variation. Yield represents the percentage of acceptable

results with given skew limit 7.5 ps.

limit. After building clock trees, we first measure the nominal skew of clock trees without

variations. Then we run extensive Monte-Carlo simulations with variations to estimate the

impact of variations on clock-tree circuits. The variation model from the ISPD 2010 CNS

benchmarks is utilized in the experiments.

Our register placement leads to more compact clock trees than other methods, and

robustness is further enhanced by Contango 2.0. The results show that the clock trees

based on our techniques offer 24.6% greater yield than the clock trees based on simPL

alone when the skew limit is set to 7.5 ps.

5.7 Summary

Despite the increasing significance of power optimization in VLSI, state-of-the-art

placement algorithms only optimize signal-net switching power and ignore clock-network

switching responsible for over 30% of total power. We propose new techniques and a

methodology to optimize total dynamic power during placement for large IC designs with
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macro blocks. To this end, we advocate obstacle-aware virtual clock-tree synthesis, an ar-

boreal clock-net contraction force with virtual nodes that can handle gated clocks, and an

obstacle-avoidance force for clock edges. Our methodology is integrated into the SimPL

placer [47], and the total switching power is measured by utilizing Contango 2.0 [53] —

both programs are leading academic software. A new set of 45 nm benchmarks is pro-

posed to better represent modern IC designs. Experimental results show that our method

lowers the overall dynamic power by significantly reducing clock-net switching power.

Other benefits of our optimizations include smaller insertion delay in clock trees, dimin-

ished sensitivity to process variations, and reduced supply voltage noise.
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Figure 5.10: Clock trees for clkad1, based on a SimPL register placement (top) and pro-

duced by proposed techniques (bottom). The respective clock-tree wire-

lengths based on SimPL and our method are 209.13 mm and 152.27 mm.

The total switching power of SimPL and our method are 279.9 mW and

263.0 mW respectively.
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CHAPTER VI

Multilevel Tree Fusion for Robust Clock Networks

Recent improvements in clock-tree and mesh-based topologies maintain an on-going

competition between the two. Trees require much smaller capacitance, but meshes are nat-

urally robust against process variation and can accommodate late design changes. Cross-

link insertion has been advocated to make trees more robust, but is limited in practice

to short distances. In this chapter we develop a novel non-tree topology that fuses sev-

eral clock trees to create large-scale redundancy in a clock network. Empirical validation

shows that this clock-network structure incrementally enhances robustness to satisfy given

variation constraints. Our implementation called Contango 3.0 produces robust clock net-

works even for challenging skew limits, without parallel buffering used by other imple-

mentations. It also offers a fine trade-off between power and robustness, increasing the

capacitance of the initial tree by less than 60%, which results in 2.3× greater power effi-

ciency than mesh structures.

6.1 Variation modeling for buffered paths

In this section, we develop statistical models for delay and skew in RC-buffered clock

networks, including proposed clock-network topologies.
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6.1.1 Impact of variation on delay

In the presence of PVT variations, the delay of a buffered path p can be treated as

a random variable Dp whose mean dp is the nominal delay. Given that tree-like clock

networks entail long paths without significant reconvergence, path delay can be modeled

by Gaussian variables:1

Dp = N(dp, σ
2
p) (VI.1)

The delays of serially connected paths p1 and p2 add up.

Dp1p2
= Dp1

+ Dp2
, E[Dp1p2

] = E[Dp1
] + E[Dp2

] (VI.2)

σ2
p1p2

= σ2
p1

+ σ2
p2

+ 2σp1
σp2

ρ(p1,p2) (VI.3)

where 0 ≤ ρ(p1,p2) ≤ 1 is the correlation between Dp1
, Dp2

.

Given n parallel paths from a to b, we tune nominal path delays using existing methods

[51, 53] to bring their difference under 10 ps. We also size the drivers, that jointly drive

the sink, to have similar strength. Under these circumstances, the random variable of path

delay and its expectation (nominal delay) are

Dp(a,b) =
n

∑

i=1

Dpi
/n, dp(a,b) =

n
∑

i=1

dpi
/n (VI.4)

This averaging is illustrated in Figure 6.10. Detailed analysis is given in Section 6.4.2 and

Table 6.6.

Then, the variance of Dp(a,b) is

σ2
p(a,b) =

n
∑

i=1

σ2
pi

/n2 + 2

n−1
∑

i=1

n
∑

j=i+1

σpi
σpj

ρ(pi,pj)/n
2 (VI.5)
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Figure 6.1: Simple clock networks with source node s, two sink nodes a and b. All paths
are considered buffered. (a) a tree, (b) redundant paths. (c) n multilevel paths

for each sink. Each i-th (2 ≤ i) new root-to-sink path consists of a shared pwi

section and a pai
or pbi

section that is not shared.

Example III.1 Consider the case n = 2, σ2
p1

= σ2
p2

= 10 and ρ(p1,p2)=0.1. Then σ2
p(a,b) =

5.5, which reduces standard deviation by about 26% compared to a single path. Thus,

having multiple paths reduces the impact of PVT variation compared to a single path.

6.1.2 Impact of variation on skew

Let s be a source node and a, b be two sink nodes. Nominal skew (without variation)

is defined as

skew(a,b) = |dp(s,a) − dp(s,b)| (VI.6)

We define total signed skew (with variation), mean signed skew, variational signed skew,

signed skew variance, total absolute skew and variational absolute skew as follows.

S(a,b) = Dp(s,a) − Dp(s,b), S̄(a,b) = E[S(a,b)] (VI.7)

S∗
(a,b) = S(a,b) − S̄(a,b), σ2

s(a,b) = E[S∗
(a,b)

2] (VI.8)

skew(a,b) = |S(a,b)|, skew∗
(a,b) = |S∗

(a,b)| (VI.9)

1While specific sources of variation and the probability distributions of device parameters can be com-

plicated, the Central Limit Theorem suggests that path delay distributions are close to normal. Empirical

data in Figure 6.9 confirm that the delay of a buffered path is normally distributed.
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Since S(a,b) has a normal distribution, skew(a,b) has a folded normal distribution.2 Figure

6.2 shows empirical distributions for signed and absolute skew of two example sink pairs

from the experimental results in Section 6.4.2. The mean and variance of skew(a,b) can be

derived from the mean µ and variance σ of S(a,b) as

E[skew(a,b)] = σ
√

2/πexp(−µ2/2σ + µ
(

1 − 2Φ(−µ/σ)
)

(VI.10)

var[skew(a,b)] = µ2 + σ2 − {σ
√

2/πexp(−µ2/2σ2)

+ µ
(

1 − 2Φ(−µ/σ)
)

}2 (VI.11)

where Φ(·) denotes the cumulative distribution function of a standard normal distribution.

When nominal skew is zero,

Expected skew : E[skew(a,b)] = σs(a,b)

√

2/π (VI.12)

Skew variance : var[skew(a,b)] = σ2
s(a,b)(1 − 2/π) (VI.13)

Note that mean absolute skew can be positive with zero nominal skew.

For yield analysis, given a variation bound x > 0,

P[skew(a,b) < x] ≡ P[−x < S(a,b) < x] (VI.14)

This suggests that we can use signed skew as a proxy for the analysis of absolute skew. In

other words, we can obtain the yield of skew (P[skew(a,b) < x]) by examining the yield of

signed skew (P[−x < S(a,b) < x]). In this section, we analyze the impact of variation on

signed skew because of mathematically simpler analysis. Figure 6.1a illustrates a simple

2Given a normally distributed random variableX = N(µ, σ), the variable |X | follows the folded normal
distribution [58].
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(a) (b)

Figure 6.2: Empirical distributions of signed and absolute skew of two example sink pairs.

The data are collected from Monte-Carlo simulations with variations. (a) Sink

pair with nominal skew 0.3 ps. (b) Sink pair with nominal skew 1.2 ps.

clock tree with one path per sink. In this case, the skew variance is

σ2
s(a,b) = var(S(a,b)) = σ2

pa
+ σ2

pb
− 2σpa

σpb
ρ(pa,pb) (VI.15)

We extend this analysis to clock networks with multiple paths for each sink node, as

illustrated in Figure 6.1b. pw2
is the shared path and pa2

, pb2 connect the shared path to the

sinks a and b. From the multiple-path delay variation model from Section 6.1.1, we obtain

Dp(s,a) =
(

Dpa1
+ (Dpw2

+ Dpa2
)
)

/2 (VI.16)

Dp(s,b) =
(

Dpb1
+ (Dpw2

+ Dpb2
)
)

/2 (VI.17)

Skew between a and b, and its variance can be expressed as

S(a,b) =
(

(Dpa1
+ Dpa2

) − (Dpb1
+ Dpb2

)
)

/2 (VI.18)

σ2
s(a,b) = (σ2

pa1
+ σ2

pa2
+ σ2

pb1
+ σ2

pb2
)/4

+ (σpa1
σpa2

ρ(pa1,pa2) + σpb1
σpb2

ρ(pb1,pb2))/2

−
2

∑

i=1

2
∑

j=1

(σpai
σpbj

ρ(pai,pbj))/2 (VI.19)
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Example III.2 Consider the clock tree in Figure 6.1a with σ2
pa

= σ2
pb

= 50 and ρ = 0.

Then from Formula VI.15, σ2
s(a,b) = 50 + 50 = 100. We assume the variation constraint to

be 15 ps with yield 95% (i.e., P[−15 < S(a,b) < 15] > 95%, Figure 6.3). However, with

σs(a,b) = 10, the probability is

P[−15 < S(a,b) < 15] = 86.64% (VI.20)

The current tree structure does not satisfy the given variation constraint. In this case, we

15ps-15ps

95%

Figure 6.3: Skew limit 15 ps with yield 95%.

can insert a new subtree and fuse it to the original tree to enhance robustness.

Example III.3 Consider adding a subtree with three paths (pw2, pa2, pb2) to Figure 6.1a

and build a fusion topology as in Figure 6.1b with σ2
pw2 = σ2

pa2
= σ2

pb2
= 25. From

Formula VI.19, σ2
s(a,b) reduces down to 37.5. Now the probability becomes

P[−15 < S(a,b) < 15] = 98.5% (VI.21)

which satisfies the given variation constraint.

6.1.3 Multiple redundant paths

We generalize the above analysis to clock networks with n > 1 redundant paths per

sink as illustrated in Figure 6.1c.

Dp(s,a) =
(

Dpa1
+

n
∑

i=2

(Dpwi
+ Dpai

)
)

/n (VI.22)
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Figure 6.4: The impact of redundant paths for a pair of critical sinks (Figure 6.1c) on

clock-network parameters, based on Formulas VI.25, VI.27 and VI.28. The

skew constraint and ρ are set to 10 ps and 0.1 respectively. (a) Standard devia-
tion. (b) Yield. (c) Relative total capacitance of each clock network compared

to the total capacitance of the clock tree without redundant paths (n = 1).

Dp(s,b) =
(

Dpb1
+

n
∑

i=2

(Dpwi
+ Dpbi

)
)

/n (VI.23)

S(a,b) =
(

n
∑

i=1

(Dpai
− Dpbi

)
)

/n (VI.24)

σ2
s(a,b) =

n
∑

i=1

(σ2
pai

+ σ2
pbi

)/n2

+2

n−1
∑

i=1

n
∑

j=i+1

(σpai
σpaj

ρ(pai,paj) + σpbi
σpbj

ρ(pbi,pbj))/n
2

−2
n

∑

i=1

n
∑

j=1

(σpai
σpbj

ρ(pai,pbj))/n
2 (VI.25)

In the case when σpai
= σpbi

= σ and all ρ values are equal,

σ2
s(a,b) = 2σ2(1 − ρ)/n (VI.26)

Just as in Formula VI.15, highly correlated path delays lead to small skew variance.

Example III.4 Figure 6.4 illustrates how n redundant paths for each sink (as in Figure
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6.1c) reduce σs(a,b) and increase yield (based on Formula VI.25). Here we assume

σ2
pai

= σ2
pbi

= 100 − 10(i− 1), 1 ≤ i ≤ 10 (VI.27)

cap(pai
) = cap(pbi

) = 100 − 10(i − 1), 1 ≤ i ≤ 10 (VI.28)

cap(pw1
) = 0, cap(pwi

) = 10, 2 ≤ i ≤ 10

where cap(p) represents the capacitance of the path p.

In practice, we select eligible sinks a and b (see Section 2.1) that maximize initial

σ2
s(a,b). Thus ρ(pa1,pb1) will be small, but, for additional redundant paths, ρ(pai,pbi) will be

greater, especially when a and b are located close to each other. These paths are added so

that ρ(pai,paj) and ρ(pbi,pbj) remain small. The same statistical analysis applies to process,

voltage and temperature (PVT) variations.

6.1.4 Skew of a clock network

Given a clock network Ψ and a skew limit x, let E be a set of eligible sink pairs of Ψ.

We define the following parameters (skew, nominal skew, mean skew and yield) for the

entire clock network:

skewΨ = max
(a,b)∈E

skew(a,b) (VI.29)

skewΨ = max
(a,b)∈E

skew(a,b) (VI.30)

skewΨ = E[ max
(a,b)∈E

skew(a,b)] (VI.31)

yieldΨ = P[ max
(a,b)∈E

skew(a,b) < x]

= P[−x < S(a,b) < x , ∀(a, b) ∈ E ] (VI.32)

124



Let σ be the standard deviation of the most critical sink pair inΨ (i.e., σ = max(a,b)∈E σs(a,b)).

If skewΨ ≫ σ, then skewΨ and yieldΨ are significantly affected by skewΨ (nominal skew

of a clock network). However, when skewΨ ≪ σ, the clock-network’s yield is closely re-

lated to the yields of critical sink pairs (see Section 6.2.1). Our methodology invokes nom-

inal skew optimizations to satisfy skewΨ ≪ σ (see Section 6.3). Therefore our proposed

methods in Sections 6.2 and 6.3 for enhancing robustness of critical sink pairs effectively

increase the yield of Ψ.

6.2 Multilevel tree fusion

Analysis in Section 6.1 suggests that one can reduce the impact of variation on clock

skew by driving critical sinks through multiple redundant paths. To generalize, we pro-

pose a novel family of clock-network structures, called fused multilevel trees, which main-

tains advantages of tree structures and incrementally enhances robustness to variation by

trading-off power and robustness.

6.2.1 Critical sink pairs

After performing initial-tree construction according to [53], we analyze the impact

of variation on skew between eligible sink pairs. Using models from Section 6.1.2, we

can determine the variance and standard deviation of skew between each sink pair and

detect critical sink pairs that are not robust enough with respect to given timing constraints.

Eligible sink pairs are often geometrically close (or placed within the local skew distance

limit in ISPD10 CNS benchmarks). However, they can be distant in the tree, i.e., the

shortest tree-path connecting them can traverse many tree edges. These sinks are included
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in the set of critical sink pairs after variational analysis because the impact of variations

accumulates on long paths, resulting in significant skew variance.

6.2.2 Construction of auxiliary trees and their fusion

Once we find all critical sink pairs, we cluster them based on their least common

ancestors (LCA) in the tree. The pairs that share LCA are clustered, and a set of sinks is

formed as the union of the sink pairs in the cluster. The LCA plays the role of the clock

source for a new auxiliary tree that connects to the sinks in a given set. Here we use the

same tree-construction algorithm that we used for initial tree construction.

The nominal delays of multiple redundant paths from the clock source to each critical

sink must be carefully synchronized in order to reduce nominal skew in the fused topology.

This process is discussed in detail in Section 6.3.2. Figure 6.5 illustrates detection of

critical sink pairs and the addition of auxiliary trees to enhance robustness.

a

least common 

ancestor

b a b

(a) (b)

Figure 6.5: (a) A critical sink pair is indicated by a red oval and the LCA of two sinks is

shown. (b) Corresponding subtree for the sink cluster in (a).

After auxiliary trees are constructed and fused, we analyze the impact of variation on

skew of eligible sink pairs again. Since there are multiple paths to some sinks, we uti-

lize variation modeling from Section 6.1.3. If some critical sinks remain, we construct

another round of auxiliary trees and fuse them into the main network to enhance robust-
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ness. This robustness evaluation and tree construction/fusion process is repeated until we

cannot find a critical sink pair anymore. The success of our iterative fusion process criti-

cally depends on the precision of delay synchronization of redundant paths by clock-tree

tuning. If implemented correctly, every fusion iteration significantly reduces the number

of critical sinks (Tables 6.4 and 6.5), but if path synchronization fails, this improvement

is not guaranteed. Figure 6.6 illustrates the proposed methodology including initial tree

construction, detection of critical sink pairs and multilevel tree fusion.

6.2.3 Advantages of the multilevel tree fusion topology

The new clock-network structure is a joint of several trees that provides multiple re-

dundant paths, helping to improve network robustness and satisfy skew constraints. Such

a clock network exhibits the redundancy and robustness of a mesh but is easier to analyze

and optimize. Our results in Section 6.4.2 shows that fusion topologies can be essentially

as robust as meshes, at a fraction of capacitance budget.

Multilevel tree fusion topology is technically not a tree structure because of intercon-

nect loops. However, those loops always close at the sink nodes, which makes it easy to

reduce not only the complexity of variational analysis but also nominal skew by various

tree-based skew optimization techniques. Section 6.3.2 outlines the use of tree optimiza-

tion techniques in this context.

6.3 Implementation insights

Figure 6.7 shows our methodology for multilevel tree fusion.
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Figure 6.6: Illustration of multilevel tree fusion on ispd10cns02. (a) Initial tree construc-

tion. (b) Critical sink pairs are connected by red lines. (c) Auxiliary trees are

fused in to enhance robustness.
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Figure 6.7: Key steps of multilevel tree fusion. Proposed techniques are indicated with

darker rounded boxes and a lozenge. Plain boxes represent techniques adapted

from earlier publications.

6.3.1 Estimating variation on a buffered path

After initial-tree construction [51, 53], we perform variational analysis based on the

methods in Section 6.1.2 and build fusion topology to enhance robustness. For pre-

cise variational analysis, it is important to estimate Gaussian random variables for each

buffered path. For accurate estimation of random variables, we build various test trees for

given technology node, buffer and wire library and variation environment. Then we per-

formMonte-Carlo simulations with variation and record the variance of each buffered path

in a look-up table. It is not necessary to record the mean of each random variable because

our experimental results show that E[X] is nearly zero for all cases. The table is accessed

by wirelength w and buffer count b to estimate the impact of variation on a buffered path

with wirelength w and b buffers. Finally, the table is used to produce a least-squares fit F.

For a buffered path p of length wp with bp buffers,

σ2
p = F(wp, bp) (VI.33)
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With a Gaussian estimate of path delay, we analyze the impact of variation on eligible sink

pairs and perform multilevel tree fusion as described in Section 6.2.

6.3.2 Splinter sinks

Since the initial and auxiliary trees are built using Elmore delay, they need to be tuned

using more accurate delay calculations. Therefore we reduce skew by a SPICE-driven

optimization process. Our novel clock-network structure is similar to traditional trees

except for loops that close at critical sinks. To leverage the efficiency of existing tree-

optimization techniques, we propose to split (clone) each critical sink and distribute its

input capacitance among the resulting splinter sinks, as illustrated in Figure 6.8. Once

splinter sinks are generated, there is no metal loop and our clock network becomes a tree,

amenable to existing tree-optimization techniques. A key challenge is to correctly model

nominal delays of multiple paths ending at the same sink, and then equalize them using

tree-tuning techniques.

a b a
1

a
2

b
1

b
2

(a) (b)

Figure 6.8: (a) Multiple paths from clock source to sinks a and b. (b) Splinter sinks are

generated to utilize tree optimization algorithms.

We adopted the slack computation and wiresnaking techniques described in [53] to

reduce nominal skew measured by SPICE simulations. During SPICE-driven skew opti-

mization, our goal is to make nominal skew as small as possible.

130



After nominal skew optimization, in the context of splinter sinks, the average nominal

skew drops below 4 ps on the ISPD 2010 CNS benchmarks. We merge splinter sinks

to recover the fusion topology structure, at which point sink latencies may change and

nominal skew may worsen. However, our experiments show that this deterioration can be

limited to 2 ps in the worst case.3 The average nominal skew of fusion topologies on the

ISPD 2010 CNS benchmarks is 2.55 ps.

6.4 Empirical validation: Contango 3.0

Our empirical evaluation of multilevel tree fusion focuses on total capacitance and

robustness to variations. We use ISPD 2010 CNS benchmarks but enhance their buffer

library and variation setup to perform more realistic experiments.

6.4.1 Experiment design

ISPD 2010 CNS benchmarks are based on microprocessor designs from IBM and Intel

and use a 45 nm technology library. Each benchmark is given a local-skew limit and local

skew distance bound. Result are evaluated by 500 Monte-Carlo simulations with a given

variation model, with respect to a given yield constraint. ISPD 2010 benchmarks suf-

fer from a recognized deficiency in the modeling of numerous parallel buffers (that may

or may not appear in the clock network), which underestimates electrical parasitics and

power overhead. Process variations are not spatially correlated, making parallel buffers

completely independent and underestimating the impact of process variations. These de-

ficiencies encourage unrealistic clock-network configurations. To this end, the best pub-

3It is important to note that the number of splinter sinks for a given sink may increase by at most one

during each fusion iteration. This significantly simplifies delay synchronization for redundant paths.
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lished results for the ISPD 2010 benchmarks [67] seem to require the stacking of numerous

inverters in a unique 10+40 configuration. The authors attribute the quality of results to a

new cross-link insertion technique, but do not report results without cross-link insertion to

substantiate this claim. Results in [53] report even smaller skews but greater capacitance,

but the authors also stack numerous (32) small inverters in parallel.

num. nominal total skew

par. buf. skew mean σ yield 95% cap.

(ps) (ps) (ps) (%) (ps) (fF )

8 2.082 5.81 1.18 92.4 7.75 26647

16 0.929 3.49 0.88 99.9 5.23 28093

24 1.843 3.16 0.80 99.9 4.70 32619

Table 6.1: Results of clock trees on ispd10cns05 with parallel buffering. Local skew limit

is 7.5 ps as in the ISPD 2010 benchmarks. The statistics of nominal skew, total

skew are reported based on Monte-Carlo simulations. For each tree, we report

its mean, standard deviation (σ), as well as yield for a given skew limit. ‘95%’

column represents the worst local skew for 95% yield.

Table 6.1 illustrates how one can reduce the impact of process variation by only using

excessive parallel buffers without any structural modification. It shows that competitive

results on the ISPD 2010 benchmarks can be easily achieved by stacking only 16 small

inverters in parallel.

We now propose a different experimental configuration to avoid major shortcomings

of the ISPD 2010 benchmarks. First, instead of the ISPD 2010 buffer library that exhibits

uniformly-distributed variation, we use a buffer type with Gaussian variation. Table 6.2

compares buffers used in the ISPD 2010 benchmarks and in this work.

By essentially clustering a reasonable number of small ISPD buffers into one large

buffer we deliberately avoid parallel buffer stacking to prevent unrealistic modeling of

constituent buffers as experiencing independent process variations. Unlike many previ-

ous publications, we limit our empirical validation to a single wire type to illustrate that
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buffer in out out distribut’n parallel

type cap cap res of proc. σ buffers

(fF ) (fF ) Ω variation (V ) allowed

ispd10b1 35 80 61.2 uniform 0.043 yes

ispd10b2 4.2 6.1 440 uniform 0.043 yes

our work 33.6 48.8 55 Gaussian 0.015 no

Table 6.2: Comparison of buffer types. ispd10b1 and ispd10b2 are two buffer types in

ISPD 2010 CNS benchmarks. The large buffer utilized in this work has Gaus-

sian variation and parallel buffering is not allowed. The buffer type in this work

is intended to represent a composite buffer made from 8 ispd10b2 buffers, but

in a way that would prevent modeling constituent buffers as experiencing inde-

pendent PVT variation.

proposed multilevel tree fusion can still produce high-quality clock networks. We also

note that spatially-correlated variation is only responsible for a fraction of total variation,

whereas random variation also makes a significant contribution. Thus, our experimental

setup is pessimistic and serves to show that our proposed technique can achieve strong

results even in adverse circumstances. Using one buffer type for clock-network synthesis

also restricts the flexibility to allocate driver strength throughout the clock network. We

use this limitation as a handicap in our experiments to highlight the strength of multilevel

tree fusion.

Figure 6.9a shows the impact of variations on a buffered path with our buffer type.

The path is buffered by four inverters. Monte-Carlo simulations based on the variation

model from the ISPD 2010 benchmarks are performed. The experiment validates our

variation modeling in Section 6.1, in which the delay of a buffered path is modeled by

a Gaussian variable. We perform the same experiment based on an industrial 45 nm

technology (Figure 6.9b). The 45 nm low-power process from STMicro is utilized for the

experiment. The result shows that the delay of a buffered path on an industrial technology

also can be modeled by a Gaussian variable.

133



(a) (b)

Figure 6.9: Impact of variations on a buffered path. The path is 2 mm long with 30 fF
load capacitance at the end and buffered by 4 inverters. (a) The 45 nm technol-

ogy, variation model from the ISPD 2010 benchmarks and a buffer type used

in our work are utilized. (b) The 45 nm low-power technology, buffer library

and variation model from STMicro are utilized.

6.4.2 Empirical results

Table 6.4 shows empirical results on the ispd10cns08 benchmark. We vary the local

skew limit for the benchmarks to evaluate the flexibility of our novel clock-network struc-

ture. Once again, we use only one Gaussian buffer type without parallel stacking. When

there is no local skew limit, the initial clock tree is left unchanged. To satisfy increasingly

difficult skew constraints, additional auxiliary trees are generated and fused to enhance ro-

bustness of clock networks. Total clock-network capacitance increases as local skew limit

decreases because the tree must become more robust. The statistics of variational skew are

also shown in the table. Since nominal skew varies for each fusion topology, variational

skew more correctly represents the impact of variations on skew. As shown in the table,

variational skew consistently decreases as the robustness of fusion topologies is improved.

The results show that the multilevel fusion topology exhibits sufficient flexibility to in-

crementally improve robustness based on variational analysis with given local skew limit.

Compared to traditional tree structures, clock-network capacitance is increased by 59.5%
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to satisfy the difficult skew constraints with 4.5 ps skew limit. The probability density

functions for skew of each clock network in Table 6.4 are illustrated in Figure 6.11.

total skew

method mean 95% cap. cap.

(ps) (ps) (fF ) Ratio

CNSRouter [105] 3.58 5.37 97421 2.30

[86] - 5.47 228243 5.38

our work 2.17 5.06 42414 1.00

Table 6.3: Comparison of results on ispd10cns08 to published data for meshes. Local

skew limit 6.0 ps is used to produce a clock network with better robustness than
meshes. Our clock network is more robust than meshes but also 2.30× greater

power efficient than CNSRouter [105].

Table 6.3 compares our clock network with those produced by CNSRouter [105] and

by techniques in [86]. Our clock network is more robust than meshes, and exhibits signif-

icantly smaller total capacitance.

skew nominal total skew variational skew

limit skew mean σ yield 95% mean σ 95% cap. �

(ps) (ps) (ps) (ps) (%) (ps) (ps) (ps) (ps) (fF ) (s)

- 1.713 5.471 1.116 - 7.563 5.380 1.107 7.405 32580.4 781.0

7.5 2.673 5.295 0.991 97.6 7.159 5.048 1.032 6.945 37279.4 1100.9

7.0 2.294 4.788 0.931 97.8 6.325 4.456 0.952 6.046 40393.7 1721.8

6.5 1.967 4.275 0.883 98.4 5.822 3.884 0.890 5.533 41641.6 1787.6

6.0 2.171 3.740 0.757 99.0 5.06 3.423 0.820 4.918 42414.1 2192.8

5.5 2.639 3.851 0.754 97.2 5.29 3.411 0.793 4.834 44053.4 2204.5

5.0 2.020 3.211 0.673 99.0 4.508 2.723 0.751 4.220 48440.9 1913.1

4.5 2.115 2.993 0.647 97.0 4.125 2.485 0.655 3.711 51955.5 3900.9

Table 6.4: Results on ispd10cns08 with different local skew limits. The statistics of nom-

inal skew, total skew and variational skew are reported based on Monte-Carlo

simulations. For each tree, we report its mean, standard deviation (σ), as well
as yield for a given skew limit. the worst local skew when yield is 95%. All the

results satisfy slew constraints.

The reported nominal skews in Table 6.4 confirm that our strategy of utilizing tree-

optimization techniques by generating splinter sinks is effective in reducing nominal skews

of fused clock networks. To more explicitly validate our splinter-sink technique, Fig-

ure 6.10 illustrates SPICE waveforms at a reconvergent sink and its splinter sinks. The

worst-case reconvergent sink (Sink 680) in the clock network with skew limit 4.5 ps on
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skew nominal total skew variational skew

limit skew mean σ yield 95% mean σ 95% cap. �

(ps) (ps) (ps) (ps) (%) (ps) (ps) (ps) (ps) (fF ) (s)

- 0.980 16.47 2.619 - 22.086 16.46 2.595 21.88 37704.8 293.1

22 2.333 15.32 3.137 98.0 21.08 15.21 3.035 20.83 44093.6 339.6

20 4.081 14.39 2.545 97.4 19.03 14.14 2.619 19.09 46373.9 328.6

18 1.845 12.07 2.446 98.8 16.89 11.90 2.569 17.01 48153.0 469.9

16 3.317 10.84 2.068 99.2 14.07 10.62 2.093 14.15 49918.3 509.3

14 2.412 9.359 2.068 98.4 12.72 9.103 2.201 12.82 56374.6 746.6

Table 6.5: Results on ispd10cns08 with the buffer type ispd10b1 in Table 6.2 without par-

allel buffering. The statistics of nominal skew, total skew and variational skew

are reported based on Monte-Carlo simulations. Mean, standard deviation (σ)
and yield for given local skew limit are reported for each tree. ‘95%’ column

represents the worst local skew when yield is 95%. All the results satisfy slew

constraints.
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Figure 6.10: SPICE waveforms for a reconvergent sink (Sink 680) with largest temporal

displacement of split sinks in a fused clock network with skew limit 4.5 ps on
ispd10cns08. Among the four splinter sinks, the maximum rising-delay dis-

placement before merging is 5.31 ps. The maximum rising-delay is 423.58

ps and the minimum rising-delay is 418.27 ps. The delay of the sink after

merging is measure as 423.22 ps. The gray dashed lines represent the wave-

forms at splinter sinks before merging. The blue solid lines represent the

waveforms at the sink after merging. (a) rising edge. (b) falling edge.

ispd10cns08 is shown. Since there are four different paths from the clock source to this

sink, four splinter sinks are generated before optimizing nominal skew. After nominal-

skew optimization with tree-optimization techniques, the maximum rising-delay differ-

ence between splinter sinks is measured as 5.31 ps. However, after merging splinter sinks,

the waveform of the sink is close to the average of the waveforms of splinter sinks before

merging. This reinforces our modeling of delay and variation based on Formula VI.4. Ta-

136



rising edge falling edge

skew max avg max avg max avg max avg

limit dSS dSS err. err. dSS dSS err. err.

(ps) (ps) (ps) (ps) (ps) (ps) (ps) (ps) (ps)

7.5 1.50 0.42 0.89 0.31 1.65 0.52 0.98 0.34

7.0 0.90 0.22 1.15 0.40 1.73 0.52 1.08 0.45

6.5 1.02 0.25 0.93 0.30 1.64 0.47 1.77 0.45

6.0 0.89 0.36 0.95 0.34 1.04 0.24 0.86 0.30

5.5 1.99 0.21 1.16 0.29 1.53 0.53 0.97 0.26

5.0 2.40 0.33 0.91 0.29 2.17 0.67 0.85 0.26

4.5 5.31 1.07 3.60 0.31 6.75 0.38 4.30 0.31

Table 6.6: Delay analysis of splinter sinks before/after merging on ispd10cns08. dSS rep-

resents displacement of splinter-sink delay before merging. err. represents dif-

ference between average splinter-sink delay (before merging) and actual delay

(after merging).

ble 6.6 shows the overall delay analysis of splinter sinks before and after merging. Since

we utilize SPICE-driven tree-optimization techniques for nominal skew reduction under

the splinter-sink condition, the average displacement in delay of splinter sinks is small.

Also the error between the actual delay after merging and the average delay of splinter

sinks is small due to our input-capacitance distribution during splinter-sink generation.

This analysis shows that nominal skew optimization with the splinter-sink technique is

reliable and efficient for fusion topologies.

In Table 6.5, we present our experimental results on ispd10cns08with more pessimistic

modeling of process variations. In this experiment, the buffer type ispd10b1 in Table 6.2

is utilized without parallel stacking. The purpose of this experiment is to verify how

robust fusion topology is when the impact of variation is more significant than normal

condition. Given that buffer delays are particularly affected by variation, the skew induced

by variation is significant in the tree structure. However the results show that we can

decidedly reduce the impact of variation by constructing additional auxiliary trees and
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fusing them into the main network.

(a) No skew limit (b) 7.5 ps (c) 7.0 ps (d) 6.5 ps

(e) 6.0 ps (f) 5.5 ps (g) 5.0 ps (h) 4.5 ps

Figure 6.11: Skew distributions in our clock networks for ispd10cns08, calculated using

500 independent SPICE runs with variations (Table 6.4). The x-axis shows
skew in ps, skew limits are shown with red solid lines, and the 95%-ile of

skew are shown by dotted green lines.

6.5 Summary

Clock network topologies described in the literature fall into several categories: (i)

trees, (ii) meshes, (iii) trees with incrementally added cross-links, (iv) combinations of

trees and meshes. The gap between tree-like and mesh-like topologies remains signifi-

cant, and cross-links have not been convincingly shown to improve upon pure trees, due

to known shortcomings of adding one cross-link at a time. In this chapter we propose,

develop and empirically evaluate a fundamentally new family of clock-network topolo-

gies derived from trees by adding auxiliary trees and iteratively fusing them into the main

network. Each fusion iteration balances a large subset of skew-critical clock sinks, but as

auxiliary trees are much smaller than the initial tree, the added capacitance is also small.
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The accuracy of fusion iterations rests on the variational skew analysis techniques we pro-

posed. The final clock-network topology averages out source-to-sink delay and cancels

out some of the correlations induced by process, voltage and temperature (PVT) variations.

Empirical evaluation shows strong results even with exceptionally pessimistic modeling of

process variations, a single wire width and a single allowed buffer configuration without

parallel stacking.
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CHAPTER VII

Conclusions and Future Work

Synthesis of high-quality clock networks in modern synchronous VLSI designs is

growing in importance as it significantly affects power-performance trade-offs. Due to

semiconductor scaling, the impact of process, voltage and temperature (PVT) variation

complicates the design of reliable clock networks. Therefore, multi-objective optimiza-

tions with difficult constraints are often required to produce reliable and power-efficient

clock networks. We observe that published clock-network synthesis techniques often ig-

nore intradie-process variation and overlook possible synergies with global placement.

Given a clear dichotomy between trees and meshes in clock-network design, clock-network

structures that can incrementally improve robustness based on given constraints are miss-

ing in prior work. Such a limited view of clock-network optimization leaves room for

improvement. In this dissertation, we have investigated new objectives, constraints and

concerns in clock-network synthesis, and developed new optimization techniques to ad-

dress them. We propose optimization algorithms for SoC and microprocessor clock trees,

register placement and novel fused multilevel trees. Below we summarize our contribu-

tions and discuss directions for future research.
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7.1 Summary of contributions

We have found that a significant source of suboptimality in both academic and industry

clock-network synthesis tools today is the fact that they are limited by inaccurate timing

analysis, traditional physical-design flows and clock-network structures optimized for ob-

jectives that are not fully relevant. In this dissertation, we make several contributions that

advance the strength and capabilities of clock-network synthesis tools for large-scale 45

nm designs, with the ultimate goal to improve the quality of leading-edge semiconductor

products. Our major contributions are summarized below:

SPICE-accurate SoC clock network synthesis.

Most published algorithms and techniques establish fundamental methodologies for

clock network synthesis, but perform large-scale optimization using analytical models

that lose accuracy at recent technology nodes, and are not always validated by realistic

SPICE simulations on large industry designs. In Chapter III we propose a methodology

for SPICE-accurate optimization of clock networks, coordinated to satisfy slew constraints

and achieve best trade-offs between skew, insertion delay, power, as well as tolerance to

variations [51, 52]. Our implementation, called Contango, is evaluated on 45 nm bench-

marks from IBM Research and Texas Instruments with up to 50K sinks. Contango shared

the first place at the ISPD 2009 Clock-Network Synthesis Contest with two other teams.

Improved experimental results after the contest show that our methodology outperforms

all published results in terms of skew and shows superior scalability.
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Optimization of clock trees for microprocessors.

Clock networks account for a significant fraction of system power dissipation while

limiting CPU performance. Therefore, power-performance-cost trade-offs are becoming

a major issue in modern high-performance CPU clock design. On the other hand, the in-

creasing impact of process variation makes clock network synthesis particularly challeng-

ing. Mesh structures are often utilized to improve robustness to variations, but significant

additional power consumption is unavoidable. In Chapter IV we propose a tree solution

for CPU clock routing that improves power consumption under tight skew constraints in

the presence of variations [53]. Our key contributions include a new time-budgeting step

for clock-tree tuning, accurate optimizations that satisfy budgets, modeling and optimiza-

tion of variational skew. Our software implementation, Contango 2.0, won the first place

at the ISPD 2010 Clock-Network Synthesis Contest. We have shown that clock trees can

be tuned to have nominal skew below 5 ps and total skew in single picoseconds in the

presence of variations. Our optimizations not only satisfy given skew constraints and tar-

get yield but also lead to 4.22× capacitance improvement on average over mesh structures

proposed at the ISPD 2010 contest, with better yield. The comparison with a commercial

clock-tree synthesis tool shows that our nominal-skew optimization techniques are more

precise and reliable than an industrial tool when a given skew constraint is difficult to

satisfy. Our strong empirical results suggest that clock trees constructed using accurate

variational skew modeling and optimizations have distinct advantage in power consump-

tion and competitive robustness.
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Clock network optimization during placement.

Most of the existing literature on clock network synthesis assumes that register lo-

cations are given and cannot be changed. While clock networks can be improved by

finding better register locations during placement, few publications develop such opti-

mizations, hence the quality of resulting clock networks is limited by un-optimized loca-

tions of the clocked elements. In Chapter V, we propose new techniques and a method-

ology to optimize total dynamic power during placement for large IC designs with macro

blocks [55, 56]. To this end, we advocate obstacle-aware virtual clock-tree synthesis, an

arboreal clock-net contraction force with virtual nodes that can handle gated clocks, and

an obstacle-avoidance force for clock edges. Our methodology is integrated into the state-

of-the-art SimPL placer [47], and the total switching power is measured by utilizing Con-

tango 2.0 [53]. A new set of 45 nm benchmarks is proposed to better represent modern IC

designs. Experimental results indicate that our software implementation, Lopper, prunes

clock-tree branches to reduce their length by 30.0%∼36.6% and average total dynamic

power consumption by 6.8%∼11.6% versus conventional wirelength-driven approaches.

SPICE-driven simulations show that our methods improve robustness of clock trees.

Closing the gap between tree and mesh structures.

Commonly used structures for clock networks can be categorized into two major types:

trees and meshes. While tree structures were popular for clock network synthesis in older

chips, mesh structures were utilized to satisfy tight variation-related constraints in high-

performance microprocessor designs where performance is emphasized over power con-

sumption. However, implementation of mesh-type clock networks requires a substantial
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amount of total wire/buffer capacitance, which leads to a significant increase in total power

dissipation of the design. In Chapter VI, we propose, develop and empirically evaluate

a fundamentally new family of clock-network topologies derived from trees by adding

auxiliary trees and iteratively fusing them into the main network [54]. Specific innova-

tions include: (i) Statistical models for delay and skew in buffered clock networks. (ii) A

technique to identify critical sink pairs based on robustness analysis. (iii) A novel clock-

network structure (fused multilevel trees) based on auxiliary-tree construction and fusing

to enhance robustness. (iv) A sink-splitting technique for fusion topologies to leverage

the efficiency of tree optimization algorithms. (v) An experimental configuration with

monolithic wires that remedies known deficiencies in ISPD 2010 benchmarks. Each fu-

sion iteration balances a large subset of skew-critical clock sinks, but as auxiliary trees

are much smaller than the initial tree, the added capacitance is also small. The accuracy

of fusion iterations rests on the variational skew analysis techniques we proposed. The

final clock-network topology averages out source-to-sink delay and cancels out some of

the correlations induced by process, voltage and temperature (PVT) variations. Our imple-

mentation called Contango3.0 produces robust clock networks even for challenging skew

limits, without parallel buffering used by other implementations. It also offers a fine trade-

off between power and robustness, increasing the capacitance of the initial tree by less

than 60%, which results in 2.3× greater power efficiency than mesh structures.

7.2 Directions for future research

The results developed during the course of our research suggest several directions for

future exploration. In Chapter VI, we propose a novel non-tree topology that fuses several
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auxiliary clock trees at sink nodes to create redundant paths from a clock source to sinks.

In this context, recall that high-quality register placement proposed in Chapter V tends

to locally cluster registers to reduce leaf-level clock-net wirelength. When clock sinks

are locally clustered, tree fusion at internal nodes may produce better clock networks in

terms of power-performance trade-off. However, several difficult problems that are not

explored in the existing literature need to be resolved to make this technique practical.

First, for tree fusion at sink nodes, target latencies for leaf nodes of an auxiliary tree

are uniform, therefore traditional clock-tree generation algorithms can be directly utilized

without significant modifications. However, target latencies of internal nodes vary even

for the nodes at same tree-level, hence auxiliary-tree generation algorithms must consider

the uneven target delays of leaf nodes. DME-based tree-generation algorithms can be

extended to address this problem but prior work has not addressed this problemwith proper

analysis tools. Second, the novel non-tree topology has metal loops only at sink nodes.

In Chapter VI, we present the splinter-sink technique that duplicates reconvergent sinks

and disconnect metal loops. This technique temporarily transforms a non-tree topology

to a tree topology, then various tree-based nominal-skew optimization techniques can be

adapted to reduce skew of a non-tree structure. However, since the splinter-sink technique

cannot be applied to internal nodes, delay synchronization of redundant paths to an internal

node is significantly more difficult compared to the case in which we can use the splinter-

sink technique. Resolving these problems in future work is not going to be easy, but could

help improve robustness of clock networks with superior power-performance trade-off.

Large-scale chip designmay soon have hundreds of millions of standard cells including
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millions of registers. Hierarchical clock-network synthesis is suggested for these large-

scale designs mainly in order to reduce turn-around-time of design flows. We believe

that our clock-network synthesis flows in Chapter III, IV and VI can be extended for

hierarchical clock-network synthesis by applying our flow to disjoint clusters at different

levels. Especially when different parts of a design have different constraints (i.e., some

parts of a chip are designed for high performance, and other parts are designed for low

power), our tree-fusion clock-network-synthesis flow in Chapter VI are powerful enough

to generate optimal clock networks for this kind of designs. Consider a two-level clock

network, with the top level driving two disjoint clusters of the bottom level. One cluster

of the bottom level may consists of registers for high-performance logics and the other

cluster has registers for low-power logics. We can utilize the tree-fusion flow with skew-

emphasized constraints for the top-level and high-performance clock networks to generate

more redundant paths, and power-emphasized constraints for the low-power clock network

to build a compact clock network. We expect the results of hierarchical clock-network

synthesis utilizing our flexible non-tree topology to show superior quality.

Design methodologies for TSV-based 3D-ICs are currently pursued by many develop-

ers of EDA software tools. Techniques proposed in this dissertation lend themselves nat-

urally to such extensions. In particular, skew optimization techniques in Chapter III and

IV are not limited by TSVs if clock networks of 3D-ICs maintain tree structures. Arboreal

clock-net contraction force in Chapter V can be utilized for clock networks of 3D-ICs if

a TSV-aware virtual clock-tree generation algorithm is adapted. In this case, TSVs will

be represented by virtual nodes during placement and the optimal locations of TSVs for
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minimizing switching power can be hinted by placement results. The non-tree topology in

Chapter VI can be utilized for 3D-ICs to improve robustness if the characteristics and cost

of TSV is properly considered during variation analysis and auxiliary-tree generation.
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