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Abstract. The past few years have seen significant progress in algo-
rithms and heuristics for both SAT and symmetry detection. Addition-
ally, the thesis that some of SAT’s intractability can be explained by
the presence of symmetry, and that it can be addressed by the intro-
duction of symmetry-breaking constraints, was tested, albeit only to a
rather limited extent. In this paper we explore further connections be-
tween symmetry and satisfiability and demonstrate the existence of in-
tractable SAT instances that exhibit few or no symmetries. Specifically,
we describe a highly scalable symmetry detection algorithm based on a
decision tree that combines elements of group-theoretic computation and
SAT-inspired backtracking search, and provide results of its application
on the SAT 2009 competition benchmarks. For SAT instances with sig-
nificant symmetry we also compare SAT runtimes with and without the
addition of symmetry-breaking constraints.

1 Introduction

Over the past several years a fruitful interplay developed between the algorithms
for graph automorphism and those of CNF satisfiability. The initial trigger was
the black-box use of the nauty graph automorphism and canonical labeling pack-
age [12, 11] to detect the symmetries in CNF formulas. This was accomplished
by encoding a CNF formula as a colored graph [5, 6, 3] that was processed by
nauty to produce an irredundant set of generators for the graph’s automorphism
group, and hence the formula’s symmetries. These symmetries were subsequently
used to augment the original formula with symmetry-breaking predicates that
preclude a SAT solver from redundant search in symmetric portions of the solu-
tion space. It quickly became apparent, however, that the graphs of typical CNF
formulas were too large (hundreds of thousands to millions of vertices) and un-
wieldy for nauty which was more geared towards small dense graphs (hundreds
of vertices). The obvious remedy, changing the data structure for storing graphs
from an incidence matrix to a linked list, yielded the saucy system which demon-
strated the viability of graph automorphism detection on very large sparse graphs
[7]. Unlike nauty, which also solved the canonical labeling problem, saucy was
limited to just finding an irredundant set of symmetry generators. Canonical
labeling seeks to assign a unique signature to a graph that captures its structure
and is invariant under all possible labelings of its vertices. The bliss tool [10]
adopted, and improved upon, saucy’s sparse data structures and solved both
the symmetry detection and canonical labeling problems for both small dense
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and large sparse graphs. Close analysis of the search trees used in nauty and
bliss revealed that they were primarily designed to solve the canonical labeling
problem, and that symmetry generators were detected “along the way.” Both
tools employed sophisticated group-theoretic pruning heuristics to narrow the
search for the canonical labeling of an input graph. The detection of symmetries
benefited from these pruning rules, but also helped prune the “canonical label-
ing” tree since labelings that are related by a symmetry (i.e., a permutation of
graph vertices that preserve the graph’s edge relation) yield the same signature.

The next version of the saucy tool [8] introduced a major algorithmic change
that delinked the search for symmetries from the search for a canonical labeling.
This yielded a remarkable 1000-fold improvement in run time for many large
sparse graphs with sparse symmetry generators, i.e., generators that “move”
only a tiny fraction of the graph’s vertices. This change also made the search
for symmetries resemble, at least superficially, the search for satisfying assign-
ments by a SAT solver. In this paper we further explore the connection between
symmetry detection and satisfiability to better understand and improve sym-
metry detection algorithms. We present the saucy 2.1 algorithm and highlight
its key feature, namely the organization of its search for symmetries along lines
similar to those of CNF satisfiability. We also present and analyze the results of
applying saucy 2.1 on the entire suite of SAT 2009 competition benchmarks. Fi-
nally, we examine the effect of static symmetry breaking on the most challenging
benchmarks in this suite.

2 Preliminaries

We assume familiarity with basic notions from group theory, including such
concepts as subgroups, cosets, group generators, group action, orbit partition,
etc. Most of these concepts can be found in standard textbooks on abstract al-
gebra, e.g. [9]. We will mainly focus on the automorphism group of a colored
graph, i.e., the group of vertex permutations that preserve the graph’s edge rela-
tion. We assume an n-vertex graph whose vertices are labeled with the integers
{0, 1, · · · , n − 1}. For the rest of the paper, we will use V to denote this set.
Permutations of V are bijections from V to V and are combined by functional
composition. We will use γ and η to refer to permutations and employ both tabu-
lar and cycle notation to express them. The identity permutation will be denoted
as ι. When clear from context γη will mean γ◦η where ◦ denotes functional com-
position. Finally, we will denote the symmetric group on the m-element set T as
Sm(T ). The order of Sm(T ) is m!.

An ordered partition π = [W1|W2| · · · |Wm] of V is an ordered list of non-
empty pair-wise disjoint subsets of V whose union is V . The subsets Wi are
referred to as cells of the partition. Ordered partition π is unit if m = 1 (i.e.,
W1 = V ) and discrete if m = n (i.e., |Wi| = 1 for i = 1, · · · , n). An ordered
partition pair Π is specified as

Π =
[
πT

πB

]
=
[
T1 |T2 |· · · |Tm

B1 |B2 |· · · |Bk

]
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with πT and πB referred to, respectively, as the top and bottom ordered parti-
tions of Π. An ordered partition pair (OPP for short) Π is isomorphic if m = k
and |Ti| = |Bi| for i = 1, · · · ,m; otherwise it is non-isomorphic. In other words,
an OPP is isomorphic if its top and bottom partitions have the same number
of cells, and corresponding cells have the same cardinality. An isomorphic OPP
is matching if its corresponding non-singleton cells are identical. We will refer
to an OPP as discrete (resp. unit) if its top and bottom partitions are discrete
(resp. unit).

3 Implicit Representation of Permutation Sets

OPPs play a central role in the saucy symmetry detection algorithm we describe
in this paper since they provide a compact implicit representation of sets of per-
mutations. Specifically, a discrete OPP represents a single permutation, whereas
a unit OPP represents all n! permutations of V . In general, an isomorphic OPP

Π =
[
T1

B1

∣∣∣∣ T2

B2

∣∣∣∣ · · ·· · ·
∣∣∣∣ Tm

Bm

]
(1)

represents
∏

1≤i≤n |Ti|! permutations. On the other hand, note that it is not
possible to obtain well-defined mappings between the top and bottom partitions
of a non-isomorphic OPP. Thus, non-isomorphic OPPs conveniently serve as
empty sets of permutations.

Example 1. Here are several example OPPs and the permutation sets they en-
code.

– Discrete OPP:
[

2
1

∣∣∣∣ 0
2

∣∣∣∣ 1
0

]
= {(0 2 1)}

– Unit OPP:
[

0, 1, 2
0, 1, 2

]
= {ι, (0 1) , (0 2) , (1 2) , (0 1 2) , (0 2 1)}

– Isomorphic OPP:
[

2
1

∣∣∣∣ 0, 1
2, 0

]
= {(1 2) , (0 2 1)}

– Matching OPP:
[

1
3

∣∣∣∣ 0, 2, 4
0, 2, 4

∣∣∣∣ 3
1

]
= (1 3) ◦ S3 ({0, 2, 4})

– Non-isomorphic OPPs:
[

0, 2| 1
1| 2, 0

]
= ∅,

[
2| 0| 1
1| 2, 0

]
= ∅

4 Basic Enumeration of the Permutation Search Space

OPPs play a role similar to partial variable assignments in CNF-SAT solvers.
Recall that a partial variable assignment on n Boolean variables can be encoded
by an n-element array whose ith element indicates the value of the ith variable:
0, 1, or X for unassigned. A complete assignment is one in which all variables
have been assigned a binary value; otherwise the assignment is partial and corre-
sponds to a set of complete assignments that can be enumerated by considering
all possible 0, 1 combinations of the unassigned variables. A backtracking SAT
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solver extends a given partial assignment by choosing an unassigned variable and
assigning to it one of the two binary values. This is referred to as a decision step
and SAT solvers use a variety of decision heuristics to determine which variable
to assign next and what value to assign to it. SAT solvers also employ propaga-
tion to avoid making decisions on variables whose values are implied (forced) by
prior decisions. Finally, SAT solvers backtrack from “conflicts”, i.e. assignments
that cause the formula being checked to become unsatisfied.

As described earlier, a non-discrete OPP can be viewed as a representation
of a set of permutations. The basic skeleton of a permutation enumeration algo-
rithm can thus be patterned after a backtracking SAT algorithm that finds all
satisfying assignments to a given CNF formula. An OPP is extended by:

– choosing a non-singleton cell (the target cell) from the top partition,
– choosing a vertex from the target cell (the target vertex), and
– mapping the target vertex to a vertex from the corresponding cell of the

bottom partition.

The mapping step is accomplished by splitting the target cell so that the target
vertex is in a cell of its own. The corresponding cell of the bottom partition is
split similarly, placing the vertex to which the target vertex is mapped in a new
singleton cell. Symbolically, given the isomorphic OPP in (1) assume that the
ith cell is the target cell and let j ∈ Ti be the target vertex. Mapping j to k ∈ Bi

refines the m-cell OPP Π to the following (m+ 1)-cell OPP Π ′:

Π ′ =
[
T ′1
B′1

∣∣∣∣ T ′2B′2
∣∣∣∣ · · ·· · ·

∣∣∣∣ T ′iB′i
∣∣∣∣ T ′i+1

B′i+1

∣∣∣∣ · · ·· · ·
∣∣∣∣ T ′m+1

B′m+1

]
where

T ′l = Tl B′l = Bl l = 1, · · · , i− 1
T ′i = Ti − {j} B′i = Bi − {k}
T ′i+1 = {j} B′i+1 = {k}
T ′l = Tl−1 B′l = Bl−1 l = i+ 2, · · · ,m+ 1

To illustrate, consider the search tree in Figure 1(a) which enumerates all
permutations of V = {0, 1, 2} and checks which are valid symmetries of the indi-
cated 3-vertex 2-edge graph. Each node of the search tree corresponds to an OPP
which is the root of a subtree obtained by mapping a target vertex in all possible
ways. For example, the unit OPP at the root of the search tree is extended into a
3-way branch by mapping target vertex 1 to 0, 1, and 2. It is important to point
out that the choice of target vertex at each tree node and the order in which each
of its possible mappings are processed does not affect the final set of permuta-
tions produced at the leaves of the search tree. It does, however, alter the order
in which these permutations are produced. Note that valid automorphisms can
be viewed as satisfying assignments whereas invalid ones are analogous to SAT
conflicts. The permutation search tree can be pruned significantly by performing
partition refinement [1, 7, 12] before selecting and branching on a target vertex.
This is analogous to Boolean constraint propagation in the SAT space and is
standard in all algorithms for graph automorphism and canonical labeling. In
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Fig. 1. Search trees for the automorphisms of a 3-vertex “line” graph. The target vertex
(“decision variable”) at each tree node is highlighted. (a) without partition refinement.
(b) with partition refinement.

the present context, partition refinement is applied simultaneously to the top
and bottom partitions of the current OPP. This is illustrated in Figure 1(b)
where vertex 2 is split from vertices 0 and 1 because it has a different degree.

As in SAT search, partition refinement is invoked after each decision assign-
ment to determine the consequences of that decision. In some cases, this allows
for the early detection of conflicts, i.e., concluding that the subtree rooted at the
current tree node does not contain valid permutations. To illustrate, consider
the 7-vertex graph in Figure 2 and assume that the decision to map vertex 0 to
vertex 4 has just been made. This decision triggers partition refinement which
causes the top and bottom partitions of the OPP to refine non-isomorphically
proving that there are no automorphisms of this graph that map vertex 0 to
vertex 4.

5 Group-Theoretic Pruning

There are two primary pruning mechanisms anchored in group theory: coset
pruning and orbit pruning. Both are routinely employed by symmetry detection
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Fig. 2. Example of non-isomorphic refinement. Attempting to map vertex 0 to vertex
4 causes the top and bottom partitions to split non-isomorphically into 4 and 3 cells,
respectively.

and canonical labeling algorithms. The choice of OPPs to encode permutation
sets introduces further opportunities to prune the search space as we show later
in this section. To understand how coset and orbit pruning are employed in the
search for a set of irredundant group generators requires the introduction of a
few more group-theoretic concepts.

Let G be the automorphism group of our graph. The action of G on the
graph vertices V is a map ∗ : G × V → V such that a) ιi = i for all i ∈ V ,
and b) (γη)(i) = γ(ηi) for all i ∈ V and all γ, η ∈ G. This group action induces
an equivalence relation ∼ on the vertex set such that i ∼ j if and only if there
exists γ ∈ G with γi = j. The resulting equivalence partition is referred to as
the orbit partition and will be denoted by _

π. The orbit of i ∈ V under G is the
cell in _

π that contains i and is conventionally written as Gi.
Let Gi denote the subgroup of G that “fixes” i, i.e., Gi = {γ ∈ G|γi = i}.

This is referred to as the stabilizer subgroup of i. The (left) coset of Gi in G
containing η is defined as the set {ηγ|γ ∈ Gi}. Note how this definition implies
that any coset element can generate the entire coset by composing that element
with the elements of Gi. The set of (left) cosets of Gi partitions G into equal-sized
subsets. Now assume that Z is a set of irredundant generators for Gi. A set of
generators for the parent group G can be obtained by augmenting Z with a single
representative from each coset of Gi. This set may, however, contain redundant
generators that must be eliminated with the aid of the orbit partition.

To place these pruning mechanisms in the context of the permutation search
tree, consider a tree node that represents a group G and assume that the subtree
under G is expanded by mapping vertex i to vertices i, i1, i2, · · · , ik in that order
(see Figure 3). As above, the permutation subset corresponding to mapping i to
itself is Gi, the stabilizer subgroup of i. The other subsets will be denoted by
Hi7→ij

and correspond to those permutations that, among other things, map i
to ij . To find a set of irredundant generators for G we must now “solve” up to
k independent problems where problem ij seeks to determine whether the set of
permutations Hi 7→ij

is a coset of Gi. This is accomplished by searching Hi 7→ij
for

a single permutation that “satisfies” the graph edge relation, i.e., a permutation
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Fig. 3. Structure of the permutation search tree.

that is an automorphism of the graph. If no such permutation exists, then Hi 7→ij

is “unsatisfiable”, i.e., it is not a coset of Gi. This problem is remarkably similar,
structurally, to the problem of finding a satisfying assignment to a CNF formula
or proving that no such assignment exists.

Let permutation ηi 7→ij
denote the “solution” to problem ij . Clearly, ηi 7→ij

serves as a coset representative for Hi 7→ij and can be added to the set of genera-
tors for G. Additionally, vertices i and ij must now be in the same orbit. Thus,
if the orbit of ij contains vertex il with l > j, then problem il can be skipped
since its corresponding coset must necessarily contain redundant generators.

A key pruning mechanism that is enabled by the OPP encoding of permu-
tation sets is the quick discovery of candidate coset representatives. This occurs
when the OPP at a given tree node is matching. For example, the matching OPP[

1
3

∣∣∣∣ 0, 2
0, 2

∣∣∣∣ 4, 6, 7
4, 6, 7

∣∣∣∣ 3
5

∣∣∣∣ 5
1

]

encodes the permutation set:

(1 3 5) ◦ S2 ({0, 2}) ◦ S3 ({4, 6, 7})

which clearly include the permutation (1 3 5). If this permutation is found to be
a symmetry of the graph, we can terminate the search in this coset and return
this permutation as the coset representative. Significantly, if this permutation is
found not to be a symmetry of the graph, then we can also terminate the search
in this subtree since all other permutations in this subset are composed with
this permutation! For large graphs, this pruning mechanism leads to a drastic
reduction in the size of the search tree and a commensurate reduction in run
time.

Finally, it is interesting to note that in addition to finding a set of irredundant
generators for G, symmetry detection algorithms can also compute the order of
G using the orbit-stabilizer and Lagrange theorems [9]: |G| = |Gi| · |Gi|.
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6 The Algorithm

The symmetry detection algorithm is basically a depth-first traversal of the
permutation search tree. To enable coset and orbit pruning, the left-most tree
path must correspond to a sequence of subgroup stabilizers ending in the identity
(a so-called subgroup decomposition). In other words, “decisions” along this path
must map each selected target vertex to itself. This requirement does not apply to
decisions in other parts of the tree. The tree is pruned by systematic application
of the four pruning rules elaborated earlier, namely:

– Coset pruning which terminates the search in a coset subtree as soon as a
coset representative is found.

– Orbit pruning which avoids searching the subtree of coset Hi7→j if j is
already in the orbit of i.

– Matching OPP pruning which can identify a candidate permutation at a
tree node without the need to explore the subtree rooted at that node.

– Non-isomorphic OPP pruning which indicates that there are no per-
mutations in the subtree rooted at that node which are symmetries of the
graph.

It is important to note that coset and orbit pruning are, in some sense, intrin-
sic and can (should?) be viewed as part of the “specification” of the automor-
phism problem. In other words, any graph automorphism algorithm must return
a set of irredundant generators, and thus, must employ coset and orbit prun-
ing. The two other pruning rules, based on the OPP encoding of permutation
sets, represent algorithmic enhancements that assist in eliminating unnecessary
search.

This algorithm has been implemented in the saucy 2.1 symmetry detection
tool. A trace of the algorithm illustrating all four pruning mechanisms is shown
in Figure 4.

7 Experimental Evaluation

We ran symmetry detection using saucy 2.1 on the complete set of 1183 SAT
2009 competition benchmarks and checked satisfiability with symmetry-breaking
on the 47 most difficult ones (see below). Experiments were conducted on a
SUN workstation equipped with a 3GHz Intel Dual-Core CPU, a 6MB cache
and an 8GB RAM, running the 64-bit version of Redhat Linux. The run time
results are shown in Figure 5. With a time-out of 500 seconds, saucy fin-
ished on all but 18 benchmarks from the crafted category belonging to three
families: connum (6 instances), equilarge (3 instances), and mod2-rand3bip (9
instances). By varying the branching heuristics, saucy was able to quickly
solve the six connum instances (in less than 5 seconds each) but still failed
to process the remaining twelve even with a much larger time-out limit. In
general, instances from the crafted category were more challenging for saucy
than similarly-sized instances from the random or application suites. The largest
benchmark post-cbmc-zfcp-2.8-u2-noholes, an application instance with about
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G0

G
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Pruning Rules Legend:

Coset pruning

Orbit pruning

Matching OPP pruning

Non-isomorphic OPP pruning

Initialization:
_
π = {0| 1| 2| 3| 4| 5| 6}, Z = ∅.

1. Fix vertex 0 and refine
2. Fix vertex 1
3. Fix vertex 4
4. Fix vertex 5; G5 = {ι}
5. Search for representative of coset H5 7→6;

Z = {(5 6)}; _
π = {0| 1| 2| 3| 4| 5, 6}; |G4| = |G5| · |G5| = 1 · 2 = 2

6. Search for representative of coset H4 7→5

7. Found representative of coset H4 7→5;
Z = {(5 6), (4 5)}; _

π = {0| 1| 2| 3| 4, 5, 6}
8. Coset pruning: no need to explore since we have already found a coset represen-

tative for H4 7→5

9. Orbit pruning: no need to explore since 6 is already in the orbit of 4.
|G1| = |G4| · |G4| = 2 · 3 = 6

10. Search for representative of coset H1 7→3;
Matching OPP pruning: found representative of coset H1 7→3.
Z = {(5 6), (4 5), (1 3)}; _

π = {0| 2| 1, 3| 4, 5, 6}; |G0| = |G1| · |G1| = 6 · 2 = 12
11. Search for representative of coset H0 7→1

12. Matching OPP pruning: found representative of coset H0 7→1.
Z = {(5 6), (4 5), (1 3), (0 1)(2 3)}; _

π = {0, 1, 2, 3| 4, 5, 6}
13. Coset pruning: no need to explore since we have already found a coset represen-

tative for H0 7→1

14. Orbit pruning: no need to explore since 2 and 3 are already in the orbit of 0.
15. Non-isomorphic OPP pruning: 0 cannot map to 4.
16. Orbit pruning: no need to explore since 5 and 6 are already in the orbit of 4.
|G| = |G0| · |G0| = 12 · 4 = 48

Fig. 4. Search tree for graph automorphisms of the “square and triangle” graph and
relevant computations at each node. The shaded region corresponds to subgroup de-
composition.
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Fig. 5. saucy 2.1 run time, in seconds, as a function of graph size for the SAT 2009
competition benchmarks. A time-out of 500 seconds was applied.

11 million variables and 33 million clauses, was modeled by a graph with over 32
million vertices and required about 231 seconds to process. As the figure shows,
there is a weak trend towards larger run times for larger graphs. However, run
time seems to also depend on other attributes of a graph besides its absolute
size (number of vertices.) In any case, saucy is extremely fast, finishing in less
than one second on 93% (1101) of all benchmarks.

The “amount” of symmetry present (order of the automorphism group) in
each benchmark is shown in Figure 6. In total, only 323 benchmarks exhibited
non-trivial symmetries, and the order of the largest automorphism group (for
benchmark hsat vc11813) was an astronomical 5.091978× 10142761. The figure
only lists those benchmarks whose automorphism group has an order between
2 (meaning one non-trivial symmetry) and 1060 (a total of 293 out of 323.) Of
the 610 benchmarks in the random category, 606 had no symmetry at all, and
the remaining four had just one symmetry. In the application category, saucy
reported the presence of symmetry in about 50% of the benchmarks (144 out of
292), and it found symmetry in about two-thirds (175 out of 263) of the crafted
benchmarks which it was able to process within the time-out limit.

Figure 7 shows the relation between the order of the automorphism group and
the number of generators returned by saucy for the 293 benchmarks. Symmetry
detection algorithms, including saucy, guarantee to produce no more than n−1
generators for an n-vertex graph. The number of reported generators in these
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Fig. 6. saucy 2.1 group order for the SAT 2009 competition benchmarks.

results is significantly less than n−1. This, however, is not inconsistent with the
well-known fact that the number of (irredundant) generators is exponentially
smaller than the order of the corresponding symmetry group.

To evaluate the effectiveness of static symmetry breaking, we applied shatter
[2] to 47 “difficult” benchmarks. These included 13 application and 34 crafted
benchmarks that had significant symmetry and either could not be solved by
any of the SAT 2009 competition solvers (38 benchmarks), or required at least
1000 seconds to be solved (9 benchmarks). The shatter flow consists of running
saucy on a CNF instance to obtain its symmetry generators, followed by the
creation of CNF symmetry-breaking predicates (SBPs) using the encoding in
[4], and finally passing the original instance augmented with the SBPs to a SAT
solver. Figures 8(a) and 8(b) depict the increase in instance size (variables and
clauses) for each of these benchmarks due to the addition of the SBPs. For 29
of the benchmarks, the number of added SBP clauses was quite insignificant
(less than 4%). The additional clauses for the remaining 18 benchmarks ranged
from 25% to 133% of the original number. The number of variables increased
by less than 1% for 23 benchmarks and by 9% to an order of magnitude for the
remaining 24 benchmarks.

To obtain meaningful statistical data, we used a script that re-orders the
variables and clauses in a CNF instance using a random seed1 to create twenty
different versions of each benchmark: ten for the original and ten for the SBP-
augmented benchmark. We then applied the best solver for a given benchmark,
based on the 2009 competition results, to these twenty versions. The run time
results comparing search times with and without the addition of SBPs for 12

1 We obtained the reorder.c script and a seed generator from Laurent Simon. The script
was originally written by Edward Hirsh and later modified by Simon to handle large
benchmarks.
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Fig. 7. saucy 2.1 group order as a function of the number of group generators for the
SAT 2009 competition benchmarks.

of the 47 benchmarks are shown in Fig. 9; experiments on the remaining 35
benchmarks were still running at press time. For this limited subset, the SBP-
augmented versions generally led to fewer time-outs and, in all but three cases,
were solved faster than the original versions. Four of these benchmarks (2, 4,
8, and 9) which were reported to be unsolvable within the time-out limits of
the competition, were solved with the addition of SBPs. Interestingly, though,
benchmarks 2, 8, and 9 were solved on our experimental machine even without
the addition of SBPs. These anomalies are possibly due to the use of different
machines with varying configurations in the SAT 2009 competition and merely
point out that we must be careful not to draw incorrect conclusions from empir-
ical data.

8 Conclusions

It has been conjectured that symmetries in CNF formulas contribute to the
intractability of SAT. The availability of extremely-efficient scalable symmetry
detection algorithms, such as saucy 2.1, has enabled the testing of this hypoth-
esis on very large CNF formulas. The question, however, remains open. Many
intractable CNF instances (e.g., random instances) possess no or little symme-
try. Those that possess significant symmetry may or may not benefit from static
symmetry breaking for a number of possible reasons. For example, the genera-
tors produced by a symmetry detection algorithm may not be the most suitable
for symmetry breaking. Better branching heuristics while searching the permuta-
tion space might yield more useful generators for SAT solving. A more promising
direction is the integration of symmetry detection within the SAT solver itself
[13]. The raw speed of modern symmetry detectors like saucy suggests that they
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Fig. 8. Number of variables and clauses before and after the addition of SBPs.

can be invoked during the SAT search with minimal overhead. And unlike static
symmetry breaking, dynamic symmetry detection does not require the addition
of large SBPs, and can uncover hidden/conditional symmetries adaptively. We
plan to pursue this in our future research.
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