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Abstract—We perform formal verification of quantum circuits In Sec. IV we develop high-performance equivalence-

by integrating several techniques specialized to particular classes checking for quantum circuits. Our method aslaptive in
of circuits. Our verification methodology is based on the new ha gense that it utilizes multiple techniques appropriate
notion of a reversible miter that allows one to leverage existing different classes of quantum circuit modules. In this cefte
techniques for simplification of quantum circuits. For reversible . quant . ' '
circuits which arise as runtime bottlenecks of key quantum algo- We studyreversible circuitswhich are a subset of quantum
rithms, we develop several verification techniques and empirically circuits that map conventional 0-1 bit-strings into othacts
compare them. We also extend existing quantum verification pjt-strings. In particular, the largest module in Shor'smier-
tools using SAT-solvers. Experiments with circuits for Shor’s factoring algorithm [13] —modular exponentiation— is
number-factoring algorithm, containing thousands of gates, shw . . S -
improvements in efficiency by four orders of magnitude. implemented as a reversible circuit [7] (acting on ent?tmgle
guantum states), exceeds all other modules asymptotically
l. INTRODUCTION size, and.thus requires most attention of CAD tools. To yerif
such logic modules, we adapt conventional state-of-the-ar
Quantum circuits often operate on quantum states that cagehniques [9], [18] in several ways, and significantly scal
tain exponentially large superpositions, making quantim s up quantum equivalence checking. Empirical comparisons in
ulation, as well as circuit design and analysis on conveatio Sec. IV-A confirm that properties of reversible circuits can
computers very challenging. To this end, a layered softwagmable much faster SAT-based equivalence-checking. How-
architecture for quantum computing design tools was cedlinever, conventional techniques cannot be applied to, ég., t
in [14]. Our work focuses on one such task — verifyinqQuantum Fourier Transform (QFT)herefore, we also study
the results of quantum circuit transforms, e.g., adapiatioequivalence-checking of circuits with non-conventionates
of technology-independent quantum circuits to linear cevi (we call these circuitproperly-quantujy and the integration
architectures, such as ion traps [2], [5]. For a circuit tisat of heterogeneous techniques.
known to be correct, one seeks to prove its equivalence to aur contributions can be summarized as follows.
new circuit optimized for a given physical technology. « Reversible miterdor equivalence-checking of quantum
Past research in equivalence-checking for quantum cércuit  cjrcuits, and their integration with circuit simplificatio
developed computational techniques based on Binary @ecisi , The use of SAT-based equivalence checking and its
Diagrams (BDDs) [8], [16], [17]. These techniques can rep- integration with BDD-based techniques.
resent some exponentially large complex-valued vectots an, Adaptive equivalence-checking for quantum circuits that

matrices using compact graphs. Quantum operations are then integrates reversible miters, circuit simplification, asliw
modeled by graph algorithms whose complexity scales with a5 SAT- and BDD-based techniques.

graph size rather than with the dimension of the state-space

or the amount of entanglement. But these algorithms are much Il. NOTATION AND PRELIMINARIES

slower than those for equivalence-checking of digitalécgnd Qubits. While a bit is a fundamental unit of (conventional)

do not scale to useful instances of Shor’s algorithm. information, quantum informationis expressed in terms of
An important observation is that a typical quantum alguantum bits or qubits for short. A qubit is a mathematical

gorithm consists of heterogeneous modules [10] that favabstraction of @uantum statsuch as nuclear spin of an atom.

different computational techniques for equivalence-ghrer  Basis state®f a qubit are labeled > and|1 >. A qubit can

This motivates the development of a new verification methodssume any complex-valued linear combination of basisstat

ology that invokes the most appropriate technique for eaoh0) + 3|1) with |a|* + |3|*> = 1, i.e., a norm-1 vectof 3 ).

module type and assembles the results. Our methodold@uantum gates and circuits. To perform computation, one

relies on a new concept, introduced in Sec. Ill and calledanipulates qubit states using certain physical operatien

a reversible miter— a natural counterpart afiter circuits quantum gatesThey can be implemented by RF pulses or

used in equivalence-checking of digital electronic citsui otherwise. In Fig. 2 four qubit$zy), |x2), |wy) and |ws),

In conjunction with existing techniques for iterative ciic are represented by lines. A quantum circuit determines how

simplification [4], [6], [12], reversible miters can drastlly individual gates are performed one by one left-to-right.7n

reduce the size and complexity of circuits under verifiagatioqubit state is expressed by2& x 1 vector, and an operation

especially when such circuits bear some structural ressmabl on n qubits by a2™ x 2" matrix [10].

(e.g., when adapting textbook circuits to specific quantum-Here we discuss four quantum gates, but other types do not

computing architectures). pose new obstacles to our techniques.




" - procedures exist for such transformations [10]. The raxylt

iz o ;’2 X : circuits do not create entanglement, but can be applied to

P ¢ s o D ¥ superposition states. Leveraging this quantum parattelis

first gate T third gate S e useful applications is difficult, but can be illustrated HyoBs
second gate first gate second gate third gate

polynomial-time algorithm for number-factoring [10], [[L3

Fig. 1. A reversible circuit and its irreversible realizati Dashed boxes This algorithm is dominated by a reversible module that per-

represent reversible gates by one-output gates used italdiggic. forms modular exponentiation [7] before the Quantum Faurie
Transform (QFT). We call such circuits without properly-
C W C W i i irenits in thi
f 0 guantum gates specificalhgversible circuits in this paper. A
— gate library used for reversible circuits isiversaliff it can
X,) H H— express any (conventional) reversible transformation diyc
X,) H H bining multiple copies of gates involved. The most common
W)~ ] such gate library consists of NOT, CNOT, and Toffoli gates.
/it . Hadamard Gate Since the algebraic properties of the gates in reversibbeits
o) D
first gate ‘ th‘ird gate | \CN‘O\T gOT Gate do not involve quantum phenomena, we can calculate the logic
second gate  Toffoli Gate ate functions realized at each point in a circuit, as is normddpe

Fig. 2. A properly-quantum circuit — one iteration of Groweigorithm, N conventional logic synthesis and verification. For eximp
Circuit modules labeled’;, W, Cyp andW are composed by concatenation.we can calculate the function at wirg of the circuit shown
in Fig. 1 after the third gate ag = x3 @ z122 ® 21 D 1.

HADAMARD GATE maps|0) to 1/+/2|0) + 1/v/2|1), and|1)
1

to 1/v/2[0) — 1/v/2[1). Its matrix isH = 25 (1 ;). Ill. REVERSIBLEMITERS
NOT GATE mapsa |0) + 3[1) to a|1) + £]0). Therefore its ~ TO check the equivalence of two combinatorial digital logic
matrix is (9 4). E.g., ($5)10) = (95) (§) = (9) = ). circuits, ¢y and C3, one checks if the conventionahiter

CONTROLLED-NOT (CNOT)GATE has two inputs, theon- circuit [9] shown in the left-hand side of Fig. 3 implements
trol (e) and thetarget (@). It copies the control input to the the constant-0 function. In other words, every pair of otdpu
output and, when the control carriés >, inverts the target. are XOR’ed, all XOR-outputs are OR’ed together, and the
Two repeated CNOTs cancel out, but three non-cancelif@sulting Circuit-SAT instance is converted to CNF-SATngsi
CNOTs, that alternate controls and targets, swap quantipwn techniques (a number of optimized reductions have
states and are referred to as a SWAP gate. been proposed recently with large circuits in mind). Corven
TOFFOLI GATE has three inputs and outputs. It is similar tdional miters can be constructed for reversible circuitsrbgt-
the CNOT gate, but includes two controls which are copied t89 them as AND/OR/NOT circuits, except that such miters
respective outputs. It inverts the target bit when both st Will not be reversible. Therefore, we introdugeversible
carry [1). If the inputs are basis states, e.[10) or |110), ~Miters which can handle reversible and properly-quantum
this gate does not create quantum superpositions. Nantelygifcuits equally well, and can benefit from simplification of
maps(a, b, ¢) — (a,b,ab @ c) wherea, b andc are its inputs. reversible circuits [4], [6], [12].
Cl\llqg'lea” t(;\é_llfb\llzvggfll_la(:tingbor] colnventiondal bits, g%?_s )'(\lgé Properties of Quantum Circuits

an can be implemented using , _ . -
and AND gates as shown in Fig. 1. In the quantum case, th The - symbol represents a concatenation of two circuits

i S : ) - @f gates) as shown in Fig. 2. Observe that for quantum or
exchange basis states, which is why their matrices contdyn Oreversible circuitsCy, and Cy, the circuit Oy - Cs is of the

Os and 1s. As these gates ot_;ey the same algebra|§: rules in l%% e kind. Such circuits can also be structurally reversed.
cases, we term thermonventional gat_esln comparison, the Observation 1:Given a quantum (or reversible) circdit=
matrix of the Hadamard gate_contamwﬁ\/i, and its func- L-ga----- g, whereg; is a gate, its copy?~! where all gates
tionality cannot be expressed in Boolean logic. Therefoee re inverted and put in the reverse order b§1~- gy togrt

) vl 2 1

call such gatesproperly-quantym. Each properly-quaptum implements the inverse transformation to whatmplements.
gate maps at least one O-1 input combination (basis state)r,, 4 circuitC' shown in the left-hand side of Fig. 1, the
to a quantum superposition of more than one basis Stafgreuit ¢ - 01 is given in the right-hand side of Fig. 3. Note
Circuits that include properly-quantum gates are alsoedall ¢ NOT, CNOT, and Toffoli gates are their own inverses
properly-quantum. Properly quantum circuits are necgssg{nich explains their choice as library gates). The circtiit

to generate entanglement, perform quantum error correctig—1 g equivalent to arempty circuit This can be confirmed

and achieve computational speed-up over traditional alggy jteratively cancelling out pairs of mutually-inverseaent
rithms. An example is given in Fig. 2. As we show below

; o ) gates. Namely, in the right-hand side of Fig. 3, the third and
many reversible circuits without properly-quantum gates ¢ ,q fourth gates can be removed at once. Then, the second
be verified relatively easily in practice using a statekd-t

. : . o2 and the fifth gates, followed by the first and last gates. This
art equivalence-checking tools for conventional logicgits

o PN observation motivates our notion adversible miters
based on solving instances of Boolean SATisfiability. ) . o
Many quantum algorithms contain large, applicationB- Reversible Miter Circuits
specific sections dedicated to the computation of BooleanDefinition 1: Given two quantum (or reversible) circuity
functions. In order to embed conventional computation inand C-, their reversible miteris defined to be one of the
the quantum domain, it must be made reversible, and standéitbwing circuits: C; - Co ™, Co ™1, Cy-C1 71, Cy 71 - Ch.
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Cl C2-1 Fig. 4. Gate swap (complicated case). Fig. 5. Equivalent circuit templates.

Fig. 3. Miter circuits: conventional and reversible.

In particular, for conventional miters one needs to check —
that the output functions implement the constant 0 fungtion {H]
whereas for reversible miters one checks that each output
bit is equwalent.to a corre_spondlng Input b't_- Namety, . Fig. 6. Transforming a miter circuit after simplification. Dashboxes outline
and C, are functionally equivalent if and only if all of their circuit modules. Horizontal dashed lines represent omitigits and gates.
reversible miters implement the identity transformatiomn.

particular, if one miter implements the identity, then so daot the target bit of the other gate (same for properly-qumnt
the remaining miters. 1€y = C, then straightforward circuit controlled?/ gates). A more sophisticated swapping rule (for
simplification [4], [6], [12] cancels out all gates, resnlliin  NOT, CNOT, and Toffoli gates) is illustrated in Fig. 4.

an en|1|ptty C'r(t:#'t' Stcr)]me of th; vag?tdn;flters Ien_abtlr(]a MOT€ 1 our procedure, for the purposes of equivalence-checking
cancellations than others, e.g.(If andC; differ only in their we temporarily consider the miter circuit to be “circulary b

. —1 o . .
flrsé segm_glntsqi -G e>:jh|b|ts m_an;l/ gate %ani?”ati)on;( | connecting its outputs to its inputs. Namely, we allow mgvin
EVersibie milers speed up equivalence-checking by explje first gate to the end of the circuit, as illustrated in FEg.

N9 S|m|Iar|t|e§ n _c_|rcu_|ts by wo d|st|_nct mgchanlsms. This transformation does not change the equivalence of the
1) Local Simplification of Reversible Miters?vhen two ,iire circuit to the identity. In other words, i - g - - - - -

conventional circuits end with identical gate sequences o ; —1

.1 gr = I (Identity), theng; ~-g1-g2----- Gk—1"9k 91 =
cannot cancel out these sequences because of observabfi — ;
don't-cares introduced by thgm. However, reversible discu biet)\//l\;eleﬁgl _:g 9.1.1' _g; - I ng;enrgroEg ,trt]c; ngfrc]:: :gl::;/ ?:Ir?g((::lf
do not experience don’t-cares, and identical suffixes adwa L2 LTIk

! . ¥quivalence betweegq, - - - - - .- g1 and .
cancel out. Note that a reversible mit€f - C; ' places the g . _ @2 kL
last gate ofC; next to the last gate of%. If these two A variety of circuit-equivalence templates can be used

gates cancel out, the second-to-last gates fémand ¢, With the above simplification procedure [6], [12], [15] to
become adjacent, etc. Thus, no search is required to iyenﬁprlnk_the miter circuit. Such templates are known for both
these gate cancellations, and they can be performed ond€4€rsible and properly-quantum gates as shown in Fig. 5. Fo
a time. Even if the last two gates are different, it may pexample, the transformation illustrated in Fig. 6 enablether

possible to cancel out second-to-last gates, as long as $ijgplification through the equivalence in Fig. 5 on the right

last and second-to-last gates do not act on the same (qu)b2) Simplification of Canonical Formdterative circuit sim-
lines. These are special cases of much more genecal Dplification is not guaranteed to reducg, - C;' to the
simplificationsdiscussed in [4], [6], [12]. IfC}; and Cy are empty circuit in polynomial time when such a simplifica-
identical, an empty circuit will result, but this outcome idion is possible. Finding a short simplification may be time-
also possible when local simplifications can prove equivade consuming. Yet, when constructing canonical forms (ROBDDs
of two structurally different circuits. A systematic protge or QuIDDs) of reversible miters, a different kind of simpii
for applying simplifications was introduced in [4]. Localtion may occur. Suppose th@f andC, end with functionally-
simplifications in reversible circuits are particularlysgato equivalent but structurally distinct suffixes that do notméd
perform, are fast and do not consume much memory [fcal simplifications — an example is given in [12]. In other
[12]. In our experiments, even the simplest simplificatioles words C; = A; - By and Cy; = A, - B> where By ~ Bs.
can dramatically simplify reversible miters. More sopicisted Then C; - C;' = A, - By - By ' - Ay ~ Ay - A;'. As
simplifications from [4], [6], [12] provide an additional bst. we traverse the mite€’; - C, ', adding one gate at a time
We experimented with the following simplification proceto the decision diagram (DD), the size of the intermediate
dure. In a miter circuit, consider one gate at a time, seanch f DDs depends only on the transformation implemented by the
matching inverse, and try to move them together to faaditaturrent circuit prefix, i.e., the functions of the intermeei
cancellation. Any two gates can be swapped if they do naires. The intermediate DD fad; - B, - B, ' can be smaller
act on the same (qu)bit lines. Two adjacent NOT, CNOT @han that forA, - By if A;-B; ~B;1 ~ A;. This phenomenon
Toffoli gates can be swapped if the control bit of one gate i8as observed in our experiments.




V. EQUIVALENCE-CHECKING FORQUANTUM CIRCUITS  some of they variables introduced earlier. Let such a new

We now introduce equivalence-checking of quantum circuitériable corresponding to theth primary output beyo,. (If
based on several techniques appropriate for differensetasthere is no target bit on theth bit-line, we do not introduce

of quantum circuits. a new variable for theé-th primary output, i.e., it is obvious
_ ) ) o that the input and the output functions on théh bit-line
A. Equivalence-checking for Reversible Circuits are the same, and thus we do not add the following clauses.)

To check the equivalence of two reversible circuits,and We introduce a new variable; to express the functional
C,, one can pursue two strategies. The first strategy is to chegkisistency of thei bit-line. Namely, we consider that;
that the conventional miter implements the constant 0 fanct becomes 1 only whem; # yo,. For this condition, we add
A conventional miter can also be applied to reversible discu the following clauses.
as explained below. The second strategy is to represent thg Casez; = 0. Clauses{(z; + +70.) - (zi + T 4+ yo,)-
transformations performed by, andC: in a canonical form  , Casez; = 1. Clauses{(z + =; + yo,) - (% + T + Vo, ).
which supports efficient equivalence-checking. Einally we add(z1 + 2+ - - - + z,) wheren is the number of

The later strategy may use binary-decision diagrar%?t_”ngs of the cilrcuitzs Since; Z 1 mens’that the input and
(BDDs), such as ROBDDs, and QuIDDs [16] or QMDDs [8] ' L P

The former can be implemented with either decision diagrar;[%e output functions on theth bit-line are different, the two

or Boolean Satisfiability solvers by reducing Circuit-SAT t?ﬂ%‘:gfof‘ere tﬁgiﬁg\t{g""gggﬁﬂlﬁéﬂ*’ en::_r aZ{é)s 'Z SSEJIX'IS'fIfeo(i.muIa

CNF-SAT. In particular, for conventional miters one needt at is sati,sfied only by those input cc?mbinations for whioh t

to check that the output functions implement the consta . y by put .
orresponding outputs of two circuits produce differeriuga.

O function. In addition to the basic SAT or BDD-base CNF-SAT formula constructed for a miter grows linearly
approaches, finding equivalent signals in two circuits terf with the size of the miter. A key advantage of reversible

very helpful [9]. Such techniques appear useful for rewéesi miters is that they can be significantly smaller, due to gate

circuits as well, as shown in our experiments, cancellations and other circuit simplifications
1) Using existing computational engineROBDD. Calcu- . NN :
) J J P J 2) State-of-the-art Combinational Equivalence Checking:

late the output functions of miter circuits with ROBDD. ThisSAT based techni be d cally | d th h
technique cannot handle properly quantum circuits. -based techniques can be dramatically improved throug

. . ) . L synergies with randomized functional simulation and tigiou
QuIDD. Build functional representations of given circuifs§

X . . ; identifying intermediate equivalences. By hashing theiltes
and C,, and check if the result_s are_|dent|ca'|.' In p_amculan random simulation, one finds candidate equivalent wifes.
QuIDDPro [16], [17] builds multi-terminal decision diagns 54, arenotequivalent, the counterexample returned by

called QuIDDs that can capture properly-quantum circuits. gat js ysed to refine the results of functional simulation and
SAT. Given two reversible circuits, construct a CNF-SAloften distinguishes other seemingly-equivalent pairs oésv
formula that is satisfied only by those input combinations f@nce intermediate wires;, and w, are proven equivalent,
which the two circuits produce different outputs. Then usgll downstream gates are reconnectedutp, and w, can

a contemporary SAT solver [19] to check satisfiabilityVe be excluded from the SAT instance (along with some of its
construct a CNF formula as follows. First we add a set @ipstream gates). If potentially equivalent wires are setbc
clauses for each gate in the miter circuit. The clauses ghmil in a topological order from the inputs, the impact of muktipl
satisfied only with the variable assignments that are ctevgis circuit restructuring steps accumulates, until all outpite
with the reversible gate. The readers familiar with SATeshs are proven equivalent or until an input combination is found
equivalence-checking can think of a CNOT gate as an XGQRat disproves the equivalence of outputs.

gate with a bypass wire, and of a Toffoli gate as an XOR, AND The state-of-the-art implementation of these techniques
and a bypass. More efficient clause generation is illustrat@yund in the Berkeley ABC system [18] (the “cec” command)
below for a Toffoli gate whose control bits are and x2, features incremental SAT-solving afrdiging — a fast circuit-
and target bit isz3. Since the Toffoli gate does not modifysimplification technique based on hashing [9]. To use ABC, we
two of its inputs, there is no need for separate output viab construct a conventional (irreversible) circuit from aeesible

We introduce only one new variablg for the target bit. Then circuit as shown in Fig. 1.

logical consistency is given by the conditign= (z1-22)®=3  The impact of random-simulation techniques on SAT-based

which can be expressed by the following six clauses. equivalence-checking can be illustrated by the example of
o Caser; =0 orzy =0. Clauses(x; + 73 +y1) - (1 + multiplier circuits, which are known to confound both BDD-
z3+71) - (2 + T3 +y1) - (22 + 23 + J1). based and SAT-based computations. The case of equivalent
o Casexr; =z, = 1. Clauses(Z; + 7z + 23 +y1) - (Tr + multipliers is particularly difficult because it cannot beickly
T3 + T3+ J1)- concluded by finding (perhaps, by luck) input combinations

In the next step, we add a set of clauses that are satisfibdt disprove the equivalence. However, if the two given-mul
only by those variable combinations where some circuit wutptipliers are structurally similar and include many equévsl
differs from the respective circuit input. Here we can reusgires, then global equivalence can be proven quickly thhoug

a series of lemmata.

*Recall that NP-completeness relates to worst-case complixindustrial - Common benchmarks for reversible circuit synthesis can be
applications, modern SAT solvers can often resolve CNF-SAdtances ified i ili ds by th b hni Th f
with hundreds of thousands variables in several hourspadth small hard VEMTI€d In milliseconds by the above techniques. Theretore

instances are also known. we focus on scalable blocks of standard quantum algorithms,
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i ) @) o (b), ] conventional circuits, such asiodular exponentiatigncan
Fig. 7. A ripple-carry adder circuit fon = 4 (a), and its LNN version (b). be optimized for performance using properly-quantum gates
| Fortunately, the utility of miters relies on (symbolic) cafia-
oté s of gates, and equally applies to reversible and phpper
guantum circuits, unlike previously known techniques feriv
fying conventional digital circuits. Reduced properlyagtum
miters can be verified using symbolic simulation with QuID-
DPro [16] or QMDD software [8]. Using reversible miters

and reversible multipliers. Given a (qu)bit ordering, achin v d I i Wi
nearest-neighbor (LNN) CNOT gate circuit is a circuit whicffS Pré-processors can greatly decrease overall runtime. vve
mpirically compare the following two methods.

realizes the functionality of a CNOT gate with target angd . A ) .
control bits & bits aparty by using onIS LNN gatesg(gates@\/'th Local Simplification. Before invoking QuiDDPro, re-
: ce the miter using local simplification.

that operate only on adjacent qubits). As an example of tQ\? AR :
circuits in our study, we show a ripple-carry adder circuli fo Local Simplification. Apply QuIDDPro to the miter. oo
for n = 4, and its LNN version in Fig. 7. Studies of We compared the above two methods using several circuit

LNN architectures are important because several promisi es, but have room to report only one example. We check

implementations of quantum computation require the LNRdUivalence between an LNN and non-LNN implementation
architecture (also called thepin-chain architecture in the (Withoutmeasurement gatpsf Shor's algorithm for factoring

physics literature) and allow only adjacent qubits to iater Fhe number 15. These equivalent properly-quantum circuits

directly. Thus, standard quantum circuits must be ada;ﬁed”PCl”de 2,732 gates for the non-LNN version and 5,120 gates

such architectures and modified to use only LNN gates. Sg& Fhel LNN \éerslipn. Their st:jucturleDIiDstery_(:]iffergnt._ Eor
cific transformations and LNN circuits have been developétfiulvalence-checking, we used Qu ro with and without

: ; | simplification, and these runs completed in 59.07s and
[2], [5]. The overhead of the LNN architecture in terms o ca ’ . .
the number of gates is often limited by a small factor (3-5 4095.22s, resp. The results confirm the effectivenesscaf lo

: : o : implifications with reversible properly-quantum miters.
Such physical-synthesis optimization motivates the need £'MP : Jeve . .
equivalence-checking against the original, non-LNN ersi __2) Boosting Verification by Using SAT-based Combina-

Using important components of Shor's algorithm [2], [10] _tional Tools: Local simplification may leave many gates

adders, meshes and multipliers — we build three types %@ound, after which QuIDDPro tends to consume significant
equivalence-checking instances. time and memory. However, if very few properly-quantum

Same.Two equivalent circuits gates remain, a more lightweight verification procedure by
Differént 1. Add ten random 'i'offoli gates at the end used. Generic symbolic simulators, such as QuIDDPro, do not

- ; .. scale (empirically) as well as leading-edge SAT-based ¢comb
Different 2. Add ten random Toffoli gates at the begmmng'gational equivalence-checking (CEC) used in the Eleotsoni

llnwdustry to verify modern digital circuits (Sec. IV-A). Hea
we leverage SAT-based tools for quantum circuits.

whose optimization and equivalence-checking are critioa
the success of quantum computers being designed to
More concretely, we performed experiments witlit linear-
nearest-neighbor (LNN)CNOT gate circuits, a reversible
ripple-carry adder circuit proposed in [ljpeshcircuits [2]

exhibits essentially the same trends. Hence we reporttges

only for adders in Table |. Runtimes are reportecdaonds

on a Linux system with a 2.40GHz Ing&l Xeon™ CPU with FOR Two CIRCUITSC; AND Cy, WE DO THE FOLLOWING.

1GB RAM. Step 1.Construct the miter circuiC = C; - C; *.

Step 2.Perform simplification of the miter circuit.

Step 3.If properly-quantum gates remain, go to Step 4, else
We now show that our techniques handle properly-quantunvoke state-of-the-art SAT-based combinational eqeiveg-

gates in a way compatible with special-case methods. checking (the “cec” command of ABC system [18]) to tell if
1) Utility of Reversible Miters:Earlier sections focused onthe miter circuit is equivalent to Identity.

equivalence-checking of reversible circuits which appear Step 4.Find the longest sequence of conventional logic gates

modules of quantum algorithms and require physical synth@NOT, CNOT, Toffoli) in the miter circuit. Label this seques

sis optimizations [2] that must be verified. However, othef,. Let the simplified miter circuit b&), - C, - Q.

important modules in quantum algorithms, such as@uan- Step 5. Transform@, - C, - @, to C, - Qp - Q.. Note that

tum Fourier Transform (QFT)are properly-quantum, and@, - C, - @, = I (Identity) iff C, - Qy - Q, = I as shown

B. Checking Properly-Quantum Circuits



in Sec. IlI-B1. Move conventional gates i@}, - Q, to the V. CONCLUSION AND FUTURE WORK
front of the miter as much as possible, creating a transfdrme \\e have studied several techniques for equivalence-
miter C;, - @, whereC, and @}, are a reversible circuit and achecking of reversible circuits, including the new concept
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