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Abstract—We perform formal verification of quantum circuits
by integrating several techniques specialized to particular classes
of circuits. Our verification methodology is based on the new
notion of a reversible miter that allows one to leverage existing
techniques for simplification of quantum circuits. For reversible
circuits which arise as runtime bottlenecks of key quantum algo-
rithms, we develop several verification techniques and empirically
compare them. We also extend existing quantum verification
tools using SAT-solvers. Experiments with circuits for Shor’s
number-factoring algorithm, containing thousands of gates, show
improvements in efficiency by four orders of magnitude.

I. I NTRODUCTION

Quantum circuits often operate on quantum states that con-
tain exponentially large superpositions, making quantum sim-
ulation, as well as circuit design and analysis on conventional
computers very challenging. To this end, a layered software
architecture for quantum computing design tools was outlined
in [14]. Our work focuses on one such task — verifying
the results of quantum circuit transforms, e.g., adaptations
of technology-independent quantum circuits to linear device
architectures, such as ion traps [2], [5]. For a circuit thatis
known to be correct, one seeks to prove its equivalence to a
new circuit optimized for a given physical technology.

Past research in equivalence-checking for quantum circuits
developed computational techniques based on Binary Decision
Diagrams (BDDs) [8], [16], [17]. These techniques can rep-
resent some exponentially large complex-valued vectors and
matrices using compact graphs. Quantum operations are then
modeled by graph algorithms whose complexity scales with
graph size rather than with the dimension of the state-space
or the amount of entanglement. But these algorithms are much
slower than those for equivalence-checking of digital logic and
do not scale to useful instances of Shor’s algorithm.

An important observation is that a typical quantum al-
gorithm consists of heterogeneous modules [10] that favor
different computational techniques for equivalence-checking.
This motivates the development of a new verification method-
ology that invokes the most appropriate technique for each
module type and assembles the results. Our methodology
relies on a new concept, introduced in Sec. III and called
a reversible miter— a natural counterpart ofmiter circuits
used in equivalence-checking of digital electronic circuits.
In conjunction with existing techniques for iterative circuit
simplification [4], [6], [12], reversible miters can drastically
reduce the size and complexity of circuits under verification,
especially when such circuits bear some structural resemblance
(e.g., when adapting textbook circuits to specific quantum-
computing architectures).

In Sec. IV we develop high-performance equivalence-
checking for quantum circuits. Our method isadaptive in
the sense that it utilizes multiple techniques appropriatefor
different classes of quantum circuit modules. In this context,
we study reversible circuitswhich are a subset of quantum
circuits that map conventional 0-1 bit-strings into other such
bit-strings. In particular, the largest module in Shor’s number-
factoring algorithm [13] —modular exponentiation— is
implemented as a reversible circuit [7] (acting on entangled
quantum states), exceeds all other modules asymptoticallyin
size, and thus requires most attention of CAD tools. To verify
such logic modules, we adapt conventional state-of-the-art
techniques [9], [18] in several ways, and significantly scale
up quantum equivalence checking. Empirical comparisons in
Sec. IV-A confirm that properties of reversible circuits can
enable much faster SAT-based equivalence-checking. How-
ever, conventional techniques cannot be applied to, e.g., the
Quantum Fourier Transform (QFT). Therefore, we also study
equivalence-checking of circuits with non-conventional gates
(we call these circuitsproperly-quantum), and the integration
of heterogeneous techniques.

Our contributions can be summarized as follows.
• Reversible mitersfor equivalence-checking of quantum

circuits, and their integration with circuit simplification.
• The use of SAT-based equivalence checking and its

integration with BDD-based techniques.
• Adaptive equivalence-checking for quantum circuits that

integrates reversible miters, circuit simplification, as well
as SAT- and BDD-based techniques.

II. N OTATION AND PRELIMINARIES

Qubits. While a bit is a fundamental unit of (conventional)
information, quantum informationis expressed in terms of
quantum bits, or qubits for short. A qubit is a mathematical
abstraction of aquantum statesuch as nuclear spin of an atom.
Basis statesof a qubit are labeled|0 > and |1 >. A qubit can
assume any complex-valued linear combination of basis states
α |0〉 + β |1〉 with |α|2 + |β|2 = 1, i.e., a norm-1 vector( α

β ).
Quantum gates and circuits.To perform computation, one
manipulates qubit states using certain physical operations —
quantum gates. They can be implemented by RF pulses or
otherwise. In Fig. 2 four qubits|x1〉, |x2〉, |w1〉 and |w2〉,
are represented by lines. A quantum circuit determines how
individual gates are performed one by one left-to-right. Ann-
qubit state is expressed by a2n × 1 vector, and an operation
on n qubits by a2n × 2n matrix [10].

Here we discuss four quantum gates, but other types do not
pose new obstacles to our techniques.
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Fig. 1. A reversible circuit and its irreversible realization. Dashed boxes
represent reversible gates by one-output gates used in digital logic.
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Fig. 2. A properly-quantum circuit — one iteration of Groveralgorithm.
Circuit modules labeledCf , W , C0 andW are composed by concatenation.
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CONTROLLED-NOT (CNOT) GATE has two inputs, thecon-
trol (•) and thetarget (⊕). It copies the control input to the
output and, when the control carries|1 >, inverts the target.
Two repeated CNOTs cancel out, but three non-canceling
CNOTs, that alternate controls and targets, swap quantum
states and are referred to as a SWAP gate.
TOFFOLI GATE has three inputs and outputs. It is similar to
the CNOT gate, but includes two controls which are copied to
respective outputs. It inverts the target bit when both controls
carry |1〉. If the inputs are basis states, e.g.,|010〉 or |110〉,
this gate does not create quantum superpositions. Namely, it
maps(a, b, c) 7→ (a, b, ab⊕ c) wherea, b andc are its inputs.

Recall that, when acting on conventional bits, gates NOT,
CNOT and TOFFOLI can be implemented using NOT, XOR
and AND gates as shown in Fig. 1. In the quantum case, they
exchange basis states, which is why their matrices contain only
0s and 1s. As these gates obey the same algebraic rules in both
cases, we term themconventional gates. In comparison, the
matrix of the Hadamard gate contains1/

√
2, and its func-

tionality cannot be expressed in Boolean logic. Therefore we
call such gatesproperly-quantum . Each properly-quantum
gate maps at least one 0-1 input combination (basis state)
to a quantum superposition of more than one basis state.
Circuits that include properly-quantum gates are also called
properly-quantum. Properly quantum circuits are necessary
to generate entanglement, perform quantum error correction
and achieve computational speed-up over traditional algo-
rithms. An example is given in Fig. 2. As we show below,
many reversible circuits without properly-quantum gates can
be verified relatively easily in practice using a state-of-the-
art equivalence-checking tools for conventional logic circuits
based on solving instances of Boolean SATisfiability.

Many quantum algorithms contain large, application-
specific sections dedicated to the computation of Boolean
functions. In order to embed conventional computation into
the quantum domain, it must be made reversible, and standard

procedures exist for such transformations [10]. The resulting
circuits do not create entanglement, but can be applied to
superposition states. Leveraging this quantum parallelism in
useful applications is difficult, but can be illustrated by Shor’s
polynomial-time algorithm for number-factoring [10], [13].
This algorithm is dominated by a reversible module that per-
forms modular exponentiation [7] before the Quantum Fourier
Transform (QFT). We call such circuits without properly-
quantum gates specificallyreversible circuits in this paper. A
gate library used for reversible circuits isuniversal iff it can
express any (conventional) reversible transformation by com-
bining multiple copies of gates involved. The most common
such gate library consists of NOT, CNOT, and Toffoli gates.
Since the algebraic properties of the gates in reversible circuits
do not involve quantum phenomena, we can calculate the logic
functions realized at each point in a circuit, as is normallydone
in conventional logic synthesis and verification. For example,
we can calculate the function at wirex3 of the circuit shown
in Fig. 1 after the third gate asy3 = x3 ⊕ x1x2 ⊕ x1 ⊕ 1.

III. R EVERSIBLE M ITERS

To check the equivalence of two combinatorial digital logic
circuits, C1 and C2, one checks if the conventionalmiter
circuit [9] shown in the left-hand side of Fig. 3 implements
the constant-0 function. In other words, every pair of outputs
are XOR’ed, all XOR-outputs are OR’ed together, and the
resulting Circuit-SAT instance is converted to CNF-SAT using
known techniques (a number of optimized reductions have
been proposed recently with large circuits in mind). Conven-
tional miters can be constructed for reversible circuits bytreat-
ing them as AND/OR/NOT circuits, except that such miters
will not be reversible. Therefore, we introducereversible
miters which can handle reversible and properly-quantum
circuits equally well, and can benefit from simplification of
reversible circuits [4], [6], [12].

A. Properties of Quantum Circuits

The · symbol represents a concatenation of two circuits
(or gates) as shown in Fig. 2. Observe that for quantum or
reversible circuitsC1 and C2, the circuit C1 · C2 is of the
same kind. Such circuits can also be structurally reversed.

Observation 1:Given a quantum (or reversible) circuitC =
g1 ·g2 · · · · ·gk wheregi is a gate, its copyC−1 where all gates
are inverted and put in the reverse order, i.e.,g−1

k ·· · ··g−1

2
·g−1

1
,

implements the inverse transformation to whatC implements.
For a circuitC shown in the left-hand side of Fig. 1, the

circuit C ·C−1 is given in the right-hand side of Fig. 3. Note
that NOT, CNOT, and Toffoli gates are their own inverses
(which explains their choice as library gates). The circuitC ·
C−1 is equivalent to anempty circuit. This can be confirmed
by iteratively cancelling out pairs of mutually-inverse adjacent
gates. Namely, in the right-hand side of Fig. 3, the third and
the fourth gates can be removed at once. Then, the second
and the fifth gates, followed by the first and last gates. This
observation motivates our notion ofreversible miters.

B. Reversible Miter Circuits

Definition 1: Given two quantum (or reversible) circuitsC1

and C2, their reversible miteris defined to be one of the
following circuits:C1 ·C2

−1, C2
−1 ·C1, C2 ·C1

−1, C1
−1 ·C2.
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Fig. 3. Miter circuits: conventional and reversible.
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Fig. 5. Equivalent circuit templates.

In particular, for conventional miters one needs to check
that the output functions implement the constant 0 function,
whereas for reversible miters one checks that each output
bit is equivalent to a corresponding input bit. Namely,C1

and C2 are functionally equivalent if and only if all of their
reversible miters implement the identity transformation.In
particular, if one miter implements the identity, then so do
the remaining miters. IfC1 = C2, then straightforward circuit
simplification [4], [6], [12] cancels out all gates, resulting in
an empty circuit. Some of the variant miters enable more
cancellations than others, e.g., ifC1 andC2 differ only in their
first segments,C2 · C−1

1
exhibits many gate cancellations.

Reversible miters speed up equivalence-checking by exploit-
ing similarities in circuits by two distinct mechanisms.

1) Local Simplification of Reversible Miters:When two
conventional circuits end with identical gate sequences, one
cannot cancel out these sequences because of observability
don’t-cares introduced by them. However, reversible circuits
do not experience don’t-cares, and identical suffixes always
cancel out. Note that a reversible miterC1 · C−1

2
places the

last gate ofC1 next to the last gate ofC2. If these two
gates cancel out, the second-to-last gates fromC1 and C2

become adjacent, etc. Thus, no search is required to identify
these gate cancellations, and they can be performed one at
a time. Even if the last two gates are different, it may be
possible to cancel out second-to-last gates, as long as the
last and second-to-last gates do not act on the same (qu)bit
lines. These are special cases of much more generallocal
simplificationsdiscussed in [4], [6], [12]. IfC1 and C2 are
identical, an empty circuit will result, but this outcome is
also possible when local simplifications can prove equivalence
of two structurally different circuits. A systematic procedure
for applying simplifications was introduced in [4]. Local
simplifications in reversible circuits are particularly easy to
perform, are fast and do not consume much memory [6],
[12]. In our experiments, even the simplest simplification rules
can dramatically simplify reversible miters. More sophisticated
simplifications from [4], [6], [12] provide an additional boost.

We experimented with the following simplification proce-
dure. In a miter circuit, consider one gate at a time, search for a
matching inverse, and try to move them together to facilitate
cancellation. Any two gates can be swapped if they do not
act on the same (qu)bit lines. Two adjacent NOT, CNOT or
Toffoli gates can be swapped if the control bit of one gate is

C1 C1 Q2

H
H

H
H

H
H

H

H

Fig. 6. Transforming a miter circuit after simplification. Dashed boxes outline
circuit modules. Horizontal dashed lines represent omitted qubits and gates.

not the target bit of the other gate (same for properly-quantum
controlled-U gates). A more sophisticated swapping rule (for
NOT, CNOT, and Toffoli gates) is illustrated in Fig. 4.

In our procedure, for the purposes of equivalence-checking,
we temporarily consider the miter circuit to be “circular” by
connecting its outputs to its inputs. Namely, we allow moving
the first gate to the end of the circuit, as illustrated in Fig.6.
This transformation does not change the equivalence of the
entire circuit to the identity. In other words, ifg1 · g2 · · · · ·
gk−1 · gk = I (Identity), theng−1

1
· g1 · g2 · · · · · gk−1 · gk · g1 =

g−1

1
· I · g1 = g−1

1
· g1 = I. Therefore, to check equivalence

betweeng1 · g2 · · · · · gk−1 · gk andI is the same as to check
equivalence betweeng2 · · · · · gk · g1 andI.

A variety of circuit-equivalence templates can be used
with the above simplification procedure [6], [12], [15] to
shrink the miter circuit. Such templates are known for both
reversible and properly-quantum gates as shown in Fig. 5. For
example, the transformation illustrated in Fig. 6 enables further
simplification through the equivalence in Fig. 5 on the right.

2) Simplification of Canonical Forms:Iterative circuit sim-
plification is not guaranteed to reduceC1 · C−1

2
to the

empty circuit in polynomial time when such a simplifica-
tion is possible. Finding a short simplification may be time-
consuming. Yet, when constructing canonical forms (ROBDDs
or QuIDDs) of reversible miters, a different kind of simplifica-
tion may occur. Suppose thatC1 andC2 end with functionally-
equivalent but structurally distinct suffixes that do not admit
local simplifications — an example is given in [12]. In other
words C1 = A1 · B1 and C2 = A2 · B2 where B1 ≈ B2.
Then C1 · C−1

2
= A1 · B1 · B−1

2
· A−1

2
≈ A1 · A−1

2
. As

we traverse the miterC1 · C−1

2
, adding one gate at a time

to the decision diagram (DD), the size of the intermediate
DDs depends only on the transformation implemented by the
current circuit prefix, i.e., the functions of the intermediate
wires. The intermediate DD forA1 ·B1 ·B−1

2
can be smaller

than that forA1 ·B1 if A1 ·B1 ·B−1

2
≈ A1. This phenomenon

was observed in our experiments.



IV. EQUIVALENCE-CHECKING FORQUANTUM CIRCUITS

We now introduce equivalence-checking of quantum circuits
based on several techniques appropriate for different classes
of quantum circuits.

A. Equivalence-checking for Reversible Circuits

To check the equivalence of two reversible circuits,C1 and
C2, one can pursue two strategies. The first strategy is to check
that the conventional miter implements the constant 0 function.
A conventional miter can also be applied to reversible circuits
as explained below. The second strategy is to represent the
transformations performed byC1 andC2 in a canonical form
which supports efficient equivalence-checking.

The latter strategy may use binary-decision diagrams
(BDDs), such as ROBDDs, and QuIDDs [16] or QMDDs [8].
The former can be implemented with either decision diagrams
or Boolean Satisfiability solvers by reducing Circuit-SAT to
CNF-SAT. In particular, for conventional miters one needs
to check that the output functions implement the constant
0 function. In addition to the basic SAT or BDD-based
approaches, finding equivalent signals in two circuits is often
very helpful [9]. Such techniques appear useful for reversible
circuits as well, as shown in our experiments.

1) Using existing computational engines:ROBDD. Calcu-
late the output functions of miter circuits with ROBDD. This
technique cannot handle properly quantum circuits.

QuIDD. Build functional representations of given circuitsC1

and C2, and check if the results are identical. In particular,
QuIDDPro [16], [17] builds multi-terminal decision diagrams
called QuIDDs that can capture properly-quantum circuits.

SAT. Given two reversible circuits, construct a CNF-SAT
formula that is satisfied only by those input combinations for
which the two circuits produce different outputs. Then use
a contemporary SAT solver [19] to check satisfiability.1 We
construct a CNF formula as follows. First we add a set of
clauses for each gate in the miter circuit. The clauses should be
satisfied only with the variable assignments that are consistent
with the reversible gate. The readers familiar with SAT-based
equivalence-checking can think of a CNOT gate as an XOR
gate with a bypass wire, and of a Toffoli gate as an XOR, AND
and a bypass. More efficient clause generation is illustrated
below for a Toffoli gate whose control bits arex1 and x2,
and target bit isx3. Since the Toffoli gate does not modify
two of its inputs, there is no need for separate output variables.
We introduce only one new variabley1 for the target bit. Then
logical consistency is given by the conditiony1 = (x1·x2)⊕x3

which can be expressed by the following six clauses.
• Casex1 = 0 or x2 = 0. Clauses:(x1 + x3 + y1) · (x1 +

x3 + y1) · (x2 + x3 + y1) · (x2 + x3 + y1).
• Casex1 = x2 = 1. Clauses:(x1 + x2 + x3 + y1) · (x1 +

x2 + x3 + y1).
In the next step, we add a set of clauses that are satisfied

only by those variable combinations where some circuit output
differs from the respective circuit input. Here we can reuse

1Recall that NP-completeness relates to worst-case complexity. In industrial
applications, modern SAT solvers can often resolve CNF-SAT instances
with hundreds of thousands variables in several hours, although small hard
instances are also known.

some of they variables introduced earlier. Let such a new
variable corresponding to thei-th primary output beyOi

. (If
there is no target bit on thei-th bit-line, we do not introduce
a new variable for thei-th primary output, i.e., it is obvious
that the input and the output functions on thei-th bit-line
are the same, and thus we do not add the following clauses.)
We introduce a new variablezi to express the functional
consistency of thei bit-line. Namely, we consider thatzi

becomes 1 only whenxi 6= yOi
. For this condition, we add

the following clauses.

• Casezi = 0. Clauses:(zi + xi + yOi
) · (zi + xi + yOi

).
• Casezi = 1. Clauses:(zi + xi + yOi

) · (zi + xi + yOi
).

Finally we add(z1 + z2 + · · ·+ zn) wheren is the number of
bit-lines of the circuits. Sincezi = 1 mens that the input and
the output functions on thei-th bit-line are different, the two
circuits are different when(z1 + z2 + · · · + zn) is satisfied.
Therefore, the above construction generates a SAT formula
that is satisfied only by those input combinations for which the
corresponding outputs of two circuits produce different values.
A CNF-SAT formula constructed for a miter grows linearly
with the size of the miter. A key advantage of reversible
miters is that they can be significantly smaller, due to gate
cancellations and other circuit simplifications.

2) State-of-the-art Combinational Equivalence Checking:
SAT-based techniques can be dramatically improved through
synergies with randomized functional simulation and through
identifying intermediate equivalences. By hashing the results
of random simulation, one finds candidate equivalent wires.If
w1 andw2 arenot equivalent, the counterexample returned by
SAT is used to refine the results of functional simulation and
often distinguishes other seemingly-equivalent pairs of wires.
Once intermediate wiresw1 and w2 are proven equivalent,
all downstream gates are reconnected tow1, and w2 can
be excluded from the SAT instance (along with some of its
upstream gates). If potentially equivalent wires are selected
in a topological order from the inputs, the impact of multiple
circuit restructuring steps accumulates, until all outputwire
are proven equivalent or until an input combination is found
that disproves the equivalence of outputs.

The state-of-the-art implementation of these techniques
found in the Berkeley ABC system [18] (the “cec” command)
features incremental SAT-solving andfraiging — a fast circuit-
simplification technique based on hashing [9]. To use ABC, we
construct a conventional (irreversible) circuit from a reversible
circuit as shown in Fig. 1.

The impact of random-simulation techniques on SAT-based
equivalence-checking can be illustrated by the example of
multiplier circuits, which are known to confound both BDD-
based and SAT-based computations. The case of equivalent
multipliers is particularly difficult because it cannot be quickly
concluded by finding (perhaps, by luck) input combinations
that disprove the equivalence. However, if the two given mul-
tipliers are structurally similar and include many equivalent
wires, then global equivalence can be proven quickly through
a series of lemmata.

Common benchmarks for reversible circuit synthesis can be
verified in milliseconds by the above techniques. Therefore,
we focus on scalable blocks of standard quantum algorithms,
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whose optimization and equivalence-checking are criticalto
the success of quantum computers being designed today.
More concretely, we performed experiments withn-bit linear-
nearest-neighbor (LNN)CNOT gate circuits, a reversible
ripple-carry adder circuit proposed in [1],meshcircuits [2]
and reversible multipliers. Given a (qu)bit ordering, a linear-
nearest-neighbor (LNN) CNOT gate circuit is a circuit which
realizes the functionality of a CNOT gate with target and
control bits k bits apart, by using only LNN gates (gates
that operate only on adjacent qubits). As an example of the
circuits in our study, we show a ripple-carry adder circuit
for n = 4, and its LNN version in Fig. 7. Studies of
LNN architectures are important because several promising
implementations of quantum computation require the LNN
architecture (also called thespin-chain architecture in the
physics literature) and allow only adjacent qubits to interact
directly. Thus, standard quantum circuits must be adapted to
such architectures and modified to use only LNN gates. Spe-
cific transformations and LNN circuits have been developed
[2], [5]. The overhead of the LNN architecture in terms of
the number of gates is often limited by a small factor (3-5).
Such physical-synthesis optimization motivates the need for
equivalence-checking against the original, non-LNN versions.
Using important components of Shor’s algorithm [2], [10] —
adders, meshes and multipliers — we build three types of
equivalence-checking instances.
Same.Two equivalent circuits.
Different 1. Add ten random Toffoli gates at the end.
Different 2. Add ten random Toffoli gates at the beginning.

Our empirical data for CNOT, adder, mesh and multipliers
exhibits essentially the same trends. Hence we report results
only for adders in Table I. Runtimes are reported inseconds
on a Linux system with a 2.40GHz IntelR© XeonTM CPU with
1GB RAM.

B. Checking Properly-Quantum Circuits

We now show that our techniques handle properly-quantum
gates in a way compatible with special-case methods.

1) Utility of Reversible Miters:Earlier sections focused on
equivalence-checking of reversible circuits which appearin
modules of quantum algorithms and require physical synthe-
sis optimizations [2] that must be verified. However, other
important modules in quantum algorithms, such as theQuan-
tum Fourier Transform (QFT), are properly-quantum, and

TABLE I
ADDER VERIFICATION PERFORMED BY SEVERAL TECHNIQUES.

Case n ♯qubits ♯gates SAT QuIDD BDD cec
Same 32 66 280 0.65 20.10 0.03 0.19

64 130 568 2.91 115.85 0.11 0.23
128 258 1144 11.71 771.20 0.52 0.31

Diff. 1 32 66 290 1.00 31.93 0.04 0.02
64 130 578 5.16 212.57 0.25 0.26
128 258 1154 15.25 > 1,000 1.67 0.38

Diff. 2 32 66 290 1.09 40.40 0.09 0.02
64 130 578 10.98 318.62 0.76 0.03
128 258 1154 22.72 > 1,000 9.88 0.03

conventional circuits, such asmodular exponentiation, can
be optimized for performance using properly-quantum gates.
Fortunately, the utility of miters relies on (symbolic) cancella-
tions of gates, and equally applies to reversible and properly-
quantum circuits, unlike previously known techniques for veri-
fying conventional digital circuits. Reduced properly-quantum
miters can be verified using symbolic simulation with QuID-
DPro [16] or QMDD software [8]. Using reversible miters
as pre-processors can greatly decrease overall runtime. We
empirically compare the following two methods.
With Local Simplification. Before invoking QuIDDPro, re-
duce the miter using local simplification.
W/o Local Simplification. Apply QuIDDPro to the miter.

We compared the above two methods using several circuit
types, but have room to report only one example. We check
equivalence between an LNN and non-LNN implementation
(without measurement gates) of Shor’s algorithm for factoring
the number 15. These equivalent properly-quantum circuits
include 2,732 gates for the non-LNN version and 5,120 gates
for the LNN version. Their structure is very different. For
equivalence-checking, we used QuIDDPro with and without
local simplification, and these runs completed in 59.07s and
64095.22s, resp. The results confirm the effectiveness of local
simplifications with reversible properly-quantum miters.

2) Boosting Verification by Using SAT-based Combina-
tional Tools: Local simplification may leave many gates
around, after which QuIDDPro tends to consume significant
time and memory. However, if very few properly-quantum
gates remain, a more lightweight verification procedure maybe
used. Generic symbolic simulators, such as QuIDDPro, do not
scale (empirically) as well as leading-edge SAT-based combi-
national equivalence-checking (CEC) used in the Electronics
industry to verify modern digital circuits (Sec. IV-A). Hence
we leverage SAT-based tools for quantum circuits.

FOR TWO CIRCUITSC1 AND C2, WE DO THE FOLLOWING.
Step 1.Construct the miter circuitC = C1 · C−1

2
.

Step 2.Perform simplification of the miter circuit.
Step 3. If properly-quantum gates remain, go to Step 4, else
invoke state-of-the-art SAT-based combinational equivalence-
checking (the “cec” command of ABC system [18]) to tell if
the miter circuit is equivalent to Identity.
Step 4.Find the longest sequence of conventional logic gates
(NOT, CNOT, Toffoli) in the miter circuit. Label this sequence
Ca. Let the simplified miter circuit beQa · Ca · Qb.
Step 5. TransformQa · Ca · Qb to Ca · Qb · Qa. Note that
Qa · Ca · Qb = I (Identity) iff Ca · Qb · Qa = I as shown



in Sec. III-B1. Move conventional gates inQb · Qa to the
front of the miter as much as possible, creating a transformed
miter C ′

a ·Q′
b, whereC ′

a andQ′
b are a reversible circuit and a

properly-quantum circuit, respectively.
Step 6.Check the functionality ofQ′

b by lightweight iterated
simulation. If it is properly quantum, conclude that the miter
circuit is not Identity. Else, go to Step 7.
Step 7. Exploit the functionality ofQ′

b, and let Cb be a
conventional circuit which corresponds to the exploited logic
functionality. Then, check whetherC ′

a · Cb is Identity or not.
Suppose we have few properly-quantum gates as shown

in the left-hand side of Fig. 6 whereC1 is relatively large.
Then after Step 5, we can get the right-hand side circuit
from the left-hand side circuit in Fig. 6. Our miter becomes
C1 · Q2 whereC1 is reversible butQ2 is properly-quantum.
This avoids a heavy-duty generic quantum simulator forC1.

A key observation is that the functionality ofQ′
b (at Step 6)

should be classical (inverse ofC ′
a) if the entire miter is

Identity. Thus, ifQ′
b is properly-quantum, the miter circuit is

not Identity. WhenQ′
b has few gates, this can be checked effi-

ciently by a quantum generic simulator. By Step 7, properly-
quantum gates are reduced, and we can use state-of-the-art
SAT-based combinational equivalence-checking. By avoiding
heavy-duty generic quantum simulation, our adaptive method
can achieve significant speed-ups whenC ′

a is large.
To validate our method, we studied circuits implementing

one iteration of Grover’s quantum algorithm for search [3]
as shown in Fig. 2. A particular step of the algorithm, called
the oracle, is implemented with a reversible circuit moduleCf

based on a user-defined Boolean functionf (search predicate).
To make verification more challenging, we configured a search
predicate that contains a multiplier circuit. We then created
an equivalent variant ofCf by applying a global, rather than
local, circuit transform. Namely, we applied a certain wire
permutation on inputs ofCf and its inverse on outputs ofC0.
This permutation was implemented by applying SWAP gates
to (all) pairs of adjacent wires and then breaking down each
SWAP gate into three CNOT gates, as described in Section II.
In our case study, the proposed procedure goes as follows.
Step 1.Construct the miter circuitC = C1 ·C−1

2
= C1

f ·W 1 ·
C1

0
· W 1 · (W 2)−1 · (C2

0
)−1 · (W 2)−1 · (C2

f )−1.
Step 2. Simplify the miter circuit. Because of the inserted
SWAP gates (if we use only naive cancellation rules), we
cannot cancel the two pairs ofC1

f and (C2

f )−1, or C1

0
and

(C2

0
)−1. But we can remove the sequenceW 1 · (W 2)−1,

reducing the miter toC1

f ·W 1 ·C1

0
· (C2

0
)−1 · (W 2)−1 · (C2

f )−1.
Step 3.Since properly-quantum gates remain, go to Step 4.
Steps 4 and 5.Move (C2

f )−1 to the input side of the circuit
to maximize the conventional logic part in the prefix. The
miter becomesC ′

a · Q′
b whereC ′

a = (C2

f )−1 · C1

f and Q′
b =

W 1 · C1

0
· (C2

0
)−1 · (W 2)−1.

Steps 6. and 7.Using techniques described earlier, combine a
quantum generic simulator (QuIDDPro [16], [17]) and state-
of-the-art SAT-based combinational equivalence-checking (the
“cec” command of ABC system [18]).

The above technique is compared to constructing a miter
circuit and applying the symbolic simulator QuIDDPro [16],
[17] to the miter. QuIDDPro alone does not finish in ten hours,
but our technique completes in under seven seconds.

V. CONCLUSION AND FUTURE WORK

We have studied several techniques for equivalence-
checking of reversible circuits, including the new conceptof
reversible miters. In particular, we have observed that state-of-
the-art SAT-based combinational equivalence-checking (CEC)
can be adapted to this context and outperforms generic quan-
tum techniques. Basic BDD-based techniques usually outper-
form SAT-based techniques, but not CEC. As is the case with
ATPG, reversibility can significantly simplify equivalence-
checking, while these simplifications are compatible with other
techniques and amplify them. We then proposed an adaptive
method to verify quantum circuits more efficiently than the
existing quantum circuit verification tools by combining them
with the state-of-the-art SAT-based combinational equivalence-
checking tool for the conventional circuits. Experiments sug-
gest that reversible miters are useful for the verification of
reversible circuits as well as properly-quantum circuits.
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