
Completing High-quality Global Routes

Jin Hu
University of Michigan

jinhu@eecs.umich.edu

Jarrod Roy
IBM Austin Research Lab.

jaroy@us.ibm.com

Igor Markov
University of Michigan

imarkov@eecs.umich.edu

ABSTRACT
To ensure chip manufacturability, all routes must be completed
without violations. Furthermore, the chip’s power consumption
and performance are determined by the length of its routed wires.
Therefore, our work focuses on minimizing wirelength. Our key
innovations include: (1) a novel branch-free representation (BFR)
for routed nets, (2) a trigonometric penalty function (TPF), (3) dy-
namic adjustment of Lagrange multipliers (DALM), (4) cyclic net
locking (CNL), and (5) aggressive lower-bound estimates (ALBE)
for A*-search, resulting in faster routing. We complete allroutable
ISPD 2008 contest benchmarks and re-placedadaptec suite without
violation and produce shorter routes.

Categories and Subject Descriptors
J.6 [Computer-aided Engineering

¯
]: Computer-aided design (CAD)

General Terms
Algorithms, Design, Performance

Keywords
Global Routing

1. INTRODUCTION
As chip complexity grows, back-end tools must limit routed in-

terconnect length, as this greatly affects the chip’s performance,
dynamic power, and yield. Moreover, violation-free globalrouting
solutions facilitates smooth transitions to design-for-manufacture
(DFM) optimizations. Conversely, solutions with violations imply
the design will not function correctly when fabricated.

If a global router produces a violation-free (legal) solution, then
the design can move onto detail routing and continue throughthe
design process. However, if a routed design is inevitably unroutable
or has violations, then a secondary step must isolate problematic re-
gions (see Figure 1). Given a significant number of violations, it is
common practice to fix the routing by repeating global and/ordetail
placement and injecting whitespace into congested regions. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’10, March 14–17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$10.00.

Global
Routing

Violation-
free?

Violations
Isolated?

Spot-repairSpot-repair

from placement

to detail routing

no

(1)
yes

(2)

(3)

(Re-)Placement(Re-)Placement
no

yes

Figure 1: The global routing portion of the VLSI design flow.
Fully routable designs are handed off to detail routing. Other-
wise, the design can (1) be sent directly to detail routing, (2) go
through spot-repair, or (3) go through re-placement iterations,
depending on the severity of violations.

type of congestion-driven placement is supported by both com-
mercial and academic software, like Kraftwerk2 [20], and NTU-
Place [9]; Capo with ROOSTER [19] and FastPlace with IPR [16]
explicitly consider specific types of routes during global placement.
In other words, the global router is not solely responsible for pro-
ducing a violation-free solution.

If the number of violations is small or the violations are suf-
ficiently separable, then 1) a secondary tool can attempt to spot-
repair the slightly illegal layout, 2) the design can be handed off
to detail routing, or 3) the design is sent back to placement.Spot-
repair is the most attractive option, as it allows the violations to be
fixed without affecting the large majority of global routes.With a
small number of violations, most commercial tools gamble onde-
tail routing to resolve them. Therefore, a global router does not al-
waysneed to minimize violations but it usuallymust minimize the
total wirelength of the design because (i) the length of the routed
nets directly affects how and if violations can be repaired,(ii) spot-
repair does not significantly alter the total wirelength, and (iii) de-
tail routing largely follows global routes.

In practice, even a small number of global-routing violations
imply a long runtime in detail routing,degraded signal integrity
caused by densely packed wires, anddishing effects caused by CMP
during fabrication. Instead, designers allocate greater amounts of
whitespace to wire-dense blocks during floorplanning whileEDA
tools use congestion-mitigation techniques during placement. Tools
like FastRoute [15] were originally designed to provide congestion
feedback to global placers [16] rather than as a high-quality router.

High-quality routing solutions on recent large-scale benchmarks
[7] from IBM were produced by FGR 1.1 [18]. At the ISPD 2008
Global Routing Contest [8], NTHU-Route 2.0 [2] and NTUgr [3]
also posted high-quality results, along with improved runtimes. In
addition, FastRoute 4.0 [21] claimed exceptionally low runtimes.

Similar to [2, 3, 18], our work focuses on finding high-quality
routing solutions. We note that decreasing high violation counts
on unroutable benchmarks by less than 50% offers only marginal
benefits because such situations typically require the design to be
sent back to global placement [9,16,19,20] or netlist restructuring.

Routing
Instance

Multi-pin Net
Decomposition
Multi-pin Net

Decomposition
Initial Routing

+ BFR
Initial Routing

+ BFR
Layer

Assignment
Layer

Assignment

Final Clean-up
+ ALBE

Final Clean-up
+ ALBE

Routed
Solution
Routed
Solution

Violation-
free?

Violation-
free?

Global
Time-out?

Global
Time-out?

Update
Lagrange Multipliers

+ DALM

Update
Lagrange Multipliers

+ DALM

Rip-up and
Reroute Nets

+ TPF, CNL, BFR

Rip-up and
Reroute Nets

+ TPF, CNL, BFR

yes

yes

no

no

2-d Routes 3-d Routes

Figure 2: The flow of global routing in BFG-R and the use of
novel techniques such as a branch-free representation (BFR)
for routed nets, cyclic net locking (CNL), dynamic adjustment
of Lagrange multipliers (DALM) a trigonometric penalty fun c-
tion (TPF), and aggressive lower-bound estimates (ALBE).

We make the following key contributions through BFG-R:
• Several improvements to existing routing algorithms that re-

duce wirelength, e.g., dynamic adjustment of Lagrange mul-
tipliers (DALM) and accurate 2-d via pricing.

• Reducing runtime by cyclic net locking (CNL).
• Techniques to reliably complete (without violations) designs

such as an effective trigonometric penalty function (TPF).
• A branch-free representation (BFR) for single routed nets.
• An aggressive lower-bound estimate (ALBE) for A*-search.
• Empirical comparisons against the winners of the ISPD 2008

Global Routing Contest [8]. BFG-R completes the twelve
routable ISPD 2008 Contest benchmarks without violations,
more than any other router. On those benchmarks, BFG-R
improves upon the solutions that were generated by NTHU-
Route 2.0 [2], producing more violation-free solutions with
comparable wirelength. BFG-R also produces better solu-
tions than NTUgr [3] and FastRoute 4.0 [21] on the major-
ity of designs. On a new set of benchmarks using re-placed
adaptec netlists, we successfully route all designs without vi-
olation whereas all other routers fail on at least one design.

The remainder of this paper is structured as follows. Section 2
outlines BFG-R’s global routing flow. Section 3 describes the new
algorithms that are key to BFG-R’s high performance. Section 4
discusses the data structure that allows BFG-R to maintain scala-
bility for large problem instances and handle large netlists. Section
5 presents BFG-R’s results on the ISPD08 Contest benchmarks[8]
andadaptec netlists re-placed with mPl6 [1]. Section 6 concludes
our current work and discusses future work.

2. GLOBAL ROUTING FRAMEWORK
In this section, we explain the general global routing framework

of BFG-R, as shown in Figure 2. We also describe several key
algorithms in BFG-R that significantly improve solution quality.

Given a global routing instance, BFG-R first splits multi-pin nets,
nets with three or more pins, into two-pin subnets. BFG-R then
produces an initial routing solution on a 2-d grid. If the design
has no violations, BFG-R performs layer assignment – projecting
2-d routes onto a 3-d grid – and a final clean-up pass to minimize
wirelength. If the design has violations and a global time-out has
not been exceeded, then the Lagrange multipliers, factors that af-
fect the edge cost, are updated. BFG-R then rips up any violating
nets and reroutes them based on the costs of individual edgesin a
pre-determined order. This iterative process continues until either
all violations have been resolved or the global time-out hasexpired.
BFG-R then performs layer assignment and a final clean-up pass.

2.1 Multi-pin Net Decomposition
Competitive routers explicitly decompose (split) large nets into

sets of two-pin subnets. There are two mainstream methods: (1)
minimal spanning tree (MSTs), used by NTUgr [3] and FGR 1.1
[18], and (2) Steiner minimal trees (SMTs), used by NTHU-Route
2.0 [2] and FastRoute 4.0 [21]. Steiner trees offer minimal wire-
length for nets and can therefore ease initial routing iterations. How-
ever, routers must support effective net restructuring, which re-
quires advanced algorithms and flexible data structures. MST-based
decompositions, on the other hand, can lead to a worse initial rout-
ing solution, as MSTs can have up to 150% of Steiner tree wire-
length. Thus, the maze router must work harder to reduce wire-
length and congestion. However, as we show in Section 4.1, sub-
nets generated using MSTs can share resources and can be restruc-
tured into SMTs without explicitly storing branching points. Thus,
BFG-R decomposes multi-pin nets using MSTs instead of SMTs.
Second, it facilitates a stand-alone implementation and does not
rely on external Steiner-tree packages.

2.2 Balancing Wirelength and Violations
A major challenge in large-scale routing is balancing wirelength

against violations as competing objective functions. Published rout-
ers include separate factors to balance wirelength and congestion
[14, Section 3.4] by tuning weights in linear combinations.How-
ever, as stated in [4],ad hoc trade-offs may lead to violent diver-
gence of routing iterations. Therefore, several routers use dampen-
ing factors to ensure convergence [4].

Instead of explicitly trading off wirelength for violations, BFG-
R uses Lagrange multipliers with a complementary cost function.
This approach effectively guides the routes to areas with lower cost
and smaller congestion. This key technique,edge-centric Lagrange
multipliers, was introduced first in [18]. While Lagrangianrelax-
ation has been suggested for global routing, previous work has ei-
ther been specific to timing-driven routing and maintainnet-centric
Lagrange multipliers [10] or focused on a single net at a time.
These algorithms use conventional history-based rip-up and reroute
for the router’s main loop. In contrast, our formulation directly
handles modern instances of global routing, such as those from the
ISPD ’07 and ’08 contests. Unlike previous routers, the history cost
is only based on the congestion and does not affect the base cost of
a routing edge. The cost of an edgee depends on its base costbe,
Lagrange multiplierhe, and congestion penaltype [18]:

ce = be + he · pe (1)

Lagrange multipliers are updated at the beginning of rip-upand
reroute iterationk in the following way [18]:

hk
e =

hk−1
e + hstep if e is over-capacity

hk−1
e otherwise

(2)

Compared to previous work, we use a different penalty functionpe

for local congestion (see Section 3.3), and we do not use a con-
stanthstep (see Section 3.2). The stopping criterion for rip-up and
reroute iterations gauges the amount of effort applied on hard-to-
route instances. In our current implementation, the default version
of BFG-R stops when a legal solution is found or upon running for
24 hours (according to the ISPD08 routing contest).

2.3 Net Ordering
Nets that use over-capacity edges are ripped up and must be

rerouted. We have observed the best results when subnets were
routed(i) in ascending order of their bounding box area in areas
of low congestion and(ii) in ascending order of how much their
bounding box area deviates from the median bounding box areain
areas ofhigh congestion.

2.4 Point-to-point Routing
During initial routing and rip-up and reroute (R&R), a router

must connect pin pairs in the routing grid. Common methods in-
clude pattern routing, used by NTHU-Route 2.0 [2] and Sidewinder
[6], and monotonic maze routing, used by FastRoute 2.0 [16].

In pattern routing, a small number of route shapes are examined
to connect the points. Typically, these shapes have short wirelength
and few bends such asL, U, andZ patterns. This method is the
fastest method to connect pin pairs, especially when there are no
routing obstacles or over-capacity routing edges present.In prac-
tice, we notice that about 90% of subnets from the final routing
solution areL-shaped (includes flat subnets). However, in the pres-
ence of congestion, the vast majority of runtime is spent routing
connections that are not pattern-shaped.

If there are relatively few obstacles, monotonic maze routing is
a viable option to route two-pin subnets. Instead of following a set
path, the monotonic router searches those edges that move closer
to the target in terms of Manhattan distance. Monotonic routing
can be performed in linear time, using dynamic programming [17].
This method finds any route that pattern-routing can, but, due to
decision making overhead, will take longer.

If there are more than a few blockages, monotonic routing can
fail to find a violation-free route, even if one exists. Instead, a
better alternative is to use boxed A*-search (BAS) with an accurate
lower-bound function. BAS (1) combines Dijkstra’s shortest path
algorithm with a non-trivial lower-bound function1, (2) restricts the
search space to within the pins’ bounding box (or a wider box),
and (3) allows all edges to be traversed anytime during the search.
BAS finds the solution with minimal detouring, given that a path
exists. Routes that are found by pattern and monotonic routing are
a proper subset of those found by BAS, but using BAS for those
routes usually takes longer.

2.5 Continuous Net Restructuring
Published competitive routers, NTHU-Route 2.0 [2], NTUgr [3],

FastRoute 4.0 [21] and FGR 1.1 [18], all employ net restructuring
during maze routing. To preserve topological flexibility, we re-
structure nets continually similar to FGR 1.1. To limit runtimes,
we developed a new technique called dyclic Net Locking (CNL),
described in Section 3.5 below.

2.6 End-game Optimizations
After rip-up and reroute, BFG-R performs layer assignment fol-

lowed by a final clean-up on the 3-d grid. There are two basic
approaches to layer assignment. The simplest, but impractical, ap-
proach is to use maze routing on the entire 3-d routing grid. The
more common approach, used by nearly all competitive routers,
starts by compacting the 3-d routing grid onto a simpler 2-d grid
with aggregated routing resources. The search is then performed
on the 2-d grid. After maze routing finishes, 3-d routes for each net
are reconstructed from solutions obtained from the 2-d grid.

The authors of [18] show that if edge capacities are aggregated
properly, there exists a 3-d solution that has the same number of
violations as the 2-d solution. Several methods to assign the routes
to layers have been proposed, including an ILP-based algorithm
[4], dynamic programming [11], and a greedy approach [18]. BFG-
R’s layer assignment adapts a fast, greedy strategy followed by one
round of full 3-d wirelength reduction.

After layer assignment and before traditional 3-d clean-up, we it-
erate over all routing edges and temporarily increase the capacities
of edges with violations so that they become 100% utilized. This

1Vias are not represented explicitly, but priced implicitly.

makes the solution temporarily legal. Next, we apply the clean-
up pass and find alternative shorter routes. Note that the total and
maximum overflow of the original 2-d solution cannot increase, as
(1) edges that have violations are already illegal and (2) edges that
have no violations cannot become illegal.

After clean-up, we reinstate the correct capacities for allrouting
edges and recalculate the total and maximum overflow for the final
solution. We observe that this clean-up method is as effective in
reducing total wirelength usage in illegal solutions as it is in legal
solutions, and usually decreases total overflow by a small amount.

3. KEY ALGORITHMS IN BFG-R
In this section, we outline key enhancements to our global rout-

ing flow that improve the router’s overall performance and its abil-
ity to quickly find high-quality solutions.

3.1 Edge Clustering During Rip-up
To improve memory locality and cache utilization, BFG-R first

finds all edges that have at least one violation and clusters them
based on location. To this end, BFG-R starts with an arbitrary edge
and performs a breadth-first expansion through neighboringedges.
Over-capacity neighboring edges are added to the current cluster,
and the expansion continues. After collecting all over-capacity
edges in the area, BFG-R finds the next over-capacity edge andini-
tiates a new cluster. This process continues until all over-capacity
edges are clustered. Each edge will only belong to exactly one clus-
ter, and performing R&R by clusters will not require extra work.
Moreover, we ensure that if a subnet crosses multiple clusters, it
will only be ripped up and rerouted once.

BFG-R then considers each cluster in order of increasing viola-
tion count. That is, it first rips up and reroutes the nets in relatively
uncongested areas in hopes of freeing up valuable resourcesfor the
more congested clusters. After the first few R&R iterations,when
congested edges break down into separate regions, edge clustering
roughly halves the runtime of subsequent iterations.

3.2 Dynamically Adjusting
Lagrange Multipliers (DALM)

Numerical updates of Lagrange multipliers (history costs)are
critical to the success of the negotiated-congestion [12] and dis-
crete Lagrange multiplier [18] routing frameworks. They must be
precisely determined since they are the dominant factors indeter-
mining both solution quality and runtime.

Previous work [12, 18] increases Lagrange multipliers of con-
gested edges by a constanthstep according to Equation 2. Em-
pirically, we find that large steps lead to increased speed but also
increased detouring. Conversely, small steps lead to lowerfinal
wirelength but much increased runtime. Further complicating the
issue is that different benchmarks have drastically different opti-
mal ranges of steps. Therefore, we use the following two, more
aggressive, history cost functions to balance runtime and quality:

hk
e =

8

<

:

hk−1
e + hstep × 1.25 if eOF ≥ TEdgeOF

hk−1
e + hstep else ifeOF > 0

hk−1
e otherwise

(3)

whereTEdgeOF = max(eOF) × 95%. That is, all edges that
have overflow within 5% of the maximum edge overflow will have
an additional increase to its history cost. Otherwise, an overflown
edge will receive the standard increment. For the largest cluster, we
give the most congested edges an additional cost:

hk
e = hk

e + (1 − cluRatio + α)−1 if eOF ≥ TCluOF (4)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τtan=Penalty

τ=Penalty

Overflow Penalty vs. Relative Time

Relative Time

O
ve

rf
lo

w
 P

en
al

ty

(a)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
1
2
3
4
5
6
7
8
9

10
1=τ

5.0=τ

0=τ

Edge Cost vs. Relative Overflow

Relative Overflow

E
d

g
e

C
o

st

(b)

Figure 3: Trigonometric cost function used in BFG-R. The
overflow penalty grows trigonometrically with the relative time
τ (a). The cost function grows linearly with overflow (b).

where cluRatio is the cluster size divided by the total number
of over-capacity edges,TEdgeOF = max(cluOF) × 90%, and
0 ≤ α < 1. That is, within the largest (and most congested)
cluster of over-capacity edges, for the edges within the top10%
of the maximum edge overflow within the cluster will receive an
additional increase. The parameterα controls how fast the penalty
should grow. In practice, we have found thatα = 0.75 works well
to balance solution quality and runtime.

To find better Lagrange steps, we adjust them dynamically be-
tween iterations of rip-up and reroute. We allow for a generous
range of Lagrange steps, which includes the optimal range ofall
available benchmarks, and adapt the step within[hmin

step, hmax
step] over

time. Our initial step is chosen to be
hmax

step +hmin
step

2
, and we choose

a delta for Lagrange steps∆step =
hmax

step −hmin
step

200
. We route in the

framework of Section 2 and Figure 2, while Lagrange steps are
modified between iterations as follows

hk+1
step =

8

>

>

>

<

>

>

>

:

hk
step + ∆step if violk ≥ violk−1

if violk < violk−1 and
hk

step − ∆step WLk > WLk−1

if violk < violk−1 and
hk

step WLk ≤ WLk−1

(5)

Empirically, Lagrange steps change significantly during the early
iterations of rip-up and reroute, settle to within a small range of
steps during the middle iterations, and finally increase when near-
ing a legal solution. As reported in Table 1, this technique helps
BFG-R find high-quality routes while reducing violation counts.

3.3 Trigonometric Penalty Function (TPF)
A competitive router must ensure that its iterations make consis-

tent progress. If the benchmark is routable, a global routershould
eventually find a solution with no overflow. However, routerscan
take a long time to clear the last few violations on difficult-to-route
(but routable) designs; lack of progress can force a router into a
local minimum. This situation is magnified in the benchmarknew-
blue1, where several routers struggle to find a legal solution.

To find better routes, other routers increase the penalty forover-
flow over time. For instance, Hadsell et al. [5] amplified the con-
gestion cost at a linear rate, capping the growth at 1.2× after the
routing edge was over- capacity by 20%; FGR 1.1 [18] and NTHU
2.0 [2] increased the penalty for overflow at an exponential rate
over time. However, an overly sharp or discontinuous increase in
penalty may mislead the maze router early on and cause it to find
poor-quality routes. Therefore, the penalty function mustcontinu-
ously increase, starting at low values.

We propose a new penalty functionp of a routing edgee based on
its relative overflowωe and the relative timeτ = CurrentTime

MaxTimeAllowed

p(e) =

ωe × (1 + tan(τ)) if ωe > 1
ωe otherwise

(6)

BFG-R’s cost function grows linearly with overflow but trigono-
metrically with time, as shown in Figure 3. Note that toward the
beginning, the growth factor is close to 0. Thus, it does not inter-
fere with the original performance of the maze router. As runtime
increases, the penalty grows faster in order to properly direct the
maze router to find violation-free routes. In practice, BFG-R is
able to legally routenewblue1 (without violations) while solutions
found by other routers have violations and higher wirelength.

3.4 Via Pricing
To perform 3-d routing, BFG-R first generates the routes on the

2-d grid and then projects the routes onto the 3-d grid. Thus,during
2-d routing, a global router should be aware of the cost to cross
layers. The most common approach to price vias is to use a constant
cost function. Some other routers have via cost decrease over time
[2] or use benchmark-specific fixed costs [21].

During 2-d routing, BFG-R estimates the ratio between the num-
ber of 3-d vias to 2-d vias. That is, the expected number of 3-dvias
needed to represent one 2-d via is proportional to the numberof
layers. Thus, to accurately model the number of 3-d vias needed
per route, we price 2-d vias as follows

p(V IA) = ⌈l/2⌉ × viaFactor (7)

wherel is the number of available routing layers andviaFactor is
the original price of a 3-d via specified by the designer.

3.5 Cyclic Net Locking (CNL)
We observed through profiling that the vast majority of runtime

in the unmodified BFG-R flow is spent routing nets with large
bounding boxes. Since all violating nets will eventually beripped
up, we control how often long nets are ripped up.

BFG-R classifies subnets by the area of their bounding box mea-
sured in whole routing grid cells, orGCells, so that long flat subnets
do not have zero area.

Area(BBoxn) = (|BBoxn.x1 − BBoxn.x2| + 1) ×
(|BBoxn.y1 − BBoxn.y2| + 1)

(8)

This effectively estimates the search space for boxed A*-search on
a subnet. From this, we found that (1) almost all of the nets’ routes
are within2× of their HPWL and (2) few nets route with a signifi-
cant number of detours.

Therefore, we propose to lock larger subnets after the first few
iterations of rip-up and reroute, but unlock them periodically after.
How often a subnet is unlocked is determined based on the sizeof
its bounding box relative to the average bounding box size:

AvgArea =

„

1

N

« N
X

n=1

Area(BBoxn) (9)

A subnetn is allowed to be rerouted everyPeriod(n) iterations:

Period(n) = min

‰

Area(BBoxn)

AvgArea

ı

, 20

ff

(10)

Thus large subnets are unlocked less frequently than small subnets
(but at least every 20 iterations) and subnets with average or smaller
area are never locked. We chose not to unlock many nets at once,
but instead use adispersive strategy that aims to unlock similar
numbers of nets at each iteration. To do so, subnetn is allowed to
be unlocked during iterationi if the following condition is satisfied

(i < 2) or ((i + n) mod Period(n) = 0) (11)

This condition effectively staggers unlocking of large nets and also
allows them to be unlocked with the proper period. We find that

Branching Point

Route of Net n Traditional Net
Representation

Branch-free
Representation

Subnet (n,1) Subnet (n,2)

Figure 4: The branch-free representation (BFR) of routed nets.
Subnets are treated separately but can share routing edges.
Collectively they represent a Steiner tree.

this method improves the framework of Section 2 dramatically with
little impact on solution quality2. The success of CNL indicates
significant flexibility in choosing which nets to reroute, and justifies
the focus on rerouting shorter nets for efficiency.

3.6 Aggressive Lower-bound Estimate (ALBE)
Of commonly-used point-to-point routing techniques, A*-search

is the most flexible and guarantees to find the shortest path ifa path
exists. However, A*-search degenerates into Dijkstra’s algorithm if
its admissible function underestimates the true path-suffix cost too
much. This effect is especially pronounced when 1) temporarily
setting shared edge costs to zero when routing multi-pin subnets
and 2) using traditional distance-based lower-bound functions, e.g.,
distance× cost of the cheapest edge, after history has accumulated.
The growth of history costs hampers the maintenance of minimum
edge costs in a given region, and routers typically do not increase
the initial minimum edge cost as history costs accumulate.

In the presence of even a single zero-cost edge, theminimum
edge cost becomes zero, and traditional distance-based admissi-
ble functions used for A*-search become trivial. To combat this,
FGR 1.1 [18] and BFG-R employǫ-sharing, where shared edges
are given a smallǫ > 0 cost, rather than zero.

To maintain the speed of A*-search as history costs grow, we
use an aggressive lower-bound estimate. For each subnet, instead
of using the minimum edge cost of all possible edges to compute
a distance-based lower bound, we traverse its path from the last
iteration of R&R and use the minimum cost along that route. As
perǫ-sharing, each shared routing edge contributes less than a non-
shared edge. Not only is this a more realistic method to estimate
a lower bound of the new path, the search is sped up as it uses a
greater lower-bound function.

One caveat with using this estimate is that it can be too high to
serve as an admissible function. That is, this estimate can slightly
over-estimate the actual cost. When this happens, BAS maintains
its speed but can (sometimes) overlook optimal routes. We there-
fore do not rely on aggressive lower bounds during R&R but use
them to reduce the runtime of our greedy clean-up. In this context,
its impact on solution quality is negligible.

4. ROUTE REPRESENTATION
High-performance routing demands transparent data structures.

What and how to store is equally important compared to whatnot
to store, as excessive sophistication of data structures often leads
to poor performance in practice. Compared to the top routersfrom
the ISPD 2008 Contest, we use about the same amount of memory
as FastRoute 4.0, 20% less than NTUgr, and 2.5× less than NTHU
(4× less on the largest benchmarks).

2It is not difficult to ensure that approximately equal numbers of
nets are routed per iteration using randomization, but our method
is straightforward and works well in practice.

4.1 Branch-free Representation (BFR)
of Individual Routed Nets

Several possible data structures can represent nets with three or
more pins. The most straightforward approach is to divide each net
into a group of disjoint line segments (with bends). In the case of
the three-pin netn shown in Figure 4, this would add a branching
or Steiner point to the middle of the net, creating threesegments,
a set of connected routing edges in one direction. This representa-
tion supports proper calculation of routing resources and is used in
global routers such as FR 4.0 [16] and NTHU-R 2.0 [2]. Other
routers like MaizeRouter [13] store only the full horizontal and
vertical segments but no intermediate points. However, this rep-
resentation severely limits net restructuring, which modern global
routers frequently perform – either explicitly by decomposing nets
or implicitly through maze routing as in FR 4.0 and FGR 1.1 [18].
The process of restructuring nets causes branching points to move,
appear, and disappear, which is difficult to support. Once a net is
restructured, segments or branching points must be internally modi-
fied, e.g., branching points added, larger segments split into smaller
segments, to support the new topology.

We propose a different data structure where branching points are
represented implicitly. Let asubnet be a pair of terminal pins of a
net. For eachsubnet, we store (i) eachoccupied routing edge, and
not segments, and (ii) the coordinates of its endpoints. These pairs
of points must collectively form a spanning tree, e.g., a minimum
spanning tree (MST). Each net also stores the indices of the rout-
ing edges it uses and can easily find its subnets that use a particular
routing edge. Such a mapping can be implemented with an STL
hash-map or balanced binary tree, but in practice both data struc-
tures require too much memory. Instead, our memory-efficient data
structure is an array of pairs of (1) routing edge indices and(2) the
number of subnets of the net that pass through the edge. This con-
tainer supportsO(log |E|)-time search, andO(|E|)-time insertion
and deletion, where|E| is the number of edges. However, in prac-
tice, the number of traversed edges is small.

Since each net stores the indices of used edges, routing resource
usage can be calculated exactly and efficiently. These data struc-
tures allow BFG-R to maintain Steiner trees for nets withoutan
explicit representation of branching points. We also find that BFR
can ease the implementation of a router, as branching pointsare
processed implicitly during maze routing rather than beingcreated
and destroyed explicitly. We found that 1) the overlap in BFRbe-
tween subnets is small, as long as the net is initially decomposed
using an MST and 2) coalescing subnets takes little time. Other
routers, on the other hand, choose to use more memory to reduce
runtime. For example, NTHU-R [2] uses large hash maps and pre-
computes edge costs for constant-time look-up.

4.2 Supporting Efficient Rip-up and Reroute
To facilitate efficient rip-up and reroute (R&R), fast identifica-

tion of which subnets should be ripped-up at each iteration is cru-
cial. Furthermore, the process of finding the appropriate subnets
must take negligible time. To this end, BFG-R stores a list ofpass-
ing subnets every routing edge. To quickly determine which con-
nections need to be adjusted during an iteration, BFG-R goesover
all routing edges, finds which edges are over-capacity, and adds the
subnets that use the edge to the list of subnets to be ripped up.

When ripping up subnets, every routing edgee used bys re-
movess from its list of subnets. The map maintained by net is then
updated to reflect that one of its subnets no longer usese. If no
other subnets of the same net usee, it is removed from the map and
the resources are returned to the edge. Lastly, every routing edgee
is removed from the list of used edges maintained bys.

NTHU-Route 2.0 [2] NTUgr [3] FastRoute 4.0 [21] Best Tuned [2, 3, 21] BFG-R (No Tuning)
Benchmark OF Cost Time OF Cost Time OF Cost Time OF Cost Router OF Cost Time

total (e6) (m) total (e6) (m) total (e6) (m) total (e6) Name total (e6) (m)

Solution Quality and Runtime forROUTABLE Benchmarks
adaptec1 0 5.37 6.4 0 5.67 42.4 0 5.50 3.6 0 5.36 NTHU 2.0 0 5.43 8.4
adaptec2 0 5.24 2.8 0 5.47 7.4 0 5.28 1.2 0 5.23 NTHU 2.0 0 5.23 3.7
adaptec3 0 13.15 4.2 0 13.77 35.0 0 13.26 2.7 0 13.11 NTHU 2.0 0 13.14 16.0
adaptec4 0 12.18 15.1 0 12.41 14.7 0 12.15 1.1 0 12.17 NTHU 2.0 0 12.16 5.2
adaptec5 0 15.54 5.2 0 16.52 100.9 0 15.91 10.3 0 15.54 NTHU 2.0 0 15.67 15.5
bigblue1 0 5.57 10.0 0 5.95 118.3 0 5.89 8.0 0 5.57 NTHU 2.0 0 5.72 10.2
bigblue2 86 9.00 12.2 118 9.47 212.0 Invalid Solution 0 9.06 NTHU 2.0 0 9.11 40.8
bigblue3 32 13.07 9.7 0 13.49 25.6 MAZE RIPUP WRONG 0 13.08 NTHU 2.0 0 13.18 20.6
newblue1 164 4.60 14.2 212 4.82 136.0 542 4.73 13.6 0 4.65 NTHU 2.0 0 4.68 256.9
newblue2 0 7.59 1.1 0 7.85 5.1 0 7.53 0.7 0 7.53 FR 4.0 0 7.57 1.5
newblue5 18 23.14 29.0 0 24.25 117.9 0 23.51 13.8 0 23.17 NTHU 2.0 0 23.30 47.6
newblue6 0 17.70 49.4 0 18.74 76.6 MAZE RIPUP WRONG 0 17.70 NTHU 2.0 0 18.01 15.7

Routing Failures 4 2 4 0 0
Improv. 0 OF 0.99 1.04 1.01 0.99 1.00

Solution Quality and Runtime forUNROUTABLE Benchmarks
bigblue4 256 22.80 72.9 410 24.35 302.9 Invalid Solution 162 23.10 NTHU 2.0 434 23.20 1416.6
newblue3 Time Out 33636 11.00 163.6 38020 10.88 1344.1 31106 17.15 NTUgr 33900 10.64 1420.9
newblue4 222 12.89 31.2 284 13.89 223.3 212 13.16 27.7 138 13.04 NTHU 2.0 218 13.08 1413.3
newblue7 68 35.52 1284.6 906 36.91 1403.9 Invalid Solution 54 35.58 FR 4.0 606 35.21 1421.1

Table 1: BFG-R compared with leading routers on the ISPD08 benchmarks [8], whereNTHU 2.0 is NTHU-Route 2.0 andFR 4.0
is FastRoute 4.0. Experimental setup is described in Section 5.1. Invalid Solution indicates disconnected nets.MAZE RIPUP
WRONG is an internal error produced by FastRoute 4.0.Time Out indicates that the router did not produce a solution within 24
hours. Runtimes are not averaged because (1) some routers did not produce valid solutions on all benchmarks, (2) some routers did
not succeed on routable benchmarks, and (3) benchmark solution quality varies significantly.

When adding a new route to a subnets, a similar sequence of
steps is performedin reverse. That is, for every edgee the new
route uses, it is first added to the list of used edges maintained by
s. Next, if no other subnets (of the same net) usee, the map main-
tained by the net is updated to reflect one of its subnets now usese.
Finally, every routing edgee addss to its list of subnets.

5. EMPIRICAL EVALUATION
First, we describe our experimental setup and the sets of bench-

marks used. Next, we compare our solution quality on those bench-
marks against the top three performers from the ISPD 2008 Global
Routing Contest [8].

5.1 Experimental Setup
Our single-threaded implementation of BFG-R is written in C++,

self-contained and does not require any external libraries, source
code, or data files. We compiled our code with g++ 4.3.2 to pro-
duce a 64-bit binary. All BFG-R runs were performed on a quad-
core 2.83 GHz processor with 8 GB of RAM. To draw objective
conclusions, we also ran all other routers on the same machine
with the exception of two benchmarks,newblue3 and newblue7,
for NTHU-Route [2] due to exceptional memory requirements.In-
stead, we ran those two designs on a 2.93 GHz processor with 20
GB of memory. Source codes of NTHU-Route 2.0, NTUgr, and
FastRoute 4.0 were made available by the respective authorsunder
the CEDA-sponsored open-source release. We compiled NTHU-
Route’s C++ code using g++ 4.1.2, as it is currently incompatible
with g++ 4.3.2. We used g++ 4.3.2 to compile NTUgr’s [3] C++
code and gcc 4.3.2 to compile FastRoute 4.0’s [21] C code.

To ensure the proper execution of existing routers, we repro-
duced all published solutions and runtimes for NTHU, NTUgr,and
FastRoute. We found that all three routers tuned to benchmarks.
For example, FastRoute 4.0 used a set of specific parameters based
on the benchmark name, as shown below.
if((strstr(benchFile,

"adaptec1.capo70.3d.35.50.90.gr")!= NULL))
SLOPE=5; THRESH_M=30; ENLARGE=15;
ESTEP1=10; ESTEP2=5; ESTEP3=5;
CSTEP1=5; CSTEP2=5; CSTEP3=10;
COSHEIGHT=4; VIA=4; A=1; L_afterSTOP=1;
mazeSet = 2; goingLV = TRUE; updateType = 0; }

Similarly, NTHU-Route is invoked by a Perl script that uses a
different set of parameters for each ISPD 2008 benchmark; NTUgr
used the number of non-trivial nets to differentiate between bench-
marks and ran tailored flows with pre-set thresholds.

For an objective comparison, we ran each router, including BFG-
R, in its default mode, where the router used the same configuration
for all benchmarks. To negate tuning to specific contest bench-
marks, we made superficial changes to the benchmark files, such as
renameadaptec1 → xXaxXx1.

5.2 Benchmarks
We used two sets of benchmarks for comparison. The first set

is the well-known ISPD 2008 Global Routing Contest benchmarks.
For the second set, we reused the netlists from theadaptec suite and
placed them using mPl6 [1], a global placer that achieved thebest
overall wirelength while observing density constraints inthe ISPD
2006 Placement Contest. We tested every target density in incre-
ments of 10%, starting at 100%. The target densities selected (and
reported in Table 2) are transitional values for which the bench-
marks became routable – increasing the target density by 10%would
lead to routability problems.

5.3 Comparison of Results
In our experiments, each router was configured with identical

parameters for all benchmarks. Table 1 compares BFG-R’s per-
formance on ISPD 2008 Contest benchmarks. Similarly, Table2
compares BFG-R’s performance on the re-placedadaptec suite.
Row Improv.0 OF showing other routers’ performance normal-
ized to BFG-R’s when both routers produced a fully legal solution.
We compare our solution quality to those of NTHU-Route 2.0 [2],
NTUgr [3], and Fast-Route 4.0 [21]. From the first set of bench-
marks, only 12 of the 16 total designs are demonstrably routable.
That is, no router has produced a legal solution for the designsbig-
blue4, newblue33 newblue4, andnewblue7. Every design in the
second set was shown to be routable by at least one router.

3newblue3, is trivially unroutable, as it contains a pin connected to
over 2200 nets, which is greater than the total wire capacityof the
GCell containing that pin.

NTHU-Route 2.0 [2] NTUgr [3] FastRoute 4.0 [21] BFG-R
Benchmark OF Cost Time OF Cost Time OF Cost Time OF Cost Time

total (e6) (m) total (e6) (m) total (e6) (m) total (e6) (m)
adaptec1, 70% 0 4.62 7.2 0 4.83 73.2 184 5.01 26.4 0 4.68 9.8
adaptec2, 60% 0 5.29 0.9 0 5.48 3.7 0 5.31 0.6 0 5.28 2.2
adaptec3, 80% 38 12.16 19.4 28 12.88 470.0 616 12.74 183.1 0 12.15 27.2
adaptec4, 80% 0 10.50 2.3 0 10.75 9.1 10 10.61 4.8 0 10.49 3.2
adaptec5, 70% 4 13.91 25.2 0 14.44 347.8 628 14.49 50.6 0 13.98 32.6

Routing Failures 2 1 4 0
Improv. 0 OF 1.00 1.03 1.01 1.00

Table 2: BFG-R compared with leading routers on the re-placed adaptec benchmark suite. Each benchmark’s netlist was placed using
mPl6 with its corresponding target density. These benchmarks were not used during the development of the routers we evaluate.

Routability. On the contest benchmarks, BFG-R finds legal so-
lutions for all twelve routable benchmarks, whereas NTHU-Route
2.0, NTUgr, and FastRoute 4.0 produce four, two, and four ille-
gal or invalid solutions, respectively. In particular, forthe design
newblue1, BFG-R is able to find a low-cost, violation-free solution
whereas NTHU, NTUgr, and FastRoute all produce solutions with
violations. Solution costs produced by NTUgr and FastRoute4.0
are also higher than those of BFG-R’s violation-free solutions.

On the five re-placed benchmarks, BFG-R is able to route all
designs without violation, whereas NTHU, NTUgr, and FR 4.0 had
two, one, and four violating designs, respectively. In particular,
BFG-R finds a legal solution onadaptec3 with 80% target density
with competitive wirelength when no other router could not.

Wirelength. As illustrated in Table 1, on average, BFG-R pro-
duces routes that are comparable to those of NTHU-R 2.0 and 4%
better than NTUgr on the designs where routers produced violation-
free solutions. BFG-R is 1% better than FastRoute 4.0, but the sam-
ple space is reduced by four designs, as FR 4.0 produced an invalid
solution (having disconnected nets) forbigblue2, came up with an
internal errorMAZE RIPUP WRONG for bigblue3 andnewblue6, and
generated a solution with violations fornewblue1.

On the five re-placed benchmarks, BFG-R produces routes that
are comparable to the three valid solutions from NTHU and theone
valid solution produced by FastRoute. Out of the four valid solu-
tions found by NTUgr, BFG-R runs much faster and finds solutions
that are 2% better. In the majority of cases, BFG-R’s violation-free
solutions cost less than other routers’ solutions with violations.

6. CONCLUSIONS AND FUTURE WORK
We have presented BFG-R, a robust and scalable global router

that produces highest-quality solutions in comparison to NTHU-
Route 2.0 [2], NTUgr [3], and FastRoute 4.0 [21]. We introduced
a set of key techniques that significantly improve BFG-R’s per-
formance on routable benchmarks: a trigonometric penalty func-
tion (TPF), dynamic adjustment of Lagrange multipliers (DALM),
cyclic net locking (CNL), and aggressive lower-bound estimates
(ALBE). We introduced a branch-free representation (BFR) for rout-
ed nets to improve net flexibility. If a legal solution exists, the
techniques proposed in this work ensure that a legal solution with
competitive wirelength will be found.

We have shown that BFG-R can consistently produce a low-cost,
legal routing solution, as long as the design is routable. Incontrast,
NTHU can route designs somewhat faster, but does not guarantee
a legal solution unless given a pre-determined set of parameters.
NTUgr produces the most legal solutions, but at the cost of wire-
length and runtime. FastRoute 4.0 is several times faster onthe
contest benchmarks but produces relatively poor solutions. On the
second set of benchmarks, FastRoute is unreliable, as it cannot find
solutions to four out of five designs and often uses more runtime.

We have also explored the trade-offs made during implementa-
tion by different routers.First, a key difference between our im-
plementation and other routers is the dynamic edge-cost computa-
tion and update. This feature is critical to support multiple rout-
ing pitches and wirewidths.Second, we have noticed that finding

high-quality routes requires carefully adjusting Lagrange multipli-
ers, which necessitates more iterations.Third, finding legal solu-
tions requires a slowly increasing penalty for violations.Fourth,
we have tried to incorporate pattern routing in our flow, but it has
not improved our results.

Our current implementation does not explicitly target unroutable
benchmarks, unlike competing routers. This is a major avenue for
further improvement that we plan to pursue. We are also consider-
ing monotonic routing as a means to accelerate R&R iterations.

7. REFERENCES
[1] T. F. Chan, J. Cong, J. Shinnerl, K. Sze, M. Xie, “mPL6: Enhanced

Multilevel Mixed-size Placement with Congestion Control,” Modern
Circuit Placement, pp. 247-288, 2007.

[2] Y.-J. Chang, Y.-T. Lee, T.-C. Wang, “NTHU-Route 2.0: A Fast and
Stable Global Router,”ICCAD, pp. 338-343, 2008.

[3] H.-Y. Chen, C.-H. Hsu, Y.-W. Chang, “High-performance Global
Routing with Fast Overflow Reduction,”ASPDAC, pp. 582-587,
2009.

[4] M. Cho, K. Lu, K. Yuan, D. Z. Pan, “BoxRouter 2.0: Architecture
and Implementation of a Hybrid and Robust Global Router,”
ICCAD, pp. 503-508, 2007.

[5] R. Hadsell, P. Madden, “Improved Global Routing through
Congestion Estimation,”DAC, pp. 28-31, 2003.

[6] J. Hu, J. A. Roy, I. L. Markov, “Sidewinder: A Scalable ILP-based
Router,”SLIP, pp. 73-80, 2008.

[7] ISPD 2007 Global Routing Contest and benchmark suite.
http://www.sigda.org/ispd2007/rcontest/

[8] ISPD 2008 Global Routing Contest and benchmark suite.http://
www.sigda.org/ispd2008/contests/ispd08rc.html

[9] Z.-W. Jiang, B.-Y. Su, Y.-W. Chang, “Routability-driven Analytic
Placement by Net Overlapping Removal for Large-scale Mixed-size
Designs,”DAC, pp. 167-172, 2008.

[10] S. Lee, M. D. F. Wong, “Timing-driven Routing for FPGAs based on
Lagrangian Relaxation,”IEEE TCAD, vol. 22(4), pp. 506-510, 2003.

[11] T.-H. Lee, T.-C. Wang, “Robust Layer Assignment for ViaOpti-
mization in Multi-layer Global Routing,”ISPD, pp. 159-166, 2009.

[12] L. McMurchie, C. Ebeling, “PathFinder: A Negotiation-based
Performance-driven Router for FPGAs,”FPGA, 1995.

[13] M. Moffitt, “MAIZEROUTER: Engineering an Effective Global
Router,”IEEE TCAD, vol. 27(11), pp. 2017-2026, 2008.

[14] D. Müller, “Optimizing Yield in Global Routing,”ICCAD, pp.
480-486, 2006.

[15] M. Pan, C. Chu, “FastRoute: A Step to Integrate Global Routing into
Placement,”ICCAD, pp. 464-471, 2006.

[16] M. Pan, C. Chu, “IPR: An Integrated Placement and Routing
Algorithm,” DAC, pp. 59-62, 2007.

[17] M. Pan, C. Chu, “FastRoute 2.0: A High-quality and Efficient
Global Routing,”ASPDAC, pp. 250-255, 2007.

[18] J. A. Roy, I. L. Markov, “High-performance Routing at the
Nanometer Scale,”TCAD, vol. 27(6), pp. 1066-1077, 2008.

[19] J. A. Roy, I. L. Markov, “Seeing the Forest and the Trees:Steiner
Wirelength Optimization and Placement,”TCAD, vol. 26(4), pp.
632-644, 2007.

[20] P. Spindler, U. Schlichtmann, F. M. Johannes, “Kraftwerk2 – A Fast
Force-Directed Quadratic Placement Approach Using an Accurate
Net Model,” TCAD, vol. 27(8), pp. 1398-1411, 2008.

[21] Y. Xu, Y. Zhang, C. Chu, “FastRoute 4.0: Global Router with
Efficient Via Minimization,” ASPDAC, pp. 576-581, 2009.

