Completing High-quality Global Routes

Jin Hu

University of Michigan
jinhu@eecs.umich.edu

ABSTRACT

To ensure chip manufacturability, all routes must be coteple
without violations. Furthermore, the chip’s power constiomp
and performance are determined by the length of its routeeswi
Therefore, our work focuses on minimizing wirelength. Oey k
innovations include: (1) a novel branch-free represematBFR)
for routed nets, (2) a trigonometric penalty function (TRB) dy-
namic adjustment of Lagrange multipliers (DALM), (4) cychet
locking (CNL), and (5) aggressive lower-bound estimatelsRE)
for A*-search, resulting in faster routing. We completeralitable
ISPD 2008 contest benchmarks and re-plaadagptec suite without
violation and produce shorter routes.

Categories and Subject Descriptors
J.6 [Computer-aided Engineerip@omputer-aided design (CAD)

General Terms
Algorithms, Design, Performance

Keywords
Global Routing

1. INTRODUCTION

As chip complexity grows, back-end tools must limit routad i
terconnect length, as this greatly affects the chip’s perémce,
dynamic power, and yield. Moreover, violation-free globaiiting
solutions facilitates smooth transitions to design-fanufacture
(DFM) optimizations. Conversely, solutions with violat®imply
the design will not function correctly when fabricated.

If a global router produces a violation-free (legal) solution, then
the design can move onto detail routing and continue thrahgh
design process. However, if a routed design is inevitabigutable
or has violations, then a secondary step must isolate prattie re-
gions (see Figure 1). Given a significant number of violatjdhis
common practice to fix the routing by repeating global andétail
placement and injecting whitespace into congested regidhss

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISPD’10, March 14-17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$10.00.

Jarrod Roy
IBM Austin Research Lab.
jaroy@us.ibm.com

Igor Markov
University of Michigan

imarkov@eecs.umich.edu

from placement =+-ssssssssssses >e<+ (Re-)Placement }

Global
Routing

Violations
Isolated?

Violation-
free?

to detail routing

Figure 1: The global routing portion of the VLSI design flow.
Fully routable designs are handed off to detail routing. Otter-
wise, the design can (1) be sent directly to detail routing,2) go
through spot-repair, or (3) go through re-placement iterations,
depending on the severity of violations.

type of congestion-driven placement is supported by both-co
mercial and academic software, like Kraftwerk2 [20], andINT
Place [9]; Capo with ROOSTER [19] and FastPlace with IPR [16]
explicitly consider specific types of routes during globlalggment.

In other words, the global router is not solely responsible for pro-
ducing a violation-free solution.

If the number of violations is small or the violations are-suf
ficiently separable, then 1) a secondary tool can attemppdd s
repair the slightly illegal layout, 2) the design can be hahdff
to detail routing, or 3) the design is sent back to placem8pbt-
repair is the most attractive option, as it allows the violas to be
fixed without affecting the large majority of global routéalith a
small number of violations, most commercial tools gamblalen
tail routing to resolve them. Therefore, a global routersdoet al-
waysneed to minimize violations but it usuallynust minimize the
total wirelength of the design becausg the length of the routed
nets directly affects how and if violations can be repaiféq spot-
repair does not significantly alter the total wirelengthd &) de-
tail routing largely follows global routes.

In practice, even a small number of global-routing violatio
imply a long runtime in detail routing,degraded signal integrity
caused by densely packed wires, digting effectscaused by CMP
during fabrication. Instead, designers allocate greatesuats of
whitespace to wire-dense blocks during floorplanning wBil2A
tools use congestion-mitigation techniques during plaar@nirools
like FastRoute [15] were originally designed to provide gestion
feedback to global placers [16] rather than as a high-quaditter.

High-quality routing solutions on recent large-scale lenarks
[7] from IBM were produced by FGR 1.1 [18]. At the ISPD 2008
Global Routing Contest [8], NTHU-Route 2.0 [2] and NTUgr [3]
also posted high-quality results, along with improved imes. In
addition, FastRoute 4.0 [21] claimed exceptionally lowtimnes.

Similar to [2, 3, 18], our work focuses on finding high-qualit
routing solutions. We note that decreasing high violatioonts
on unroutable benchmarks by less than 50% offers only margin
benefits because such situations typically require thegdesi be
sent back to global placement [9, 16,19, 20] or netlist uestiring.

2.1 Multi-pin Net Decomposition

Competitive routers explicitly decompose (split) largésniato
sets of two-pin subnets. There are two mainstream methdds: (
minimal spanning tree (MSTs), used by NTUgr [3] and FGR 1.1
[18], and (2) Steiner minimal trees (SMTs), used by NTHU-fou
2.0 [2] and FastRoute 4.0 [21]. Steiner trees offer minimaew
length for nets and can therefore ease initial routingfitena. How-
ever, routers must support effective net restructuringickvine-
quires advanced algorithms and flexible data structures-béSed
decompositions, on the other hand, can lead to a worsel iratié&
ing solution, as MSTs can have up to 150% of Steiner tree wire-
beeee_____2dRoutes __________u__3dRoutes length. Thus, the maze router must work harder to reduce- wire
length and congestion. However, as we show in Section 4kt, su
nets generated using MSTs can share resources and canrbe-rest
tured into SMTs without explicitly storing branching panfThus,
BFG-R decomposes multi-pin nets using MSTs instead of SMTSs.
Second, it facilitates a stand-alone implementation arebs dwt
rely on external Steiner-tree packages.

Routing\ I Multi-pin Net N Initial Routing Iﬂl) Layer
Instance | , [Decomposition +BFR 1| Assignment

|

Final Clean-up
+ ALBE

Rip-up and
Reroute Nets
+ TPF, CNL, BFR

-

Update
Lagrange Multipliers
+ DALM

Routed
Solution

Figure 2: The flow of global routing in BFG-R and the use of
novel techniques such as a branch-free representation (BHR
for routed nets, cyclic net locking (CNL), dynamic adjustment
of Lagrange multipliers (DALM) a trigonometric penalty fun c-
tion (TPF), and aggressive lower-bound estimates (ALBE).

We make the following key contributions through BFG-R:
« Several improvements to existing routing algorithms teatr 2.2 Balancing Wirelength and Violations

duce wirelength, e.g., dynamic adjustment of Lagrange mul- A major challenge in large-scale routing is balancing veingith

tipliers (DALM) and accurate 2-d via pricing. against violations as competing objective functions. Bhlked rout-
* Reducing runtime by cyclic net locking (CNL). _ ers include separate factors to balance wirelength andestiog
e Techniques to reliably complete (without violations) desi [14, Section 3.4] by tuning weights in linear combinatiosow-

such as an effective trigonometric penalty function (TPF). ever, as stated in [4hd hoc trade-offs may lead to violent diver-

e A branch-free representation (BFR) for single routed nets. gence of routing iterations. Therefore, several routeeslaspen-

e An aggressive lower-bound estimate (ALBE) for A*-search. ing factors to ensure convergence [4].

e Empirical comparisons against the winners of the ISPD 2008 |nstead of explicitly trading off wirelength for violatisn BFG-
Global Routing Contest [8]. BFG-R completes the twelve R uses Lagrange multipliers with a complementary cost fanct
routable ISPD 2008 Contest benchmarks without violations, This approach effectively guides the routes to areas witlet@ost
more than any other router. On those benchmarks, BFG-R and smaller congestion. This key technigegige-centric Lagrange
improves upon the solutions that were generated by NTHU- muiltipliers, was introduced first in [18]. While Lagrangiesiax-
Route 2.0 [2], producing more violation-free solutionsiwit ation has been suggested for global routing, previous waskeli-
comparable wirelength. BFG-R also produces better solu- ther been specific to timing-driven routing and maintacentric
tions than NTUgr [3] and FastRoute 4.0 [21] on the major- |agrange multipliers [10] or focused on a single net at a time
ity of designs. On a new set of benchmarks using re-placed These algorithms use conventional history-based rip-dpemute
adaptec netlists, we successfully route all designs without vi- for the router's main loop. In contrast, our formulationeditly
olation whereas all other routers fail on at least one design handles modern instances of global routing, such as thosetfre

The remainder of this paper is structured as follows. Secio |SPD'07 and '08 contests. Unlike previous routers, theonjstost
outlines BFG-R’s global routing flow. Section 3 describes tiew is only based on the congestion and does not affect the basefco
algorithms that are key to BFG-R's high performance. Secfio g routing edge. The cost of an edgelepends on its base cdst,
discusses the data structure that allows BFG-R to maintaitas Lagrange mu|tip|iehe, and Congestion pena“}é [18]
bility for large problem instances and handle large netliSection Ce = be + he - pe 1)

5 presents BFG-R's results on the ISPD08 Contest benchriggrks
andadaptec netlists re-placed with mPI6 [1]. Section 6 concludes
our current work and discusses future work.

Lagrange multipliers are updated at the beginning of ripang
reroute iteratiork in the following way [18]:

WE { hE=Y 4 hawep if e is over-capacity @
2. GLOBAL ROUTING FRAMEWORK LR otherwise
In this section, we explain the general global routing freme Compared to previous work, we use a different penalty fongii.
of BFG-R, as shown in Figure 2. We also describe several key for local congestion (see Section 3.3), and we do not use a con
algorithms in BFG-R that significantly improve solution ¢jtya stanths.ep (See Section 3.2). The stopping criterion for rip-up and
Given a global routing instance, BFG-R first splits multi-pets, reroute iterations gauges the amount of effort applied od-ta

nets with three or more pins, into two-pin subnets. BFG-Rithe route instances. In our current implementation, the defarkion
produces an initial routing solution on a 2-d grid. If the ides of BFG-R stops when a legal solution is found or upon runnarg f
has no violations, BFG-R performs layer assignment — ptiojgc 24 hours (according to the ISPDO08 routing contest).

2-d routes onto a 3-d grid — and a final clean-up pass to migimiz .

wirelength. If the design has violations and a global tinué+tas 2.3 Net Orde”ng

not been exceeded, then the Lagrange multipliers, fadbatsat(- Nets that use over-capacity edges are ripped up and must be
fect the edge cost, are updated. BFG-R then rips up any wiglat rerouted. We have observed the best results when subneg¢s wer
nets and reroutes them based on the costs of individual edges routed(4) in ascending order of their bounding box area in areas
pre-determined order. This iterative process continuéi either of low congestion and (¢7) in ascending order of how much their
all violations have been resolved or the global time-outehxgured. bounding box area deviates from the median bounding boxiarea
BFG-R then performs layer assignment and a final clean-up pas areas ohigh congestion.

2.4 Point-to-point Routing

During initial routing and rip-up and reroute (R&R), a router
must connect pin pairs in the routing grid. Common methoeds in
clude pattern routing, used by NTHU-Route 2.0 [2] and Sidelei
[6], and monotonic maze routing, used by FastRoute 2.0 [16].

In pattern routing, a small number of route shapes are examin
to connect the points. Typically, these shapes have shoatenigth
and few bends such ds U, andZ patterns. This method is the
fastest method to connect pin pairs, especially when therea
routing obstacles or over-capacity routing edges predenprac-
tice, we notice that about 90% of subnets from the final rautin
solution are_-shaped (includes flat subnets). However, in the pres-
ence of congestion, the vast majority of runtime is spentimgu
connections that are not pattern-shaped.

If there are relatively few obstacles, monotonic maze ruuis
a viable option to route two-pin subnets. Instead of follogva set
path, the monotonic router searches those edges that maser cl
to the target in terms of Manhattan distance. Monotonicingut
can be performed in linear time, using dynamic programming.|
This method finds any route that pattern-routing can, bug, tdu
decision making overhead, will take longer.

If there are more than a few blockages, monotonic routing can
fail to find a violation-free route, even if one exists. Irele a
better alternative is to use boxed A*-search (BAS) with acuaate
lower-bound function. BAS (1) combines Dijkstra’s shottpath
algorithm with a non-trivial lower-bound functidn(2) restricts the
search space to within the pins’ bounding box (or a wider box)
and (3) allows all edges to be traversed anytime during taecke
BAS finds the solution with minimal detouring, given that dtpa
exists. Routes that are found by pattern and monotonicnguatie
a proper subset of those found by BAS, but using BAS for those
routes usually takes longer.

2.5 Continuous Net Restructuring

Published competitive routers, NTHU-Route 2.0 [2], NTUg; [
FastRoute 4.0 [21] and FGR 1.1 [18], all employ net restmimgu
during maze routing. To preserve topological flexibilitye we-
structure nets continually similar to FGR 1.1. To limit rimes,
we developed a new technique called dyclic Net Locking (GNL)
described in Section 3.5 below.

2.6 End-game Optimizations

After rip-up and reroute, BFG-R performs layer assignmeht f
lowed by a final clean-up on the 3-d grid. There are two basic
approaches to layer assignment. The simplest, but impedctip-
proach is to use maze routing on the entire 3-d routing gride T
more common approach, used by nearly all competitive reuter
starts by compacting the 3-d routing grid onto a simpler 2id g
with aggregated routing resources. The search is thenrpeztb
on the 2-d grid. After maze routing finishes, 3-d routes faheaet
are reconstructed from solutions obtained from the 2-d grid

The authors of [18] show that if edge capacities are aggeegat
properly, there exists a 3-d solution that has the same nuofbe
violations as the 2-d solution. Several methods to assigndttes
to layers have been proposed, including an ILP-based #igori
[4], dynamic programming [11], and a greedy approach [18]GB
R’s layer assignment adapts a fast, greedy strategy fotldayene
round of full 3-d wirelength reduction.

After layer assignment and before traditional 3-d cleanvwpit-
erate over all routing edges and temporarily increase thadites
of edges with violations so that they become 100% utilizedis T

Vias are not represented explicitly, but priced implicitly

makes the solution temporarily legal. Next, we apply theucte
up pass and find alternative shorter routes. Note that thédatl

maximum overflow of the original 2-d solution cannot increass

(1) edges that have violations are already illegal and (8gsdhat
have no violations cannot become illegal.

After clean-up, we reinstate the correct capacities foralting
edges and recalculate the total and maximum overflow for tiz fi
solution. We observe that this clean-up method is as effedt
reducing total wirelength usage in illegal solutions as iini legal
solutions, and usually decreases total overflow by a smaiuain

3. KEY ALGORITHMS IN BFG-R

In this section, we outline key enhancements to our glohatt ro
ing flow that improve the router’s overall performance aschibil-
ity to quickly find high-quality solutions.

3.1 Edge Clustering During Rip-up

To improve memory locality and cache utilization, BFG-Rftfirs
finds all edges that have at least one violation and clushens t
based on location. To this end, BFG-R starts with an arlyiedge
and performs a breadth-first expansion through neighbarlygs.
Over-capacity neighboring edges are added to the currastec|
and the expansion continues. After collecting all overacéy
edges in the area, BFG-R finds the next over-capacity edgmand
tiates a new cluster. This process continues until all capacity
edges are clustered. Each edge will only belong to exactycars-
ter, and performing R&R by clusters will not require extrariwo
Moreover, we ensure that if a subnet crosses multiple akisie
will only be ripped up and rerouted once.

BFG-R then considers each cluster in order of increasinigvio
tion count. That s, it first rips up and reroutes the nets liatresly
uncongested areas in hopes of freeing up valuable resdorabe
more congested clusters. After the first few R&R iteratiamisen
congested edges break down into separate regions, edtericigs
roughly halves the runtime of subsequent iterations.

3.2 Dynamically Adjusting
Lagrange Multipliers (DALM)

Numerical updates of Lagrange multipliers (history cost®
critical to the success of the negotiated-congestion [12] dis-
crete Lagrange multiplier [18] routing frameworks. Theysnbe
precisely determined since they are the dominant factodeiear-
mining both solution quality and runtime.

Previous work [12, 18] increases Lagrange multipliers af-co
gested edges by a constdnt., according to Equation 2. Em-
pirically, we find that large steps lead to increased spe¢dlso
increased detouring. Conversely, small steps lead to Idinat
wirelength but much increased runtime. Further complicathe
issue is that different benchmarks have drastically dsffieropti-
mal ranges of steps. Therefore, we use the following two,emor
aggressive, history cost functions to balance runtime aadity:

{

whereT Edgeor = max(eor) x 95%. That is, all edges that
have overflow within 5% of the maximum edge overflow will have
an additional increase to its history cost. Otherwise, arftawn
edge will receive the standard increment. For the largestet, we
give the most congested edges an additional cost:

RETY 4 hgiep X 1.25 if eor > T'Edgeor
RETY 4 Rgtep else ifeor > 0
Rkt otherwise

hE ®)

hf = hf + (1 — cluRatio + 04)71 if eor > TCluor 4)

Overflow Penalty vs. Relative Time Edge Cost vs. Relative Overflow
1.6

10 s
14 9 \
8 \ 7=05
1.2
2 Penalty = tanr 7|
g1 %6 7=0
& N 8
2 0.8 05 Y
3 X S4
% 0.6 Penalty =7 T3
2 0.4
2
©o.2 1
0 0

0051152253354455
(b) Relative Overflow

0 02040608 1 121416
(a) Relative Time

Figure 3: Trigonometric cost function used in BFG-R. The
overflow penalty grows trigonometrically with the relative time
7 (). The cost function grows linearly with overflow (b).

where cluRatio is the cluster size divided by the total number
of over-capacity edgedEdgeor = max(cluor) x 90%, and
0 < a < 1. That is, within the largest (and most congested)
cluster of over-capacity edges, for the edges within theli@f
of the maximum edge overflow within the cluster will receive a
additional increase. The parametecontrols how fast the penalty
should grow. In practice, we have found that= 0.75 works well
to balance solution quality and runtime.

To find better Lagrange steps, we adjust them dynamically be-
tween iterations of rip-up and reroute. We allow for a gensro
range of Lagrange steps, which includes the optimal rangal of

available benchmarks, and adapt the step withft{?., ;2] over

L pmin
time. Our initial step is chosen to b@u and we choose

max min
hitep — hstcp

adelta for Lagrange step&giep = . We route in the
framework of Section 2 and Figure 2, whlle Lagrange steps are
modified between iterations as follows

h';tep + Agtep if violy, > violy—1
if violr < violi_1 and

k
L = st = Dster W s W,)
if violr < violx_1 and
Ptep WL <WLi

Empirically, Lagrange steps change significantly durirgearly
iterations of rip-up and reroute, settle to within a smafige of
steps during the middle iterations, and finally increasenniear-
ing a legal solution. As reported in Table 1, this technigekpé
BFG-R find high-quality routes while reducing violation cus.

3.3 Trigonometric Penalty Function (TPF)

A competitive router must ensure that its iterations makesiss
tent progress. If the benchmark is routable, a global roshieuld
eventually find a solution with no overflow. However, routeas
take a long time to clear the last few violations on difficidtroute
(but routable) designs; lack of progress can force a routter &
local minimum. This situation is magnified in the benchmaek-
bluel, where several routers struggle to find a legal solution.

To find better routes, other routers increase the penaltgver-
flow over time. For instance, Hadsell et al. [5] amplified tloa-c
gestion cost at a linear rate, capping the growth akla®er the
routing edge was over- capacity by 20%; FGR 1.1 [18] and NTHU
2.0 [2] increased the penalty for overflow at an exponentgd r
over time. However, an overly sharp or discontinuous ireeda
penalty may mislead the maze router early on and cause itdo fin
poor-quality routes. Therefore, the penalty function nugsttinu-
ously increase, starting at low values.

We propose a new penalty functipiof a routing edge based on
its relative overfloww. and the relative time = %

we X (1 +tan(1)) ifwe >1
ple) = { We otherwise

(6)

BFG-R’s cost function grows linearly with overflow but trigo-
metrically with time, as shown in Figure 3. Note that towalnd t
beginning, the growth factor is close to 0. Thus, it does nteri
fere with the original performance of the maze router. Adime
increases, the penalty grows faster in order to properkctiithe
maze router to find violation-free routes. In practice, BRGs
able to legally routeewbluel (without violations) while solutions
found by other routers have violations and higher wirelengt

3.4 Via Pricing

To perform 3-d routing, BFG-R first generates the routes en th
2-d grid and then projects the routes onto the 3-d grid. Tdhusng
2-d routing, a global router should be aware of the cost tesro
layers. The most common approach to price vias is to use gartns
cost function. Some other routers have via cost decreasdime
[2] or use benchmark-specific fixed costs [21].

During 2-d routing, BFG-R estimates the ratio between thra-nu
ber of 3-d vias to 2-d vias. That is, the expected number of/&sl
needed to represent one 2-d via is proportional to the number
layers. Thus, to accurately model the number of 3-d vias ested
per route, we price 2-d vias as follows

p(VIA) = [1/2] x viaFactor)

wherel is the number of available routing layers and Factor is
the original price of a 3-d via specified by the designer.

3.5 Cyclic Net Locking (CNL)

We observed through profiling that the vast majority of rongi
in the unmodified BFG-R flow is spent routing nets with large
bounding boxes. Since all violating nets will eventuallyrigped
up, we control how often long nets are ripped up.

BFG-R classifies subnets by the area of their bounding box mea
sured in whole routing grid cells, @Cells, so that long flat subnets
do not have zero area.

Area(BBoxy)

(|BBOX.x1 — BBOX,. 22| + 1) %
(|BBOXy.y1 — BBOX,.y2| + 1)

®)

This effectively estimates the search space for boxed Atedeon
a subnet. From this, we found that (1) almost all of the netstes
are within2x of their HPWL and (2) few nets route with a signifi-
cant number of detours.

Therefore, we propose to lock larger subnets after the fust f
iterations of rip-up and reroute, but unlock them periolfijcafter.
How often a subnet is unlocked is determined based on thetize
its bounding box relative to the average bounding box size:

1
AvgArea = (N)

A subnetn is allowed to be rerouted evefyeriod(n) iterations:
Period(n) = min{ "w-‘ 720}

AvgArea
Thus large subnets are unlocked less frequently than soiatkess
(but at least every 20 iterations) and subnets with averagealler
area are never locked. We chose not to unlock many nets at once
but instead use dispersive strategy that aims to unlock similar
numbers of nets at each iteration. To do so, subristallowed to
be unlocked during iterationif the following condition is satisfied

(1<2) or mod Period(n) = 0) (11)

N
>~ Area(BBox,) (9)

n=1

(10

((t+mn)

This condition effectively staggers unlocking of largemend also
allows them to be unlocked with the proper period. We find that

Branching Point
\

\

v

¢

Subnet (n,1) Subnet] (n,2)

N

U

o——

Traditional Net
Representation

Branch-free
Representation

Route of Net n

Figure 4: The branch-free representation (BFR) of routed nées.
Subnets are treated separately but can share routing edges.
Collectively they represent a Steiner tree.

this method improves the framework of Section 2 dramatjcaith
little impact on solution quali§i The success of CNL indicates
significant flexibility in choosing which nets to reroutedguostifies
the focus on rerouting shorter nets for efficiency.

3.6 Aggressive Lower-bound Estimate (ALBE)

Of commonly-used point-to-point routing techniques, Afasch
is the most flexible and guarantees to find the shortest patpath
exists. However, A*-search degenerates into Dijkstrajeathm if
its admissible function underestimates the true pathssaffst too
much. This effect is especially pronounced when 1) temggrar
setting shared edge costs to zero when routing multi-pimestsh
and 2) using traditional distance-based lower-bound fanst e.g.,
distancex cost of the cheapest edge, after history has accumulated.
The growth of history costs hampers the maintenance of nuimm
edge costs in a given region, and routers typically do noeese
the initial minimum edge cost as history costs accumulate.

In the presence of even a single zero-cost edge imamum
edge cost becomes zero, and traditional distance-based admissi-
ble functions used for A*-search become trivial. To comibds,t
FGR 1.1 [18] and BFG-R employ-sharing, where shared edges
are given a smal > 0 cost, rather than zero.

To maintain the speed of A*-search as history costs grow, we
use an aggressive lower-bound estimate. For each substtadh
of using the minimum edge cost of all possible edges to coenput
a distance-based lower bound, we traverse its path fromatte |
iteration of R&R and use the minimum cost along that route. As
pere-sharing, each shared routing edge contributes less than-a n
shared edge. Not only is this a more realistic method to estéim
a lower bound of the new path, the search is sped up as it uses
greater lower-bound function.

One caveat with using this estimate is that it can be too hogh t
serve as an admissible function. That is, this estimate ligintly
over-estimate the actual cost. When this happens, BAS aiamt
its speed but can (sometimes) overlook optimal routes. \&keth
fore do not rely on aggressive lower bounds during R&R but use
them to reduce the runtime of our greedy clean-up. In thisecan
its impact on solution quality is negligible.

4. ROUTE REPRESENTATION

High-performance routing demands transparent data stes:t
What and how to store is equally important compared to wbat
to store, as excessive sophistication of data structutes ¢éads
to poor performance in practice. Compared to the top roditens

4.1 Branch-free Representation (BFR)
of Individual Routed Nets

Several possible data structures can represent nets wéth ¢n
more pins. The most straightforward approach is to dividdh eeet
into a group of disjoint line segments (with bends). In theecaf
the three-pin net. shown in Figure 4, this would add a branching
or Steiner point to the middle of the net, creating thsegments,

a set of connected routing edges in one direction. This sepita-
tion supports proper calculation of routing resources anged in
global routers such as FR 4.0 [16] and NTHU-R 2.0 [2]. Other
routers like MaizeRouter [13] store only the full horizongnd
vertical segments but no intermediate points. Howeves rijp-
resentation severely limits net restructuring, which ntadgobal
routers frequently perform — either explicitly by decomipgsnets
or implicitly through maze routing as in FR 4.0 and FGR 1.1][18
The process of restructuring nets causes branching pointeve,
appear, and disappear, which is difficult to support. Oncetasn
restructured, segments or branching points must be inkgmadi-
fied, e.g., branching points added, larger segments sgismaller
segments, to support the new topology.

We propose a different data structure where branching panet
represented implicitly. Let aubnet be a pair of terminal pins of a
net. For eachsubnet, we store {) eachoccupied routing edge, and
not segments, andij the coordinates of its endpoints. These pairs
of points must collectively form a spanning tree, e.g., aimim
spanning tree (MST). Each net also stores the indices ofaibie r
ing edges it uses and can easily find its subnets that useieupert
routing edge. Such a mapping can be implemented with an STL
hash-map or balanced binary tree, but in practice both date-s
tures require too much memory. Instead, our memory-effidata
structure is an array of pairs of (1) routing edge indices@ydhe
number of subnets of the net that pass through the edge. dimis ¢
tainer support® (log | E|)-time search, an@(|E|)-time insertion
and deletion, whergF| is the number of edges. However, in prac-
tice, the number of traversed edges is small.

Since each net stores the indices of used edges, routingrceso
usage can be calculated exactly and efficiently. These taie s
tures allow BFG-R to maintain Steiner trees for nets withamit
explicit representation of branching points. We also firat 8FR
can ease the implementation of a router, as branching paiets

aorocessed implicitly during maze routing rather than beireated

and destroyed explicitly. We found that 1) the overlap in B#R
tween subnets is small, as long as the net is initially decmeg
using an MST and 2) coalescing subnets takes little time.eOth
routers, on the other hand, choose to use more memory toaeduc
runtime. For example, NTHU-R [2] uses large hash maps and pre
computes edge costs for constant-time look-up.

4.2 Supporting Efficient Rip-up and Reroute

To facilitate efficient rip-up and reroute (R&R), fast idiica-
tion of which subnets should be ripped-up at each iterasarru-
cial. Furthermore, the process of finding the appropriatssts
must take negligible time. To this end, BFG-R stores a ligiads-
ing subnets every routing edge. To quickly determine whiai-c
nections need to be adjusted during an iteration, BFG-R gees
all routing edges, finds which edges are over-capacity, ddd the

the ISPD 2008 Contest, we use about the same amount of memorySUbnets that use the edge to the list of subnets to be ripped up

as FastRoute 4.0, 20% less than NTUgr, ancka2éss than NTHU
(4x less on the largest benchmarks).

2It is not difficult to ensure that approximately equal numbers of
nets are routed per iteration using randomization, but cethod
is straightforward and works well in practice.

When ripping up subnet, every routing edge used bys re-
movess from its list of subnets. The map maintained by net is then
updated to reflect that one of its subnets no longer use$ no
other subnets of the same net usé is removed from the map and
the resources are returned to the edge. Lastly, every ppatigee
is removed from the list of used edges maintained.by

NTHU-Route 2.0 [2] NTUgr [3] FastRoute 4.0 [21] Best Tuned [2, 3, 21] BFG-R (No Tuning)
Benchmark OF Cost Time OF Cost Time OF Cost Time OF Cost Router OF Cost Time
total (e6) ‘ (m) total (e6) (m) total ‘ (e6) (m) total (e6) Name total ‘ (e6) (m)
Solution Quality and Runtime fakouTABLE Benchmarks
adaptecl 0 5.37 6.4 0 5.67 42.4 0 5.50 3.6 0 5.36 NTHU 2.0 0 5.43 8.4
adaptec2 0 5.24 2.8 0 5.47 7.4 0 5.28 1.2 0 5.23 | NTHU 2.0 0 5.23 3.7
adaptec3 0 13.15 4.2 0 13.77 35.0 0 13.26 2.7 0 13.11 | NTHU 2.0 0 13.14 16.0
adaptec4 0 12.18 15.1 0 12.41 14.7 0 12.15 1.1 0 12.17 | NTHU 2.0 0 12.16 5.2
adaptec5 0 15.54 5.2 0 16.52 | 100.9 0 15.91 10.3 0 15.54 | NTHU 2.0 0 15.67 15.5
bigbluel 0 5.57 10.0 0 5.95 118.3 0 5.89 8.0 0 5.57 | NTHU 2.0 0 5.72 10.2
bigblue2 86 9.00 12.2 118 9.47 212.0 Invalid Sol ution 0 9.06 | NTHU 2.0 0 9.11 40.8
bigblue3 32 13.07 9.7 0 13.49 25.6 MAZE Rl PUP V\RONG 0 13.08 | NTHU 2.0 0 13.18 20.6
newbluel 164 4.60 14.2 212 4.82 136.0 542 4.73 13.6 0 4.65 | NTHU 2.0 0 4.68 256.9
newblue2 0 7.59 1.1 0 7.85 51 0 7.53 0.7 0 7.53 FR 4.0 0 7.57 15
newblue5 18 23.14 29.0 0 24.25 | 1179 0 23.51 13.8 0 23.17 | NTHU 2.0 0 23.30 47.6
newblue6 0 17.70 49.4 0 18.74 76.6 MAZE RI PUP \RONG 0 17.70 | NTHU 2.0 0 18.01 15.7
Routing Failures 4 2 4] 0 0
Improv. 0 OF 0.99 | 1.04 | [1.01 | 0.99 | 1.00 |
Solution Quality and Runtime fasNROUTABLE Benchmarks
bigblue4 256 | 22.80 | 72.9 410 24.35 | 302.9 Invalid Solution 162 23.10 [NTHU 2.0 434 23.20 | 1416.6
newblue3 Ti me Qut 33636 | 11.00 | 163.6 | 38020 | 10.88 | 1344.1 || 31106 | 17.15 NTUgr 33900 | 10.64 | 1420.9
newblue4 222 | 12.89 31.2 284 13.89 | 223.3 212 ‘ 13.16 27.7 138 13.04 | NTHU 2.0 218 13.08 | 1413.3
newblue? 68 | 35.52 ‘ 1284.6 906 36.91 | 1403.9 Invalid Solution 54 35.58 FR 4.0 606 35.21 | 1421.1

Table 1: BFG-R compared with leading routers on the ISPD08 bechmarks [8], whereNTHU 2. 0 is NTHU-Route 2.0 andFR 4. 0
is FastRoute 4.0. Experimental setup is described in Sectics.1. 1 nval i d Sol uti on indicates disconnected netsMAZE Rl PUP

WRONG is an internal error produced by FastRoute 4.0.Ti me Qut

indicates that the router did not produce a solution within 24

hours. Runtimes are not averaged because (1) some routergddiot produce valid solutions on all benchmarks, (2) some raers did
not succeed on routable benchmarks, and (3) benchmark soliain quality varies significantly.

When adding a new route to a subneta similar sequence of
steps is performeéh reverse. That is, for every edge the new
route uses, it is first added to the list of used edges magtdétiy
s. Next, if no other subnets (of the same net) aséhe map main-
tained by the net is updated to reflect one of its subnets negeus
Finally, every routing edge addss to its list of subnets.

5. EMPIRICAL EVALUATION

First, we describe our experimental setup and the sets ahben
marks used. Next, we compare our solution quality on thoeelie
marks against the top three performers from the ISPD 200Bablo
Routing Contest [8].

5.1 Experimental Setup

Our single-threaded implementation of BFG-R is written #+C
self-contained and does not require any external libragesrce
code, or data files. We compiled our code with g++ 4.3.2 to pro-
duce a 64-bit binary. All BFG-R runs were performed on a quad-
core 2.83 GHz processor with 8 GB of RAM. To draw objective
conclusions, we also ran all other routers on the same machin
with the exception of two benchmarkeewblue3 and newblue?,
for NTHU-Route [2] due to exceptional memory requiremeins.

Similarly, NTHU-Route is invoked by a Perl script that uses a
different set of parameters for each ISPD 2008 benchmarkjddT
used the number of non-trivial nets to differentiate betweench-
marks and ran tailored flows with pre-set thresholds.

For an objective comparison, we ran each router, includirGB
R, inits default mode, where the router used the same coafigar
for all benchmarks. To negate tuning to specific contest fbenc
marks, we made superficial changes to the benchmark files asuc
renameadaptecl — xXaxXx1.

5.2 Benchmarks

We used two sets of benchmarks for comparison. The first set
is the well-known ISPD 2008 Global Routing Contest benchsar
For the second set, we reused the netlists fronadlaptec suite and
placed them using mPI6 [1], a global placer that achievedése
overall wirelength while observing density constraintstia ISPD
2006 Placement Contest. We tested every target densitycia-in
ments of 10%, starting at 100%. The target densities seléatel
reported in Table 2) are transitional values for which thadbe
marks became routable — increasing the target density bywi@%al
lead to routability problems.

stead, we ran those two designs on a 2.93 GHz processor with 205 3 Comparison of Results

GB of memory. Source codes of NTHU-Route 2.0, NTUgr, and
FastRoute 4.0 were made available by the respective authdes

the CEDA-sponsored open-source release. We compiled NTHU-
Route’s C++ code using g++ 4.1.2, as it is currently incoriybat
with g++ 4.3.2. We used g++ 4.3.2 to compile NTUgr’s [3] C++
code and gcc 4.3.2 to compile FastRoute 4.0's [21] C code.

To ensure the proper execution of existing routers, we repro
duced all published solutions and runtimes for NTHU, NT g
FastRoute. We found that all three routers tuned to bendtsnar
For example, FastRoute 4.0 used a set of specific parametszd b

on the benchmark name, as shown below.
if((strstr(benchFile,

"adapt ecl. capo70. 3d. 35. 50. 90. gr")! = NULL))
SLOPE=5; THRESH M=30; ENLARCE=15;
ESTEP1=10; ESTEP2=5; ESTEP3=5;
CSTEP1=5; CSTEP2=5; CSTEP3=10;
COSHEI GHT=4; VI A=4; A=1; L_afterSTOP=1;
mazeSet 2; goingLV = TRUE; updateType = 0;

}

In our experiments, each router was configured with idehtica
parameters for all benchmarks. Table 1 compares BFG-R’s per
formance on ISPD 2008 Contest benchmarks. Similarly, Table
compares BFG-R’s performance on the re-plaeddptec suite.
Row I nprov. 0 OF showing other routers’ performance normal-
ized to BFG-R’s when both routers produced a fully legal sofu
We compare our solution quality to those of NTHU-Route 2]0 [2
NTUgr [3], and Fast-Route 4.0 [21]. From the first set of bench
marks, only 12 of the 16 total designs are demonstrably bbeita
That is, no router has produced a legal solution for the desiig-
blue4, newblue3® newblued, andnewblue?. Every design in the
second set was shown to be routable by at least one router.

Shewblues, is trivially unroutable, as it contains a pin connected to
over 2200 nets, which is greater than the total wire capaditie
GCell containing that pin.

NTHU-Route 2.0 7] NTUgGr 3] FastRoute 4.0 2] BFG-R
OF

Benchmark Cost | Time | OF Cost Time OF Cost Time OF Cost | Time
total (e6) (m) total (e6) (m) total (e6) (m) total (e6) (m)

adaptecl, 70% 0 4.62 7.2 0 4.83 73.2 184 5.01 26.4 0 4.68 9.8
adaptec2, 60% 0 5.29 0.9 0 5.48 3.7 0 531 0.6 0 5.28 2.2
adaptec3, 80% 38 12.16 19.4 28 12.88 | 470.0 | 616 12.74 | 183.1 0 1215 27.2
adaptec4, 80% 0 10.50 2.3 0 10.75 9.1 10 10.61 4.8 0 1049 | 3.2
adaptec5, 70% 4 1391 | 25.2 0 1444 | 347.8 | 628 | 14.49 | 50.6 0 13.98 | 32.6
Routing Failures 2 1 4 0

improv. 0 OF 1.00 | 1.03 | 1.0 | 1.00 |

Table 2: BFG-R compared with leading routers on the re-placd adaptec benchmark suite. Each benchmark’s netlist was placed using
mPI6 with its corresponding target density. These benchmds were not used during the development of the routers we evaate.

Routability. On the contest benchmarks, BFG-R finds legal so- high-quality routes requires carefully adjusting Lagramgultipli-
lutions for all twelve routable benchmarks, whereas NTHblife ers, which necessitates more iteratiofi$ird, finding legal solu-
2.0, NTUgr, and FastRoute 4.0 produce four, two, and foer ill tions requires a slowly increasing penalty for violatiorigurth,
gal or invalid solutions, respectively. In particular, fbie design we have tried to incorporate pattern routing in our flow, ibutas
newbluel, BFG-R is able to find a low-cost, violation-free solution not improved our results.

whereas NTHU, NTUgr, and FastRoute all produce solutiortls wi Our current implementation does not explicitly target wiable
violations. Solution costs produced by NTUgr and FastRdule benchmarks, unlike competing routers. This is a major avdéou
are also higher than those of BFG-R’s violation-free solusi further improvement that we plan to pursue. We are also densi

On the five re-placed benchmarks, BFG-R is able to route all ing monotonic routing as a means to accelerate R&R itersition

designs without violation, whereas NTHU, NTUgr, and FR 40 h
9 1o, : > . 7. REFERENCES

two, one, and four violating designs, respectively. In ipatéar, 11 T.F Chan. J.C 1 shi | K. Sze. M. Xie. “mPL6: Enbed
BFG-R finds a legal solution oadaptec3 with 80% target density [1] T.F. Chan, J. Cong, J. Shinnerl, K. Sze, M. Xie, "mPL6: Bn

. " . Multilevel Mixed-size Placement with Congestion Contrdljodern
with competitive wirelength when no other router could not. Circuit Placement, pp. 247-288, 2007.

Wirelength. As illustrated in Table 1, on average, BFG-R pro- 5] v.3. chang, Y.-T. Lee, T.-C. Wang, “NTHU-Route 2.0: Adtand
duces routes that are comparable to those of NTHU-R 2.0 and 4% Stable Global RouterfCCAD, pp. 338-343, 2008.

—

better than NTUgr on the designs where routers producedticol [3] H.-Y.Chen, C.-H. Hsu, Y.-W. Chang, “High-performancéoGal

free solutions. BFG-R is 1% better than FastRoute 4.0, letgdim- Routing with Fast Overflow ReductionXSPDAC, pp. 582-587,

ple space is reduced by four designs, as FR 4.0 producedaidinv 2009.

solution (having disconnected nets) figblue2, came up with an [4] M. Cho, K. Lu, K. Yuan, D. Z. Pan, “BoxRouter 2.0: Architece

internal erroVAZE RI PUP WRONG for bigblue3 andnewblues, and f‘gg Al\gplpepmggtﬂ%g Oégogyb”d and Robust Global Router,

generated a solution with violations foewbluel. [5] R. Hadsell, P. Madden, “Improved Global Routing through

On the five re-placed benchmarks, BFG-R produces routes that Congestion EstimationDAC, pp. 28-31, 2003.

are comparable to the three valid solutions from NTHU andtiee [6] J.Hu, J. A. Roy, I. L. Markov, “Sidewinder; A Scalable Itfased

valid solution produced by FastRoute. Out of the four vabitlis Router,”SLIP, pp. 73-80, 2008.

tions found by NTUgr, BFG-R runs much faster and finds sohgio [7] ISPD 2007 Global Routing Contest and benchmark suite.

that are 2% better. In the majority of cases, BFG-R’s violatiree http://ww. si gda. org/i spd2007/rcontest/

solutions cost less than other routers’ solutions withatiohs. [8] ISPD 2008 Global Routing Contest and benchmark shite.p: / /
www. si gda. or g/ i spd2008/ cont est s/ i spd08rc. ht m

6. CONCLUSIONS AND FUTURE WORK [9] Z.-W. Jiang, B.-Y. Su, Y.-W. Chang, “Routability-drimeAnalytic

We have presented BFG-R, a robust and scalable global router Ef;:?se ,fg Abé '\Fl)%t ?g?_”%pzp'g%g;emoval for Large-scale Mbizd

that produces highest-quality solutions in comparison_ ToHN- [10] S. Lee, M.D.FE. Wong, “Timying-driven Routing for FPGAaged on

Route 2.0 [2], NTUgr [3], and FastRoute 4.0 [21]. We introekic Lagrangian Relaxation/EEE TCAD, vol. 22(4), pp. 506-510, 2003.

a set of key techniques that significantly improve BFG-R's- pe [11] T.-H. Lee, T.-C. Wang, “Robust Layer Assignment for \Bgti-

formance on routable benchmarks: a trigonometric penattg-f mization in Multi-layer Global Routing,1SPD, pp. 159-166, 2009.

tion (TPF), dynamic adjustment of Lagrange multipliers (D4), [12] L. McMurchie, C. Ebeling, “PathFinder: A Negotiatidrased

cyclic net locking (CNL), and aggressive lower-bound esties Performance-driven Router for FPGAEPGA, 1995.

(ALBE). We introduced a branch-free representation (BERJdut- [13] M. Moffitt, “MAIZEROUTER: Engineering an Effective Glual

Router,”|EEE TCAD, vol. 27(11), pp. 2017-2026, 2008.

[14] D. Mdller, “Optimizing Yield in Global Routing,1CCAD, pp.
480-486, 2006.

[15] M. Pan, C. Chu, “FastRoute: A Step to Integrate Globaltig into

ed nets to improve net flexibility. If a legal solution existhe
techniques proposed in this work ensure that a legal solutith
competitive wirelength will be found.

We have shown that BFG-R can consistently produce a low-cost Placement ICCAD, pp. 464-471, 2006.

legal routing solution, as long as the design is routableohtrast, [16] M. Pan, C. Chu, “IPR: An Integrated Placement and Raytin
NTHU can route designs somewhat faster, but does not gegrant Algorithm,” DAC, pp. 59-62, 2007.
a legal solution unless given a pre-determined set of pasme [17] M. Pan, C. Chu, “FastRoute 2.0: A High-quality and Effici
NTUgr produces the most legal solutions, but at the cost of-wi Global Routing,"ASPDAC, pp. 250-255, 2007.
length and runtime. FastRoute 4.0 is several times fastehen [18] J. A. Roy, I. L. Markov, “High-performance Routing atth
contest benchmarks but produces relatively poor solutiGmsthe Nanometer Scale,TCAD, vol. 27(6), pp. 1066-1077, 2008.
second set of benchmarks, FastRoute is unreliable, asribtéind [19] J. A. Roy, I. L. Markov, “Seeing the Forest and the Tre@teiner

.) : - Wirelength Optimization and PlacementCAD, vol. 26(4), pp.
solutions to four out of five designs and often uses more menti 632-644, 2007.
. Wwe ha_/e also explored_the trade-of_fs made during implementa [20] P. Spindler, U. Schlichtmann, F. M. Johannes, “Kraft@e— A Fast
tion by different routers.First, a key difference between our im- Force-Directed Quadratic Placement Approach Using an vateu
plementation and other routers is the dynamic edge-cospetam Net Model,” TCAD, vol. 27(8), pp. 1398-1411, 2008.
tion and update. This feature is critical to support mutipbut- [21] Y. Xu, Y. Zhang, C. Chu, “FastRoute 4.0: Global Routettwi

ing pitches and wirewidthsSecond, we have noticed that finding Efficient Via Minimization,” ASPDAC, pp. 576-581, 2009.

