
Reap What You Sow: Spare Cells for Post-Silicon Metal Fix
Kai-hui Chang

University of Michigan
EECS Department

Ann Arbor, MI 48109
changkh@umich.edu

Igor L. Markov
University of Michigan

EECS Department
Ann Arbor, MI 48109

imarkov@umich.edu
National Taiwan University

EE Department
Taipei, Taiwan 106

Valeria Bertacco
University of Michigan

EECS Department
Ann Arbor, MI 48109

valeria@umich.edu

ABSTRACT
Post-silicon validation has recently become a major bottleneck in
IC design. Several high profile IC designs have been taped-out
with latent bugs, and forced the manufacturers to resort to addi-
tional design revisions. Such changes can be applied through metal
fix; however, this is impractical without carefully pre-placed spare
cells. In this work we perform the first comprehensive analysis
of the issues related to spare-cell insertion, including the types of
spare cells that should be used as well as their placement. In ad-
dition, we propose a new technique to measure the heterogeneity
among signals and use it to determine spare-cell density. Finally,
we integrate our findings into a novel multi-faceted approach that
calculates regional demand for spare cells, identifies the most ap-
propriate cell types, and places such cells into the layout. Our ap-
proach enables the use of metal fix at a much smaller delay cost,
with a reduction of up to 37% compared to previous solutions.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design

General Terms Algorithms, Design

1. INTRODUCTION
Due to the recent increase in design complexity, more and more

bugs escape pre-silicon validation and are found post-silicon, forc-
ing designers to realize the fixes through additional tape-out and
manufacturing revisions (steppings) [15, 18]. As of today, post-
silicon debugging already contributes 35% of a chip’s design cycle
[1]. The delayed market entry due to extended post-silicon debug-
ging often results in a reduced market window and huge revenue
loss [8]. In addition, respins are becoming more and more expen-
sive, with mask costs approaching $10M per set [24]. These chal-
lenges necessitate better post-silicon debugging methodologies as
well as new techniques that reduce the cost of respins.

A mask set consists of 20-40 individual masks, whose costs vary
depending on their minimal feature sizes. Since transistor masks
exhibit the smallest feature size, they are the most expensive, while
metal layers have larger features and are consequently cheaper.
Therefore, respin costs can be reduced by reusing transistor masks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’08, April 13–16, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-60558-048-7/08/04 ...$5.00.

(a) (b) (c)
Figure 1: A design where an XOR gate must be replaced by a
NAND using spare cells. (a) A high-quality fix with little per-
turbation of the layout. (b) A low-quality fix that requiring long
wires due to poor spare-cell placement. (c) Another low-quality
fix using several cells due to a poor selection of cell types.

and only changing the metal layer masks. A fix that only changes
metal layers is often called metal fix [10]. Instead of a respin, metal
fix can also be implemented by modifying individual silicon dies
through Focused Ion Beam (FIB). FIB enables the evaluation of lay-
out changes during post-silicon debugging without producing new
masks, but it is too slow for mass production. Whether metal fix is
implemented via a respin or FIB, spare cells are often pre-placed
throughout the layout before the die is manufactured to support fu-
ture logic changes. In the 1990s, circuits were tightly packed to
reduce area, and very few spare cells could be used. However, with
whitespace taking 30-70% of the area in modern circuits, a greater
number of spare cells can be inserted after placement and buffer
insertion without increasing the circuit area. For example, modern
CPUs can have as many as 1% spare cells.

Traditionally, post-silicon error repair is performed manually.
However, with an increasing rate of post-silicon bug escapes, there
is a pressing need for automation. Recently, techniques that au-
tomate this repair process have been proposed [6, 7]. All these
techniques assume that spare cells have been properly inserted in
advance to allow metal fix. In practice, however, it is difficult to
find an ideal distribution of spare cells. Therefore, engineers of-
ten rely on bug analysis from previous silicon dies to determine
how spare cells should be inserted. As Figure 1(a) shows, a good
spare-cell selection and placement facilitate metal fix with mini-
mal perturbation of the silicon die. On the other hand, Figures 1(b)
and 1(c) show that poorly placed spare cells can only be reached
through long wires, leading to large increments in the propagation
delay of the circuit; and that a poor selection of cell types requires
the use of more cells to fix the same error.

Existing techniques for spare-cell insertion either provide better
spare cells that are more powerful in generating new logic func-
tions [3, 5, 9, 11, 12, 13, 16, 19, 17, 20] or strive to find better
placement for the spare cells, so that they are located in proximity
of a potential metal fix demand [3, 4, 5, 9, 11, 13, 17, 20]. Since
these techniques are only described in patents, no empirical eval-

Author, year Spare cell type Placement and routing methods Drawbacks/limitations
Yee[20], 1997 Most commonly used cell in the design; one

of the earliest works on spare-cell insertion
Spare cells scattered after placement Designed for 2 metal layers only

Lee[11], 1997 NAND/NOR gates with many inputs, BUF,
INV, DFF (new spare-cell selection)

Placed close to potentially buggy region High-input gates may waste space; other
cell types may be more useful

Payne[13],
1999

Gate array (new structure) Spare cells scattered after placement No new placement technique claimed

Wong[19],
2001

Configurable logic and INV (new struc-
ture)

N/A No placement technique claimed

Schadt[16],
2002

Programmable cells (new structure); ele-
vated lower-level wires improve FIB access

Spare-cell islands scattered before place-
ment

Uses 2 metal layers only; inputs/outputs
of spare cells must be elevated

Chaisemartin
[5], 2003

NAND, DFF, trigate (new structure) Placed in a zigzag pattern; stand-by tracks
for routing

Stand-by tracks may create routing con-
gestion

Bingert[3],
2003

Gate-array islands Floorplaned with the design, then scat-
tered uniformly

Spare-cell islands may occupy too much
space

Giles[9],
2003

New spare-cell selection within cell islands
including INV, DFF, MUX, AND, NAND,
NOR and BUF

Placed according to design hierarchy Each module is allowed only one addi-
tional I/O; only fixed blocks supported

Or-Bach [12],
2004

New FPGA-like structure N/A Uses 3 metal layers only; no placement
technique claimed

Vergnes[17],
2004

New structure with functional input bus
and an equation input bus

Placed with potentially buggy modules
by hardwiring inputs of spare cells to
signals in those modules

Occupied routing tracks may create con-
gestion

Brazell[4],
2006

N/A Whitespace allocated during Floorplan-
ning; cells inserted after placement

Spare cells occupy all remaining white-
space — impractical for modern layouts

Table 1: A summary of existing spare-cell insertion techniques described in US patents. Major contributions are marked in boldface.

uation has been reported, particularly in the context of metal fix.
As a result, their utility in post-silicon debug remains unclear. In
addition, each of the above techniques uses the same combinations
of spare-cell types throughout the design. However, different logic
blocks may require different types of spare cells. Another problem
is that most existing techniques also assume that spare-cell inser-
tion has negligible impact on important circuit parameters, and do
not discuss them. However, we found from our analysis that the
impact may be significant. To support today’s need for repairing
errors in complex designs, more flexible and robust spare-cell in-
sertion methodologies are a critical requirement.

Our work offers the first evaluation of strategies for spare-cell
selection and placement in the context of post-silicon debugging. It
answers the following important questions.

• What types of spare cells are most useful for metal fix?
• Do different types of designs or bugs need different combi-

nations of spare cells? How to select such combinations?
• What is the impact of different spare-cell placement methods

on important circuit parameters before and after metal fix?
• Should spare-cell density be different in different regions of

a circuit? How to determine the best density automatically?

Our key contributions are:
• A new technique to evaluate which type of cell is most use-

ful to repair a given circuit, called SimSynth. SimSynth also
measures the heterogeneity among signals and is the first
technique that addresses the cell density problem.

• A novel spare-cell insertion methodology that covers both
spare-cell selection and placement.

As the first empirical study of strategies for spare-cell insertion,
our work contributes new insights into this important problem. Our
methodology, developed based on these insights, improves both the
selection and the placement of spare cells to facilitate post-silicon
metal fix.

The rest of the paper is organized as follows. In section 2 we
describe several post-silicon metal fix techniques and review ex-
isting solutions for spare-cell insertion. We analyze the utility of

spare-cell types in Section 3 and study the placement of spare cells
in Section 4. We propose a new spare-cell insertion methodology
based on our analysis in Section 5. The results of our work are
summarized in Section 6, and Section 7 concludes the paper.

2. BACKGROUND AND PREVIOUS WORK
Post-silicon metal fix techniques: errors observed after tape-out
(post-silicon) can be classified into functional, electrical and man-
ufacturing/yield problems. These problems often need to be re-
solved via metal fix. Traditionally, post-silicon metal fix has been a
manual process, but techniques that automate this error-repair pro-
cess were proposed recently. For example, Chang et al. [6] fix
functional errors using exhaustive search of resynthesized netlists
followed by ECO routing. They also use symmetry-based rewiring
and local resynthesis to fix electrical errors. Chen [7] fixes timing-
related errors using spare cells to simulate gate sizing, buffer inser-
tion and technology remapping.

After the layout of a circuit has been modified, the change must
be implemented on the silicon die via metal fix. Metal fix can be
carried out by changing the masks for the metal layers followed by
a respin. This approach can implement any change in the layout and
has maximum flexibility. However, even though transistor masks
can be reused in metal fix, respin still takes several weeks and is
expensive. To quickly evaluate candidate fixes without a respin,
Focused Ion Beam (FIB) can be used. Nonetheless, the change that
can be made by FIB is often limited. For example, it is difficult to
access lower-level metal or generate long wires with FIB.
Existing spare-cell insertion methods: spare-cell insertion is a
design-dependent challenge whose solutions often rely on bug anal-
ysis from previous chips. Due to the confidentiality of relevant
data, the results are only revealed in patents. The lack of empirical
studies leaves the state of the art unclear, and hampers improve-
ment upon existing techniques. In Table 1 we summarize existing
solutions that address the spare-cell insertion problem. Note that
some techniques emphasize elevating lower-level wires for easier
FIB access, which can also reduce respin cost because only masks
for upper-level metal need to be updated. However, the elevated
vias and metal segments may cause routing congestion and worsen
circuit delay, hurting the overall circuit’s performance in the end.

3. CELL TYPE ANALYSIS
As suggested by Table 1, many existing techniques seek better

selections of spare-cell types so as to generate more complex logic
functions for metal fix [5, 9, 11, 17, 20]. Here, one tries to avoid
low-utility cells that waste valuable whitespace. A careful analysis
of references suggests that none of the existing techniques vary the
spare-cell selection throughout the design. However, intuitively it
seems that different circuit blocks in the design may benefit best
from different types of spare cells, and in general, some types may
be more useful than others. In this work we developed a novel algo-
rithm, called SimSynth, that evaluates quantitatively the usefulness
of a specific cell type, and we deployed on a range of designs to de-
termine if the type of spare cells has a relevant impact on the quality
of metal fix. Note that currently, we only consider combinational
cells in SimSynth. The utility of sequential cells will depend on the
sequential error repair technique being applied, which is a more
sophisticated problem.

3.1 The SimSynth Technique
Before we developed the SimSynth technique, we tried two other

cell-utility measurement experiments. In the first experiment, we
resynthesized 30 small subcircuits extracted from our benchmarks
using the ABC synthesis tool [22], and then we collected cell types
used in the resynthesized netlists. We found that the results were bi-
ased toward AND/NAND/INV gates because ABC’s internal data
structure is the And-Inverter Graph (AIG). To overcome this prob-
lem, our second experiment exhaustively searched for valid resyn-
thesized netlists with minimal number of gates. We found that the
results were biased toward MUX2 (3-input multiplexer) because
having three inputs allows it to generate many more netlists than
what is possible with 2-input gates.

Based on these observations, when designing SimSynth we make
sure that the underlying resynthesis algorithm is not biased towards
one or another type of gates. The SimSynth algorithm relies on a
pool of input vectors for the circuit that can either be provided by
a high-level simulator or acquired through a random selection. We
then compute a signature for each internal circuit wire.1 These sig-
natures can be thought of as partial truth tables that exclude all con-
trollability don’t-cares and they are the input to the SimSynth algo-
rithm as indicated in the pseudocode of Figure 2. The algorithm’s
output is the success rate to generate a signature that already exists
in the design region. To collect the signatures, we select a random
wire, search for gates within 40µm from the driver of the wire, and
then retrieve the signatures from the outputs of those gates to form
a signature pool. SimSynth is then called using the signature pool as
its input. Note that the 40µm constraint is based on the observation
that cells too far away will not be useful in metal fix because the
wires that connect to them will be too long and will exhibit signifi-
cant delay. In addition, FIB cannot generate long wires efficiently.
We also exclude resynthesis options that end up with exact same
gate type and inputs because the circuit remains unchanged.

Since we are measuring how easily an existing signal can be
re-generated, the cell utility is useful for electrical error repair,
which generates resynthesized netlists without modifying the cir-
cuit’s logic functions. However, this technique can also measure
the cell utility for functional error repair. The reason is that we
are comparing signatures (partial truth-tables) of the signals. If two
signals share the same signature, they must be functionally similar,
1For example, consider an AND gate with inputs A, B and output
O. Given two input vectors (A, B) = (0, 0) and (0, 1), the simulated
values of O are 0 and 1. The signatures of A, B and O are then
00,01 and 01, respectively. Note that bit-parallel simulation favors
signatures with 32 or 64 bits for efficiency reasons.

function SimSynth(candiSigs)
1 foreach cell ∈ spareCellTypes
2 foreach inputSigs ∈ combinations of signatures from candiSigs
3 sig← cell.compute(inputSigs);
4 if (sig ∈ candiSigs)
5 success[cell]++;
6 count[cell]++;
7 return success/count;

Figure 2: The SimSynth algorithm.

but can differ on input vectors that have not been used to generate
the signatures. This is similar to fixing functional errors: typically,
a new signal that fixes a functional error is only slightly different
from an existing one because most of the circuit’s functions are al-
ready correct in post-silicon debugging [6]. In general, more input
vectors will bias the utility of spare-cell types toward fixing elec-
trical errors because the generated signals will be closer to existing
ones, while the selection will be biased toward functional errors
when fewer vectors are used. In our experiments we start with 256
input vectors per circuit, and observe that the numerical results for
the utility of cell types stabilize when 2048 or more vectors are
used. To make SimSynth more relevant to studying functional er-
rors, we can also consider signatures that are only slightly different
from an existing one: generating a signature that is 1-bit different
from an existing one can also be counted as a success. In practice,
it is also possible that a fix requires a significant change to the cir-
cuit’s functions. Implementing such a dramatic change, however,
typically requires more complex resynthesized netlists involving
large numbers of spare cells, which can make metal fix difficult
or even impossible. In this work we do not discuss the utility of
spare cells for fixing such extensive errors.

Further analysis shows that SimSynth can also be used to deter-
mine spare-cell density. The reason is that what SimSynth really
measures is the heterogeneity among signals in the circuit. If the
success rate is high, then the logic functions of the signals are sim-
ilar, and generating a new signal that is close to any existing one
should be easy. If the rate is low, then the functions of signals are
quite different from each other, and generating a new signal using
those signals would require more gates. This analysis is confirmed
by our experimental results shown in Section 6.2.

EXAMPLE 1. Figure 3 shows a SimSynth execution example us-
ing a full adder, where gate g1 should be XOR instead of OR. Two
input vectors are used, producing a 2-bit signature for each wire.
Suppose we want to measure the utility of cell types for the region
indicated by the dashed line that contains two distinct signatures.
SimSynth tries different cell types with different combinations of in-
puts (only 1 combination in this example) and measures the success
rate to replicate an existing signature. The results on the right of
the figure show that AND and XOR are more useful than NAND
in this case. Note that the correct cell type to fix the bug can be
successfully identified because signatures are only partial truth ta-
bles, which allow the identification of spare cells that can generate
different signals. In general, additional input vectors will bias the
cell-type selection towards the one that allows less function change.

Figure 3: SimSynth example using a full adder.

Figure 4: Using single gates of different types to generate desired signals. The success rates are shown in percent.

3.2 Experimental Setup
Our implementation platform is based on the OAGear package

[26] from Cadence Labs that uses the OpenAccess database and is
integrated with the Capo placer [2]. We use benchmarks provided
by the Bug UnderGround project [23] (Alpha), which includes a
number of actual bugs found in fully functional microprocessor de-
signs. Other benchmarks are from OpenCores [25] (MRISC, MD5
and DES_perf), picoJava (Hold_logic), and OpenSparc (EXU_ECL)
[27]. The characteristics of these benchmarks are summarized in
Table 2, where the first four are individual modules of the Alpha
processor, followed by the full fledged Alpha design. Next, we
show another processor (MRISC), followed by two CPU control
blocks (Hold_logic and EXU_ECL) and two cryptographic cores
(MD5 and DES_perf). To generate the layout information for these
designs, we first synthesize the designs with Cadence RTL Com-
piler 4.10 based on a 0.18 µm library, and then we instruct Capo
to place the design with uniform whitespace. By using uniform
whitespace we produce lower bounds for the trends we observe,
and the actual trends should be stronger with more realistic place-
ment techniques that distribute design cells to aggressively opti-
mize interconnect. We use Cadence NanoRoute 4.10 to route the
final design and calculate the routed wirelength and circuit delay.
The cell types considered in our analysis are INV (inverter), AND,
OR, XOR, NAND, NOR, and MUX2. All cells except INV and
MUX2 have two inputs. To evaluate a region with 200 signals us-
ing SimSynth, approximately 6 seconds are required on an AMD
2.4GHz Opteron workstation.

Benchmark Description Cell Delay
count (ns)

Alpha_IF Instruction fetch unit of Alpha 1205 1.15
Alpha_ID Instruction decode unit of Alpha 11806 1.91
Alpha_EX Instruction execution unit of Alpha 20903 3.89
Alpha_MEM Memory stage unit of Alpha 363 0.44
Alpha Alpha CPU full chip 30212 6.93
MRISC MiniRISC CPU 4359 2.66
Hold_logic Part of PicoJava IU control 67 0.61
EXU_ECL Part of OpenSparc EXU control 2083 0.99
MD5 MD5 encryption/decryption core 9181 6.92
DES_perf DES encryption/decryption core 100776 3.37

Table 2: Characteristics of benchmarks

3.3 Empirical Results
The experimental results are summarized in Figure 4, which shows

two interesting trends. First, the distribution of cell-type utility
varies widely among modules of the Alpha processor: signatures
can often be re-generated easily using one gate in the IF and ID
blocks, but not in the EX and MEM blocks. The reason is that IF
and ID contain mostly control logic. Since control logic is mainly
generated from “if-then” constructs, most signals are generated by
ANDing, ORing or multiplexing the same group of signals. As a
result, the logic functions between two signals are often very simi-
lar, making it easier to generate identical signatures using one gate.
On the other hand, EX is dominated by datapaths. Since signals
in such modules usually compute more distant functions, a single
gate is less likely to re-generate an existing signature. For example,
the first bit and the last bit in an adder compute very different func-
tions. This result shows that to fix errors in arithmetic cores, more
spare cells may be needed than fixing similar errors in control logic.
Second, we observe that MUX2 is more useful in control logic (Al-
pha_IF, Alpha_ID, Hold_logic and EXU_ECL) than in arithmetic
cores. The reason is that control logic is typically composed of
many "if-then" constructs that can be efficiently implemented and
modified using multiplexers.

3.4 Discussion
Our empirical results suggest that AND, NAND, OR, NAND and

INV are the most useful in general, while XOR is the least useful.
But CMOS standard cells that implement INV, NAND and NOR
are smaller than those for AND and OR gates, making INV, NAND
and NOR preferable as spare cells due to their functional complete-
ness. The utility of MUX2, however, is unclear: it is useful in only
some of the benchmarks. Since MUX2 has three inputs, it should
be useful in fixing functional errors because it can generate many
different functions. In addition, the “if-then” construct commonly
used in control logic can be modeled easily using MUX2. Since
MUX2 is not a good candidate to fix electrical errors (MUX2 im-
plemented using active transistors is large and slow), it should be
implemented using pass transistors to fix functional errors.

In summary, our results suggest that: (1) different types of de-
signs or errors need different combinations of spare-cell types; and

(2) the most useful types are simple ones such as INV, NAND and
NOR, while more complex gates such as XOR and MUX2 are less
useful. Since there is no clear trend to predict the types of spare
cells that will be more useful in a design, performing empirical
analysis beforehand for each block in the design should help select
the most adequate spare-cell types and distributions.

4. PLACEMENT ANALYSIS
Placement of spare cells is another major factor that affects the

quality of metal fix. When errors occur too far from pre-placed
spare cells, the required wire connections may be too long to be
practical. Even if such wires can be implemented by FIB or respin,
the wire delay may also be large. Existing solutions either place the
spare cells before design placement [5, 16], with design placement
[9, 11, 17], or after design placement [3, 13, 20, 4]. To make sure
that spare cells are available where necessary, uniform distribution
of spare cells has been used by many existing solutions [3, 5, 16],
while several other solutions focus on identifying potentially buggy
regions and place spare cells close to them [11, 9, 17]. The spare
cells are often grouped into spare-cell islands and then placed on
a uniform grid; however, it is also possible to uniformly distribute
individual cells instead of grouped cell islands. Since there is little
research that evaluates different placement methods, the relative
advantages of known techniques remain unclear.

A high-quality spare-cell placement should have minimal im-
pact on important circuit parameters before metal fix to avoid in-
creasing circuit delay or wirelength inadvertently and hurting de-
sign quality. It should also facilitate metal fix with the smallest
impact on circuit parameters to provide high-quality repair. We
observe that most existing techniques either scatter spare cells af-
ter design placement or place spare-cell islands uniformly before
design placement. We call the former method PostSpare place-
ment and the latter ClusterSpare. PostSpare covers the placement
methods described in patents proposed by Yee [20] and Payne [13],
while ClusterSpare covers those proposed by Schadt [16], Chaise-
martin [5] and Bingert [3]. In ClusterSpare-based techniques, a cell
island typically contains one cell for each selected type. Therefore,
the number of cells in each island is usually large. An illustration
of these placement methods is given in Figure 5.

PostSpare ClusterSpare UniSpare(new)
Figure 5: Illustration of different placement methods. Dark
cells are spare cells. PostSpare inserts spare cells after design
placement. Since design cells may be clustered in some regions,
spare-cell distribution is typically non-uniform. ClusterSpare
inserts spare-cell islands on a uniform grid before design place-
ment, while UniSpare inserts single spare cells.

PostSpare placement should have minimal impact on important
circuit parameters because spare cells are inserted after design place-
ment. However, the error-repair quality of this method may be
poor when design cells form high-utilization areas, forcing spare
cells into sparser regions. When this happens, long wires may
be needed to reach those cells. ClusterSpare placement may have
larger impact on circuit parameters because the cell islands will
act like macros and reduce the optimization that can be performed
by the placer. However, it should provide better error-repair quality

because their uniform distribution makes their access easier. There-
fore, shorter wires can be used to reach the cell islands. In addition,
connections among cells within the same island only require local
wires and will be easy to implement. Note that, however, even the
relatively short wires necessary to reach the spare-cell islands of
ClusterSpare may trigger unacceptable wire delay increase in cur-
rent silicon technology nodes, which are extremely delay-sensitive.

In this work we propose UniSpare, a solution that pre-places in-
dividual spare cells uniformly on a grid, as illustrated schematically
in Figure 5(c). In this way, the average distance from a design cell
to the closest spare cell is reduced. For example, when the size
of the clusters reduces from 16 to 1 while maintaining the total
number of spare cells, the average distance to reach a spare cell
is reduced by 4 times. In a resynthesized netlist involving many
gates, these individual cells can also act like buffers to increase sig-
nal strength, thus further reducing wire delay. Our experimental
results in Section 6 indicate that the UniSpare placement technique
is superior to previous methods.

5. OUR METHODOLOGY
Based on our analysis, we propose a new spare-cell insertion

methodology, illustrated in Figure 6. Below we explain how it per-
forms the selection and placement of spare cells.

Figure 6: Our spare-cell insertion flow.

Our analysis suggests that different types of circuits require dif-
ferent distributions of spare-cell types. To select appropriate types,
we apply our SimSynth technique (described in Section 3.1) in each
design module and use the resulting cell-type distribution to deter-
mine the types of spare cells that should be inserted to each mod-
ule. Since AND and OR gates require greater area than NAND and
NOR, in our methodology we always use INV, NAND and NOR.
In addition, for control blocks we insert multiplexers implemented
using pass transistors to fix functional errors. Cell structures that
provide greater flexibility, such as programmable logic or gate ar-
ray [3, 12, 13, 16, 19], can also be used. However, they often
require additional long wires to support programming.

The density of spare cells can be determined by the expected bug
rate. If a circuit module is potentially buggy, then more spare cells
should be placed in that module. For example, a perfectly work-
ing/verified circuit that is being scaled down to a new technology
may encounter new electrical errors, but functional errors should
not be prominent. In arithmetic cores, functional errors are rela-
tively unlikely because these cores are usually heavily verified and
are reused among designs. If bugs do occur, however, they may be
difficult to repair using metal fix alone because all 32 or 64 bits may
be affected. Wagner et al. [18] showed that most errors found in
high-profile processors are in control logic. Therefore, more spare
cells should be placed there.

If the expected bug rate is unknown, the results from SimSynth
could be used. If the success rate measured by SimSynth in a block
is lower than other blocks, then the heterogeneity among signals in
the block is high and more spare cells should be placed. Suppose

that there are n blocks in a circuit, the average success rate for block
Bi is Si, and the average success rate for all the blocks is Savg. Also
assume that the target overall spare-cell density is Dall%. Formula
1 shows how to determine the spare-cell density Di for block Bi. In
the formula, P is a parameter that determines the impact of Si on Di
and should be determined empirically. For example, based on our
evaluation, P should be 20% for the blocks in the Alpha processor.

Di =
[(Si−Savg)×P

Savg
+1

]

×
Dall

100% (1)

The placement of spare cells depends on the expected bug rate
and the metal-fix technique being used. If the expected bug rate
is low, spare cells can be scattered uniformly after design place-
ment. This helps ensure that spare cells do not affect circuit perfor-
mance. If the expected bug rate is higher or unknown, then spare
cells should be pre-placed uniformly before design placement so
that wherever a fix must be applied, there are spare cells close to
the repair site. To reduce the impact of the fix on important circuit
parameters, spare cells should be placed individually or as small is-
lands throughout the design using our proposed UniSpare method.
Note that spare cells not connected during metal fix can also be
used as buffers to improve circuit timing, as [7] suggests.

6. EXPERIMENTAL RESULTS
In this section we empirically evaluate our techniques and com-

pare them with existing solutions.

6.1 Cell-Type Selection
Experiment design: in this experiment we compare our results
with two cell-selection methods: Giles [9] and Yee [20]. According
to Figure 4, we use INV, NAND and NOR for most benchmarks,
while Alpha_ID also includes MUX2. Giles uses INV, DFF, MUX,
AND, NAND, NOR and BUF as spare cells. Since Yee selects
the “most-commonly used cell types” without indicating the num-
ber of types that should be used, we synthesized the benchmarks
again using the seven types from which spare cells are drawn, and
then selected the most-used two types for each benchmark, which
were consistently NAND and INV. We use the UniSpare placement
method for all three spare-cell selections to make sure the results
are not affected by placement. To perform the experiment, we first
select a subcircuit composed of 1-6 cells that are connected to each
other. Next, we mimic a “fix” by resynthesizing the subcircuit and
then map the resynthesized netlist to spare cells close to the sub-
circuit. Finally, we measure the delay and wirelength of the circuit
after routing the modified netlist using NanoRoute’s ECO mode.
Better spare-cell selections should allow metal fix to be performed
with smaller impact on circuit delay and wirelength. We ran each
experiment 50 times to collect 50 data points for statistical analysis.
Results: the results are summarized in Figure 7. The graph shows
that our spare-cell selection produces 23% and 4% smaller delay
increase compared to Yee and Giles at a comparable wirelength
increase. This result shows that our spare-cell selection can find
more useful cells for each design and provides better error-repair
quality after metal fix.

6.2 Spare-Cell Placement
Three different types of placement methods are used in our ex-

periments, and an illustration is given in Figure 5. PostSpare in-
serts individual spare cells after design placement; UniSpare inserts
individual cells on a uniform grid before design placement; and
ClusterSpare inserts spare-cell islands on a uniform grid before de-
sign placement, where each island is composed of 9 cells. We use
INV, NAND and NOR gates as spare cells in our experiments, and

Figure 7: Delay and wirelength increase after metal fix when
using three different sets of spare-cell selections. Ours has 23%
and 4% smaller delay increase compared to Yee and Giles,
while the wirelength increase is approximately the same.
each benchmark contains approximately 4% spare cells. The placer
and router used in these experiments are Capo and NanoRoute. We
ran each experiment 50 times to collect 50 distinct data points for
statistical analysis.
Circuit parameter analysis before metal fix: in this experiment
we first insert spare cells using the three methods described earlier.
Next, we place and route the design using Capo and NanoRoute.
Finally, we measure the impact of different placement methods on
important circuit parameters, including delay and wirelength.

Figure 8(a) shows the average results of the benchmarks, and the
error bars represent the range of one standard deviation. The fig-
ure shows that PostSpare placement does not affect circuit delay
or wirelength. This is expected because the spare cells are placed
after design placement; therefore, delay and wirelength should not
be affected by spare-cell insertion. ClusterSpare placement shows a
very interesting trend where the delay is increased while wirelength
decreases. The reason is that large cell islands act like macros and
force Capo to place design cells closer together, thus reducing total
wirelength. At the same time, longer wires must be used to con-
nect cells around the spare-cell islands, resulting in larger delay.
For more aggressive placers, however, this trend may not be ob-
served. The results also show that wirelength increased by 0.9%
in UniSpare placement. This is because pre-placed spare cells will
occupy certain placement sites, reducing the number of sites that
can be used by the placer. Therefore, the optimization that can
be performed by the placer will also be limited, resulting in larger
wirelength. The delay, however, is only slightly affected by the in-
serted spare cells because connecting cells around a single cell only
needs slightly longer wires, resulting in 24% smaller delay increase
than ClusterSpare placement. We also note that the standard devi-
ations are large in ClusterSpare and UniSpare placement methods,
suggesting that spare-cell insertion may destabilize existing place-
ment and routing tools.
Repair quality analysis after metal fix: after errors in a circuit
have been repaired by metal fix, the circuit’s major physical pa-
rameters may change, including interconnect length and maximum
delay. Typically, repairs with higher quality can minimize the per-
turbation of those parameters. Since the quality of metal fix is af-
fected by the placement of spare cells, we reused the experiment
described in Section 6.1 to measure the impact of placement meth-
ods on error-repair quality. Since fixes that do not affect a critical
path have no impact on circuit delay, we only selected data points
whose delay has been changed to measure the true impact of place-
ment methods on delay.

The average changes of physical parameters after metal fix are
shown in Figure 8: Figure 8(b) shows the impact of placement on
circuit delay and wirelength, while Figure 8(c) shows the impact

(a) (b) (c)
Figure 8: Impact of spare-cell placement methods on circuit parameters: (a) before metal fix; (b)(c) after metal fix. Ours has 24%
smaller delay inrease before metal fix compared with ClusterSpare. The delay increase after metal fix is 37% and 17% better than
the PostSpare and ClusterSpare methods, respectively.

on the number of affected metal segments. The error bars represent
one standard deviation. The results show that PostSpare placement
produces poor repair quality because it triggers a larger increase in
delay and wirelength. In addition, it also affects more metal seg-
ments, making FIB more difficult. These trends should be stronger
with non-uniform distribution of whitespace. From Figure 8(b),
we observe that UniSpare placement has smaller delay and simi-
lar wirelength increase compared to ClusterSpare. The reason is
that the cell islands placed by ClusterSpare are farther away from
each other than the spare cells placed by UniSpare. As a result,
longer wires are needed to connect to those cell islands, resulting
in larger delay. On the other hand, Figure 8(c) shows that smaller
numbers of metal segments are affected in circuits produced by
ClusterSpare. This is because once those long wires reach the cell
islands, connections among the cells in the same island only require
local wires and will not perturb other wires. On average, UniSpare
placement results in 37% and 17% smaller delay increase compared
with PostSpare and ClusterSpare respectively, suggesting that it is
the best placement method.

To further study the impact of different placement methods on
important physical parameters, we took benchmark Alpha and plot-
ted Figure 9 to show the relationship between the increase in wire-
length and the number of spare cells used in metal fix. In this figure,
we show the data points from three placement types and their linear
regression lines. The results show that wirelength increases when
more cells are used in metal fix because more cells need more wires
to connect. The regression lines suggest that when more cells are
used in metal fix, wirelength of PostSpare will increase faster than
the other two types. This is because the irregularity of spare-cell
distribution produced by PostSpare may make the required spare
cells difficult to reach, resulting in very long wires. Figure 9 also
shows that the linear regression lines of ClusterSpare and UniSpare
are close to each other. This is not surprising because spare cells
are placed uniformly in both techniques. Therefore, on average the
lengths of the wires to connect those cells will not differ too much.
However, the delay may be different, as Figure 8(b) suggests.

In Figure 10 we plot the number of metal segments affected by
the performed fixes against the number of spare cells used in the
fixes. The results show that when a fix requires more spare cells,
more metal segments will be affected in a circuit produced by Post-
Spare than a circuit produced by UniSpare, while ClusterSpare has
the smallest number. As explained earlier, PostSpare creates many
long wires and will affect more metal segments, while ClusterSpare
placement can utilize local connections, thus reducing the number
of segments affected.
Density of Spare Cells: another interesting placement-related is-
sue is the density of spare cells. Several existing techniques suggest
that spare cells should be inserted close to potentially-buggy circuit
modules [11, 17]. This approach is certainly useful if such informa-
tion is available. However, it cannot be used if the bug distribution
of a chip is unknown. As discussed in Section 3.1, SimSynth can

Figure 9: Relationship between wirelength increase and the
number of spare cells used in metal fix.

Figure 10: Relationship between the number of metal segments
affected and the number of spare cells used in metal fix.

address this problem. To evaluate its effectiveness, we counted the
average number of spare cells used in the fixes produced by our
previous experiment, and we contrast the results with Figure 4.

The results of this experiment are shown in Figure 11. This fig-
ure shows that to generate the same signal, the Alpha processor
needs more spare cells than its EX block, followed by its ID and
IF blocks. If we contrast this result with Figure 4, we can see that
the IF block has the highest success rate in generating an existing
signature using one spare cell, followed by ID, EX and the Alpha
processor. These two observations are correlated because if it is
easier to generate an existing signal using one gate, the number of
cells needed to replicate a signal should also be smaller, at least
on average. This phenomenon can also be observed on MD5 and
DES_perf: MD5 requires more cells in each fix, and the success
rate to generate an existing signal using one gate is also smaller.
This result suggests that measuring the success rate of our Sim-
Synth experiment can help determine the density of spare cells that
should be placed on a silicon die.

Figure 11: Average numbers of cells used when fixing bugs in
the benchmarks. By contrasting with Figure 4 we show that
SimSynth can help determine spare-cell density. For example,
Alpha has smaller success rate in Figure 4 than its EX block,
followed by its ID and IF blocks. This figure shows that the
Alpha design requires more cells than its EX, ID and IF blocks.

7. CONCLUSIONS
In this work we performed a comprehensive analysis of spare-

cell insertion to study the nature of this problem. Based on what
we learned from this analysis, we proposed a new methodology that
is more flexible than existing solutions and covers both spare-cell
selection and placement. Furthermore, we described a SimSynth
technique that can measure the heterogeneity among signals in a
particular region of a placed netlist. It can help determine the spare-
cell density automatically — a problem that has not been previously
addressed in the EDA literature.

Our work evaluates, for the first time, several rules of thumb
commonly used in spare-cell insertion. First, several existing so-
lutions suggest to use the “most-commonly used” cell type in the
design as the spare-cell type. According to our results, the most
popular cell type is indeed very useful, but (1) other types can be
equally useful, and (2) using a blend of several spare-cell types pro-
vides better error-repair quality than using only one or two types.
Second, most existing solutions use large spare-cell islands. Our
analysis shows that this approach hurts circuit’s wirelength and tim-
ing, and we believe that the difference will grow with each technol-
ogy node due to poor scaling of interconnect delay. To reduce this
impact, smaller islands should be used so as to reduce the aver-
age distance from a design cell to the closest spare cell. This will
shorten the wires that connect to spare cells and improve circuit
delay after metal fix. Third, most existing solutions neglect the
impact of spare-cell insertion on circuit parameters. However, we
showed that this impact may be significant. Without careful plan-
ning, spare-cell insertion can worsen circuit timing and wirelength.

The success of post-silicon metal fix is contingent upon a good
spare-cell insertion methodology. However, the EDA literature of-
fers practically no accounts of research on this topic. To this end,
our flexible spare-cell insertion methodology not only provides bet-
ter selections of spare cells but also generates placements that mini-
mize the impact on circuit parameters. As shown by empirical eval-
uation, our placement and spare-cell selection techniques provide
17-37% and 4-23% smaller delay increase compared with existing
solutions, demonstrating the ability of our methodology to improve
the quality of post-silicon metal fix. Due to interconnect scaling,
we expect stronger trends for more advanced cell libraries than the
180nm technology we used. More aggressive placement tools with
non-uniform utilization should also strengthen the trends (our ex-
periments only give a lower bound).

Acknowledgments: The authors thank Prof. Todd Austin for moti-
vating this research. This work was supported by grants from SRC,
GSRC and NSF.

8. REFERENCES
[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi

and D. Miller, “A Reconfigurable Design-for-Debug Infrastructure
for SoCs”, DAC’06, pp. 7-12

[2] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. Markov,
“Unification of Partitioning, Floorplanning and Placement”,
ICCAD’04, pp. 550-557

[3] C. Bingert, C. D. Gorsuch, O. G. Mercado, A. K. Myers, J. A.
Schadt and B. W. Yeager, “Integrated Circuit and Associated Design
Method Using Spare Gate Islands”, US Patent 6600341 B2, Jul.
2003

[4] M. Brazell and A. Essbaum, “Method for Allocating Spare Cells in
Auto-Place-Route Blocks”, US Patent 6993738 B2, Jan. 2006

[5] P. Chaisemartin, “Structure and Method of Repair of Integrated
Circuits”, US Patent 6586961 B2, Jul. 2003

[6] K.-H. Chang, I. L. Markov and V. Bertacco, “Automating
Post-Silicon Debugging and Repair”, ICCAD’07, pp. 91-98

[7] Y.-P. Chen, J.-W. Fang and Y.-W. Chang, “ECO Timing
Optimization Using Spare Cells”, ICCAD’07, pp. 530-535

[8] C. Chiang and J. Kawa, “Design for Manufacturability and Yield for
Nano-Scale CMOS”, Springer, 2007

[9] C. M. Giles, “Modular Collection of Spare Gates for Use in
Hierarchical Integrated Circuit Design Process”, US Patent 6650139
B1, Nov. 2003

[10] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug”,
DAC’06, pp. 3-6.

[11] D. Lee, “Method and Apparatus for Quick and Reliable Design
Modification on Silicon”, US Patent 5696943, Dec. 1997

[12] Z. Or-Bach, “Customizable and Programmable Cell Array”, US
Patent 6756811 B2, Jun. 2004

[13] R. L. Payne, “Cell-Based Integrated Circuit Design Repair Using
Gate Array Repair Cells”, US Patent 5959905, Sep. 1999

[14] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization”, IEEE TCAD, pp. 727-750,
Sep. 1987

[15] S. Saranqi, S. Narayanasamy, B. Carneal, A. Tiwarj, B. Calder and J.
Torrellas, “Patching Processor Design Errors with Programmable
Hardware”, IEEE Micro, Vol. 27(1), 2007, pp. 12-25

[16] J. A. Schadt, “Integrated Circuit with Standard Cell Logic and Spare
Gates”, US Patent 6404226 B1, Jun. 2002

[17] A. Vergnes, “Spare Cell Architecture for Fixing Design Errors in
Manufactured Integrated Circuits”, US Patent 6791355 B2, Sep.
2004

[18] I. Wagner, V. Bertacco and T. Austin, “Shielding Against Design
Flaws with Field Repairable Control Logic”, DAC’06, pp. 344-347

[19] J. Wong, D. Chiang and J. Tolentino, “Efficient Use of Spare Gates
for Post-Silicon Debug and Enhancements”, US Patent 6255845 B1,
Jul. 2001

[20] C. L. Yee, S. Aji and S. Rusu, “Method and Apparatus to Distribute
Spare Cells within a Standard Cell Region of an Integrated Circuit”,
US Patent 5623420, Apr. 1997

[21] H. Xiang, L.-D. Huang, K.-Y. Chao, and M. D. F. Wong, “An ECO
Algorithm for Resolving OPC and Coupling Capacitance
Violations”, ASICON’05, pp. 784-787

[22] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification, Release 51205.
http://www-cad.eecs.berkeley.edu/~alanmi/abc/

[23] Bug UnderGround, http://bug.eecs.umich.edu/
[24] International Technology Roadmap for Semiconductors 2005

Edition, http://www.itrs.net
[25] http://www.opencores.org/

[26] http://openedatools.si2.org/oagear/

[27] http://www.sun.com/

