
RUMBLE: An Incremental, Timing-driven,
Physical-synthesis Optimization Algorithm

David A. Papa†�, Tao Luo‡, Michael D. Moffitt�, C. N. Sze�,
Zhuo Li�, Gi-Joon Nam�, Charles J. Alpert� and Igor L. Markov†

†University of Michigan
EECS Department
Ann Arbor, MI 48109

‡University of Texas at Austin
Department of ECE
Austin, TX 78712

� IBM Austin Research Lab
11501 Burnet Rd.
Austin, TX 78758

iamyou@umich.edu, tluo@ece.utexas.edu {mdmoffitt, csze, lizhuo, gnam, alpert}@us.ibm.com, imarkov@umich.edu

ABSTRACT
Physical synthesis tools are responsible for achieving timing clo-
sure. Starting with 130nm designs, multiple cycles are required
to cross the chip, making latch placement critical to success. We
present a new physical synthesis optimization for latch placement
called RUMBLE (Rip Up and Move Boxes with Linear Evaluation)
that uses a linear timing model to optimize timing by simultane-
ously re-placing multiple gates. RUMBLE runs incrementally and in
conjunction with static timing analysis to improve the timing for
critical paths that have already been optimized by placement, gate
sizing, and buffering. Experimental results validate the effective-
ness of the approach: our techniques improve slack by 41.3% of
cycle time on average for a large commercial ASIC design.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – placement and routing
J.6 [Computer-Aided Engineering]: Computer-Aided Design
G.4 [Mathematical Software]: Algorithm Design and Analysis

General Terms:
Algorithms, Design, Performance

Keywords:
Timing-driven placement, static timing analysis

1. INTRODUCTION
Physical synthesis is a complex multi-phase process primarily

designed to achieve timing closure, though power, area, yield and
routability also need to be optimized. Starting with 130nm designs,
signals can no longer cross the chip in a single cycle, which means
that pipeline latches need to be introduced to create multi-cycle
paths. This problem becomes more pronounced for 90-, 65- and
45-nanometer nodes, where interconnect delay increasingly domi-
nates gate delay. Hence, the proper placement of pipeline latches
is a critical problem for timing closure, especially since there may
only be a narrow placement region for the latch (perhaps only a
single location) that will close timing.

The place of this optimization in a physical synthesis flow affects
the choice of computational techniques. To this end, we review the
major phases of such flows following [1, 4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’08, April 13–16, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-60558-048-7/08/04 ...$5.00.

1. Global placement.
2. Electrical correction fixes capacitance and slew violations

with gate sizing and buffering.
3. Legalization. An incremental placement capability that re-

moves overlaps caused by optimization with minimal distur-
bance to gate locations and timing.

4. Timing analysis.
5. Detailed placement.
6. Critical-path optimization. At this point one can identify

most-critical paths and focus on techniques to improve the
slack for the worst timing violations. Relevant optimizations
include buffering, gate sizing and incremental synthesis [14].

7. Compression. When improvements on most-critical paths
are no longer possible, one optimizes remaining paths that
violate timing constraints. The goal is to compresses the tim-
ing histogram and reduce number of negative-slack paths that
require designer intervention.

The flow can be repeated with net weighting and timing-driven
placement to further improve results.

One can think of physical synthesis as progressing with “variable
detail / variable accuracy.” For example, during global placement,
very large changes are made to the design using a coarse objec-
tive (such as wirelength) that is oblivious to timing considerations.
Later, one may perform more accurate optimization using an El-
more interconnect delay-model with Steiner-tree estimates for net
capacitance. As the design begins to converge, one can apply more-
expensive, fine-grained buffering along actual detailed routes using
a statistical timing model.

Figure 1(a)-(d) illustrates the complications of using global place-
ment to solve the latch placement problem for a single two-pin net.
Assume that for all four figures, the source A and sink B are fixed
in location and that global placement must find the correct location
for the latch. This example is representative of situations in which
a fixed block in one corner of the chip must communicate with a
block in the opposite corner, and they cannot reach each other in
a single cycle. All four placements have equal wirelength, so un-
less global placement is timing driven, the placement of the latch
between A and B is arbitrary. Consider the following scenarios:

• Suppose the placement tool chooses (a), which is the worst
location for the latch. In this case, the latch is so far from B
that the timing constraint at B cannot be met. This results in
a slack on the input net (U) of +5ns and a slack on the the
output net (V) of −5ns (even after optimal buffering).1

• With a second iteration of physical synthesis, timing-driven
placement could try to optimize the location of this latch by

1The nets in each scenario could include buffers without changing
the trends discussed.

A B

Q

QSET

CLR

D

L

VU
-5+5

(a)

A B

Q

QSET

CLR

D

L

VU
+3-3

(b)

A B

Q

QSET

CLR

D

L

VU
-2+2

(c)

A B

Q

QSET

CLR

D

L

VU
00

(d)
Figure 1: The placement of a pipeline latch impacts the slacks
of both input and output paths. A wirelength objective does not
capture the timing effects of this situation.

adding net weights. Any net weighting scheme will assign
a higher weight to net V than U, resulting in a placement
where the latch is very close to B, as in (b). While the timing
is improved, there now is a slack violation on the other side
of the latch with −3ns of slack on U and +3ns on V.

• A global or detailed placer could use a quadratic wirelength
objective to handle these kinds of nets, giving the location
(c), which, while better than (a) and (b), is still suboptimal.

• To achieve the optimal location with no critical nets (0 slack
on U and V), the latch must be placed as shown in (d). In this
case, there is only one location that meets both constraints.

This example suggests that wirelength optimization is not well-
suited for latch placement, especially when there is little room for
error. Instead, one must be able to couple latch placement with
timing analysis and model the impact of buffering. In practice,
the problem is more complex, and some aspects are not illustrated
above. In particular, many latches have buffer trees in the imme-
diate fan-in and fan-out. Such complications pose additional chal-
lenges that we address. We make the following contributions.

• We show that a linear-wire-delay model is sufficient to model
the impact of buffering for the latch placement problem.

• We develop RUMBLE, a linear-programming-based, timing-
driven placement algorithm which includes buffering for slack-
optimal placement of individual latches under this model and
show its effectiveness experimentally.

• We extend this technique to improve the location of individ-
ual logic gates other than latches. Further, we show how to
find the optimal location of multiple gates (and latches) si-
multaneously, with additional objectives. Incremental place-
ment of multiple cells requires additional care to preserve
timing assumptions, optimizing a set of slacks instead of a
single slack, while also biasing the solution towards place-
ment stability. We describe how RUMBLE can handle these
situations.

• Our experiments validate the effectiveness of these trans-
forms. We show how these techniques can be used to signif-
icantly improve latch placement for a reasonably optimized
ASIC design with “do no harm” acceptance criteria that re-
jects solutions if any quality metrics are degraded. This fa-
cilitates the use of RUMBLE later in physical synthesis.

The remainder of the paper is organized as follows. Section
2 discusses background and previous work. Section 3 describes
the timing model we use in this work. Section 4 describes how
RUMBLE performs timing-driven placement. Section 5 describes
the RUMBLE algorithm. Section 6 shows our experimental results.
Conclusions are drawn in Section 7.

2. BACKGROUND
The incremental latch placement problem and its multiple move-

ment formulation are explained in Section 4. The high level prob-
lem description is: given an optimized design and a small set of
gates M (M may consist of a single latch) find new locations for
each gate in M and new buffering solutions for nets incident to M
such that the timing characteristics of the design are improved.

While moving a cell can improve delay, especially if it has been
poorly placed, moving a latch has special significance since it fa-
cilitates time-borrowing: reallocating circuit delay from a longer
(slow) combinational stage to a shorter (fast) combinational stage.
This fact offers a particularly significant boost to our basic ap-
proach, and is enhanced even further when surrounding gates are
also free to move.

A solution to this problem is called a transform using the ter-
minology of [14]. A transform is an optimization designed to in-
crementally improve the timing. Other examples of transforms in-
clude, buffering a single net, resizing a gate, cloning a cell, swap-
ping pins on a gate, etc. The way transforms are invoked in a phys-
ical synthesis flow is determined by the drivers. For example, a
driver designed for critical path optimization may attempt a trans-
form on the 100 most critical cells. A driver designed for compres-
sion may attempt at transform on every cell that fails to meet its
timing constraints.

A driver has the option of avoiding transforms that may harm the
design (e.g., the new buffering solution is worse than the original)
and can then reject this solution. This do no harm philosophy of
optimization has received significant recognition in recent work [5,
11]. The RUMBLE approach adopts this same convention which
makes it more trustworthy in a physical synthesis flow.

While no previous work has attempted to solve this particular
problem, other works do exist that may be able to help with the
placement of poorly placed latches. The authors of [15] propose
a linear programming formulation that minimizes downstream de-
lay to choose locations for gates in field-programmable gate arrays
(FPGAs). The authors of [6] model static timing analysis (STA) in
a linear programming formulation by approximating the quadratic
delay of nets with a piecewise-linear function. Their formulation’s
objective is to maximize the improvement in total negative slack of
timing end points. The authors of both approaches conclude that
the addition of buffering would improve their techniques [15, 6].
When these transformations are applied at the same point in a phys-
ical synthesis flow that we propose, they will be restricted by pre-
vious optimizations. When applied somewhat earlier (e.g., follow-
ing global placement) they are incapable of certain improvements.
Namely, downstream optimizations, such as buffer insertion, gate
sizing, and detailed placement may invalidate the optimality of
latch placement. Therefore, our technique focuses on the bad latch
placements that we observed in large commercial ASIC designs af-
ter state-of-the-art physical synthesis optimizations. However, we
believe that these algorithms are too disruptive to use after routing.

3. THE RUMBLE TIMING MODEL
We now introduce the timing model critical to RUMBLE’s success.

A B

Q

QSET

CLR

D

L

-4+5

Figure 2: A poorly-placed latch with buffered interconnect. In
this case, the buffer must be moved or removed in order to have
the freedom to move the latch far enough to fix the path.

Figure 2 shows an intuitive example of the problem when we try
to find new locations for movable gates. Similar to Figure 1, the

(a) (b) (c) (d)

Figure 3: The layout in (a) has a poorly-placed latch, and existing critical path optimizations do not solve the problem. Repowering
the gates may improve the timing some in (b), but if it cannot fix the problem, the latch must be moved. Moving the latch up to the
next buffer, shown in (c), does not give optimization enough freedom. If we move the latch but do not re-buffer in (d), timing may
degrade. Figure 7(d) shows the ideal solution to this problem.

latch has to be moved toward the right for better timing. However,
since the latch drives a buffer which is placed next to it, we must
move the buffer in order to improve the slack of the latch, and other
complications are illustrated by Figure 3. At the same time, the op-
timal new location of the latch depends on the buffering on the input
and output nets. As a result, the optimal approach is to simultane-
ously move the latch and perform buffering, but it is computation-
ally prohibitive to do so because a typical multiple-objective buffer-
ing algorithm runs in exponential time. As mentioned in Section 1,
we propose a sequential approach in which we first compute the
new locations for a selected set of movable gates based on timing
estimation considering buffers. Then, buffering is applied to the in-
put and output nets of the selected movable gates. This approach is
practical, effective and efficient and it can be easily integrated into
typical VLSI physical synthesis flow. The calculation of optimal
movement depends on a simple but effective buffered-interconnect
delay model, which is discussed the following section.

3.1 Linear Buffered-Path Delay Estimation
Buffering has become indispensable in timing closure and cannot

be ignored during interconnect delay estimation [7, 13, 3]. There-
fore, to calculate new locations of movable gates, one must adopt a
buffering-aware interconnect delay model that accounts for buffers
which are going to be inserted in the future. We found that the lin-
ear delay model [10, 3] is best suited in this application. In this
model, the delay along an optimally buffered interconnect is

delay(L) = L(RbC + RCb +
√

2RbCbRC) (1)
where L is the length of a 2-pin buffered net, Rb and Cb is the
intrinsic resistance and input capacitance of buffers and gates while
R and C unit wire resistance and capacitance respectively.

Empirical results in [3] indicate that Equation 1 is accurate up
to 0.5% when at least one buffer is inserted along the net. Fur-
thermore, our own empirical results in Section 6.2 suggest a 97%
correlation between this linear delay model and the output of an
industrial timing analysis tool.

3.2 The Timing Graph
In RUMBLE, a set of movable gates is selected, which must in-

clude fixed gates or input/output ports to terminate every path. Fixed
gates and I/Os help formulate timing constraints and limit the lo-
cations of movables. In Figure 4(a), we assume that new locations
have to be computed for the latch and the two OR gates, while all
NAND gates are kept fixed.

In the timing graph, each logic gate is represented by a node,
while a latch is represented by two nodes because the inputs and
outputs of a latch are in different clock cycles and can have different
slack values. Each edge represents a driver-sink path along a net
and is associated with a delay value which is linearly proportional
to the distance between the driver and the sink gate. In other words,

we decompose each multi-pin net into a set of 2-pin edges which
connect the driver to each sink of the net. This simplification is
crucial to our linear delay model and is valid because one of the
sinks is usually most critical and all the subtrees off the critical
path will be decoupled by buffers. Therefore, the 2-pin edge model
in the timing graph can guide the computation of new locations for
the movable gates.

(a) (b)

Figure 4: (a) An example subcircuit and (b) corresponding tim-
ing graph used in RUMBLE. The AATs or RATs of unmovable
objects (squares) are considered known. STA is performed on
movable objects (round shapes).

In the timing graph, an edge which represents a timing arc is
created only for (1) each connection between the movable gates,
and (2) each connection between a movable gate and a fixed gate.
This is because we only care about the slack change due to the
displacement of movable gates. For the subcircuit in Figure 4(a),
the resultant timing graph is shown in Figure 4(b).

For each fixed gate, we assume the required arrival time (RAT)
and the arrival time (AT) are fixed. The values of RAT and AT are
generated by a static timing analysis (STA) engine using a set of
timing assertions created by designers. Please see [9, 12] for an
in-depth discussion about STA and the generation of RAT and AT.
A movable latch corresponds to two nodes in the timing graph, one
for the data input pin and one for the output pin. For the input pin,
the RAT is fixed based the clock period. Similarly, the AT is fixed
for the latch’s output pin. Based on all the fixed RAT and AT at
fixed gates and latches, the AT and RAT are propagated along the
edges according to the delay of the timing arcs. The values of AT
are propagated forward to fan-out edges, adding the edge delay to
the AT. On the contrary, RATs are propagated backward to the fan-
in edges, subtracting the edge delay from the RAT values. Details
of edge delay, RAT and AT calculation will be covered in Section 4.

4. TIMING-DRIVEN PLACEMENT
The goal of RUMBLE is to find new locations for movable gates

in some selected subcircuit such that the overall circuit timing im-
proves. Therefore we maximize the minimum slack (i.e., worst
slack) of any source to sink timing arc in the subcircuit. We elect
this objective in contrast to previous work, because we are target-
ing critical-path optimization. As such, we prefer 1 unit of worst-

(a) (b) (c)

Figure 5: In many subcircuits there are multiple slack-optimal placements. In RUMBLE we add a secondary objective to minimize
the displacement from the original placement. This helps to maintain the timing assumptions made initially and reduces legalization
issues. (a) shows the initial state of and example subcircuit, (b) a slack-optimal solution commonly returned by LP solvers, all optimal
solutions lie on the dotted line and (c) a solution given by RUMBLE that maximizes worst-slack then minimizes displacement.

slack improvement over 2 units of improvement on less-critical
nets. Below we introduce the timing-driven placement technique
in RUMBLE that directly maximizes minimum-slack. In the follow-
ing placement formulation we account for the timing impact of our
changes by implicitly modeling static timing analysis in our timing
graph. In this work, we estimate net length by the half-perimeter
wirelength (HPWL) and then scale it to represent net delay. More
accurate models are possible.

4.1 Problem Formulation
Consider the problem of maximizing the minimum slack of a

given subcircuit G with some movable gates and some fixed gates,
or ports.

Let the set of nets in the subcircuit be
N = n0, n1, . . . , nh (2)

Let the set of all gates in the subcircuit (movable and fixed) be
G = g0, g1, . . . , gf (3)

Let the set of movable gates in the subcircuit (a subset of G) be
M = m0, m1, . . . , mk (4)

τ is a technology dependent parameter that is equal to the ratio
of the delay of an optimally-buffered, arbitrarily-long wire segment
to its length

τ =
delay(wire)

length(wire)
(5)

The following equations govern static timing analysis and are used
in the next section. A timing arc is specified for a given net n driven
by gate u and having sink v as nu,v . The delay of a gate g is Dg .

The Required Arrival Time (RAT) of a combinational gate g is
Rg = min

oj :0≤j≤m
{Roj − τ ∗ HPWL(ng,oj) − Dg} (6)

The Actual Arrival Time (AAT) of a combinational gate g is
Ag = max

ij :0≤j≤l
{Aij + τ ∗ HPWL(nij ,g) + Dg} (7)

For simplicity we assume that the RAT of a latch r is
Rr = clock_period (8)

For simplicity we assume that he AAT of a latch r is
Ar = 0 (9)

The slack of a timing arc np,q connecting two gates (combina-
tional or sequential, movable or fixed) p and q is

Snp,q = Rq − Ap − τ ∗ HPWL(np,q) (10)

4.2 The RUMBLE Linear Program
We define a linear-program to maximize the minimum slack S

of a subcircuit as follows.
VARIABLES: S ∪

∀m∈M : βm
x ∪ ∀m∈M : βm

y ∪
∀n∈N : Un

x ∪ ∀n∈N : Un
y ∪

∀n∈N : Ln
x ∪ ∀n∈N : Ln

y ∪
∀m∈M : Rm ∪ ∀m∈M : Am

(11)

Of the Above, β are independent variables for gate locations. The
U and L variables represent upper and lower bounds of nets for
computing HPWL. R and A compute required and actual arrival
times. S is the minimum slack.

OBJECTIVE: Maximize S
CONSTRAINTS: For every gate gj on net ni

Uni
x ≥ β

gj
x , Uni

y ≥ β
gj
y (12)

Lni
x ≤ β

gj
x , Lni

y ≤ β
gj
y (13)

For every movable gate mi and sink it drives gj via net nk

Rmi ≤ Rgj − τ ∗ (Unk
x − Lnk

x + Unk
y − Lnk

y) − Dg (14)
For every movable gate mi and gate that drives it gj via net nk

Ami ≥ Agj + τ ∗ (Unk
x − Lnk

x + Unk
y − Lnk

y) + Dg (15)
For every timing arc in the subcircuit np,q on net ni:

S ≤ Rq − Ap − τ ∗ (Uni
x − Lni

x + Uni
y − Lni

y) (16)

4.3 Extensions to Minimize Displacement
The linear program of RUMBLE is defined to maximize the mini-

mum slack of a subcircuit. Additional objectives are considered as
well, such as total cell displacement, which sums Manhattan dis-
tances between cells’ original and new locations. We subtract the
minimum slack objective from a weighted total cell displacement
term to avoid unnecessary cell movement. The weight for the total
cell displacement objective, Wd, is set to a small value. Therefore,
the weighted total displacement component is used as a tie-breaker
and has little impact on worst-slack maximization. Instead, the
combined objective is maximized by a slack-optimal solution clos-
est to cells’ original locations. During incremental timing-driven
placement, minimizing total cell displacement encourages higher
placement stability and often translates into fewer legalization dif-
ficulties.

Figure 5 shows an example of the RUMBLE formulation with and
without the total displacement objectives. The only movable object
in Figure 5(a) is the latch. There is an input net n1 and an output
net n2 connected with the latch. The slack on n1 is −2 and +2
on n2. Figure 5(b) shows the optimal LP solution without the total
displacement objective. The Manhattan net length of n1 is reduced
from 20 to 18 and the net length of n2 is increased from 20 to 22.
Therefore, the new worst slack of the subcircuit was improved from
−2 to 0. However, the latch was moved a large distance. In Figure
5(c), including the total displacement objective does not change the
optimal slack result. However, the latch displacement is minimized.

We introduce the following variables and constraints to the linear
program in order to add the objective to minimize displacement.
DISPLACEMENT VARIABLES:

∀m∈M : δm
x ∪ ∀m∈M : δm

y ∪
∀m∈M : φm

x ∪ ∀m∈M : ωm
x ∪

∀m∈M : φm
y ∪ ∀m∈M : ωm

y

(17)

DISPLACEMENT CONSTRAINTS:
For every movable gate mi, αmi

x and αmi
y denote the original x-

and y-coordinates. The upper and lower bounds of the new and
original coordinates φ and ω in each dimension are:

φmi
x ≥ βmi

x , ωmi
x ≤ βmi

x

φmi
y ≥ βmi

y , ωmi
y ≤ βmi

y

φmi
x ≥ αmi

x , ωmi
x ≤ αmi

x

φmi
y ≥ αmi

y , ωmi
y ≤ αmi

y

(18)

The displacements δmi for a movable gate mi are defined as
δmi

x = φmi
x − ωmi

x , δmi
y = φmi

y − ωmi
y (19)

(10, 10)

-20

-20

-20

-20
+5 -10

(15, 10)

-20

-20

-20

-20

0 -5

(a) (b)

Figure 6: (a) An example subcircuit with an imbalanced latch whose worst-slack cannot be improved. Nevertheless, it is possible to
improve timing of the latch while maintaining slack-optimality. By including a FOM component in the objective, the total negative
slack can be reduced, as shown in (b).

4.4 Extensions to Improve the Slack Histogram
The minimum slack is the worst slack in a subcircuit. For two

subcircuits with identical worst slack, it is possible that one sub-
circuit has few critical paths with worst slack while the other one
has many. A timing optimization has to improve both the worst
slack and the overall figure of merit (FOM) in a subcircuit. FOM
is defined as the sum of all slacks below a threshold. If the slack
threshold is zero, FOM is equivalent to the total negative slack.
With the minimum slack as the only objective, to improve a small
amount of worst slack may cause a large FOM degradation. There-
fore, we must add a FOM component to the optimization objective.
The balance between the minimum slack and the FOM is controlled
by a parameter Wf , which is set to be relatively small because the
worst slack objective is more important.

Figure 6 shows another scenario where the FOM component may
help. During the optimization, it may not be always possible to im-
prove the minimum slack of the subcircuit. In that case, we can
still reduce the number of critical cells by improving the FOM. In
Figure 6, there are three movables in the subcircuit. The minimum
slack of the subcircuit is −20, and it is not possible to improve the
minimum slack by moving any of the gates. With the additional
FOM component in the objective, the FOM of the subcircuit is im-
proved from −90 to −85, as shown in Figure 6(b).

Let Sn denote the slack on net n, the combined objective has the
displacement and FOM components
Maximize:

S − Wd

P

m∈M (δm
x + δm

y)
+ Wf

P

n:n∈N,Sn<Ts
Sn

(20)

where Ts is the small slack threshold used to compute the FOM.

5. THE RUMBLE ALGORITHM
In this section we discuss the details of the RUMBLE algorithm,

which employs the linear program in the previous section to incre-
mentally improve the timing of poorly placed latches.

5.1 Subcircuit Selection
RUMBLE identifies imbalanced latches, which we define as those

that exhibit positive slack on their inputs and negative slack on their
outputs (or vice versa). As illustrated in Figure 1, the movement of
any such imbalanced latch has the potential to improve timing, even
if all surrounding cells are held fixed. More generally, however, the
neighbors and extended neighbors of the targeted latch may also be
included to form a set M of movable cells. In our technique, shown
in Figure 8, we adopt a basic N -hop neighborhood approach, where
any gate within N steps of the imbalanced latch is included in the
set of movable cells. This requires both a forward sweep (to collect
sinks) and a backward sweep (to collect sources), which are per-
formed in tandem. Those cells that fall N + 1 steps from the latch
form a set P of fixed peripheral nodes.2

2Variations on this theme, such as metrics that incorporate the de-
gree of neighbors’ criticality [15, 8] and the size of the subcircuit
bounding box are also possible.

(M, P) = BUILD-SUBCIRCUIT-FROM-SEED(Latch L, int N)
M = inputs = outputs = {L}
for i = 1..N + 1

inputs′ =
S

`

GET-INPUTS(input)
´ ∀input ∈ inputs

outputs′ =
S

`

GET-OUTPUTS(output)
´ ∀output ∈ outputs

inputs = inputs′, outputs = outputs′

fixed = output_cone(inputs)
T

input_cone(outputs)
if (i ≤ N) M = M

S

inputs
S

outputs − fixed
else P = inputs

S

outputs
S

fixed // populates periphery
return (M, P)

GET-INPUTS(Gate G)
S = 	
for each gate G′ ∈ pred(G)

S = S
S

TRUE-SOURCE(G′)
return S

GET-OUTPUTS(Gate G)
S = 	
for each gate G′ ∈ succ(G)

S = S
S

TRUE-SINK(G′)
return S

TRUE-SOURCE(Gate G)
unless (isBuffer(G)) return G
return TRUE-SOURCE(pred(G))

TRUE-SINK(Gate G)
unless (isBuffer(G)) return G
return TRUE-SINK(succ(G))

Figure 8: Subcircuit selection transparently skips buffers when
building a neighborhood of movable gates

In contrast to prior work that has assumed operation within a
pre-buffering stage, our subcircuit selection algorithm must address
the presence of buffers. These buffers will be encountered in our
neighborhood selection algorithm, as they are part of the current
logic; however, since it is presumed that they will be ripped up
when new locations for movables have been determined (a critical
assumption that makes our linear-delay model possible), we must
prevent their inclusion in our model of the subcircuit. In response,
we modify the task of fetching an adjacent gate to transparently
skip these buffers, omitting them from the set M . The recursive
functions TRUE-SOURCE() and TRUE-SINK() in Figure 8 provide this
additional level of indirection, returning only those combinational
gates that reflect the logical structure of the subcircuit.

As noted in [5], the process of extracting gates to form a sub-
circuit suffers from complications when subpaths of combinatorial
logic between peripheral nodes are not modeled. These subpaths
may introduce additional timing constraints that, if left absent from
the model, could invalidate the optimality of the solution. Hence,
we intersect the transitive cones of logic between inputs and outputs
to capture these paths, obtaining a so-called convex subcircuit. To
improve runtime, we limit the depth of these cones to a reasonably
small constant, as opposed to the exhaustive expansion in [5].

5.2 The “Do no harm” Philosophy
After gates are moved it is likely that timing has degraded due to,

for example, a capacitance violation on a long wire. The subcircuit
must be examined and its interconnect improved through physical
synthesis optimizations, which might include resizing gates and in-
serting buffers for delay or electrical considerations on nets.

Even though the linear program of Section 4.2 can be solved op-

(a) (b) (c) (d)

Figure 7: The RUMBLE algorithm proceeds by (a) selecting a subcircuit to work on. An LP is formulated and solved, with movable
gates being relocated as shown in (b). Existing repeater trees are no longer appropriate, and are subsequently removed in (c). Finally,
the nets are re-buffered, forming the final subcircuit shown in (d).

timally, it does not account for all the complexities of interconnect
optimization. The linear program is an abstraction of the subcir-
cuit timing that models the physical synthesis optimizations (e.g.,
virtual-buffering) by setting a wire delay constant that reflects an
estimate of what timing will be after physical synthesis optimiza-
tions are performed. Despite the high correlation to more accurate
timing models in experimental results, the RUMBLE model could
turn out to be too optimistic and its solution might result in a tim-
ing degradation. For example, nets can cross congested regions or
blockages where no nearby legal locations for buffers can be found.
As a result, legalization could create a timing degradation.

When running RUMBLE in our physical synthesis flow, we miti-
gate the harmful effects of legalization by finding legal locations for
gates and buffers when moving or inserting them. Insisting on le-
gal locations can also contribute to a degradation not anticipated by
the RUMBLE model. Fortunately, RUMBLE can examine the timing
implications of its changes before committing to them. It simply
stores the initial state of the subcircuit, and restores it if a timing
degradation occurs. In this way, RUMBLE will “do no harm” to the
circuit by ensuring that whatever solution it keeps is no worse than
what existed before.

5.3 The RUMBLE Algorithm
Figure 9 shows pseudocode for the RUMBLE algorithm. It works

on a set of movable gates given as input. First, the subcircuit that
is necessary for incremental placement is extracted (for a single
movable, it is the one-hop neighborhood of the input gates). Dur-
ing this process, buffers are passed-over (ignored) as described in
Section 5.1. Next, RUMBLE takes a snapshot of the timing which is
used to measure improvement later. Lines 3 and 4 store the state
of the circuit (gates and nets) in preparation for a possible undo
of the optimizations we are considering. Once the initial state is
safely stored, lines 5-7 use the linear program of Section 4 to com-
pute new gate locations, followed by buffer removal. If the model
shows improvement we continue, and all physical synthesis opti-
mizations, including buffering, are lumped into a function call in
Line 9. Lines 10-13 measure improvement, and in the case of tim-
ing degradation, undo all changes.

6. EXPERIMENTAL RESULTS
RUMBLE is implemented in C++ (compiled with GCC 4.1.0) and

integrated into an industrial physical synthesis flow. For our ex-
periments, we examined an already optimized 130nm commercial
ASIC with clock period 2.2ns and 3 million objects. We first exam-
ined the most critical latches and then filtered out the ones where
the latch was already well placed. We use the algorithm from [2] to
perform buffering after the cells have been moved. In practice, the
LP-solving technique from RUMBLE requires only 17 millisec-
onds; the buffering algorithm dominates the runtime (over 75%).
Since the overall runtime is dependent on the choice of the buffer-

RUMBLE (Gate movable)
1 subcircuit = Build-Subcircuit-From-Seed(movable, 0)
2 before_timing = measure_timing(subcircuit)
3 initial_solution.create_interconnect_cache(subcircuit)
4 initial_solution.before_locs = get_locations(movables)
5 Build LP the RUMBLE linear program for subcircuit
6 after_locs = LP.solve()
7 set_gates_locations(movables, after_locs)
8 initial_solution.rip_up_buffers()
9 phys_syn_opt(movables, initial_solution.get_nets());
10 after_timing = measure_timing(subcircuit)
11 if(after_timing worse than before_timing)
12 set_locations(movables, initial_solution.before_locs)
13 initial_solution.restore_interconnect()

Figure 9: The RUMBLE algorithm for moving one latch.

ing algorithm we omit the (trivial) runtimes from our tables. Note
that the “do no harm” approach of Section 5.2 is applied to all ex-
periments, preventing timing degradation in our tables.

6.1 Re-buffering in RUMBLE
Previously published LP techniques for timing-driven placement

do not allow for re-buffering during optimization. Instead, they
are either applied at a stage in the physical synthesis flow before
buffers have been inserted, or they do not differentiate the buffers
from other gates. This first experiment is designed to show how
important it is to rip up buffers before replacing gates then re-buffer.

We modified our pseudocode in Figure 8 so that the isBuffer()
function always returns false. The effect of this is to stop “seeing
through” the buffers, and instead to consider them fixed timing end-
points. This setup results in something similar to the work of [15].
We then calculate a new location for each latch with the LP in Sec-
tion 4. The final change is to skip line 9 of Figure 9, i.e., do not
re-buffer. We call this algorithm KEEP-BUFFERS.

Table 1 shows the results of RUMBLE on a single latch compared
with KEEP-BUFFERS. Column 1 shows the name of the benchmark
and columns 2 and 5 show worst-slacks in picoseconds before op-
timization. Columns 3 and 6 show the slacks after optimization of
KEEP-BUFFERS and RUMBLE respectively. Columns 4 and 7 show
the improvements of each technique.

From the table we observe the following:

• Despite not ripping up buffers, KEEP-BUFFERS is still able to
improve solution quality for nine out of ten testcases, though
the improvement is never more than 220ps.

• When buffer rip-up and re-buffering is allowed, RUMBLE is
able to significantly outperform KEEP-BUFFERS for all ten
testcases. On average the improvement is 7.4x greater.

• While KEEP-BUFFERS improves slack by an average of 123ps,
RUMBLE improves slack by 908ps, which validates how im-
portant it is to rip-up buffers so that they do not anchor the
latch into a artificially small region.

Implications of keeping buffers
KEEP-BUFFERS RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new imprv. orig new imprv.
latch A0 -1480 -1318 162 -1480 26 1506
latch A1 -1268 -1066 202 -1268 186 1454
latch A2 -1020 -939 80 -1020 -791 229
latch A3 -953 -766 187 -953 -390 563
latch A4 -897 -677 220 -897 356 1253
latch A5 -848 -746 101 -848 -278 570
latch A6 -690 -690 0 -690 395 1085
latch A7 -645 -586 59 -645 -19 626
latch A8 -633 -560 74 -633 290 923
latch A9 -610 -466 144 -610 262 872

avg -904 -782 123 -904 4 908

Table 1: Keeping buffers instead of removing and reinserting
them degrades RUMBLE’s performance.

6.2 Accuracy of the RUMBLE Timing Model
Theoretical results published by Otten [10] and discussed in Sec-

tion 3 indicate that optimal buffer insertion on a 2-pin net results in
a wire delay that is linearly-proportional to its length. The RUMBLE

model heavily relies on these results.
Table 2 compares the model-predicted values for subcircuit slack

to values measured by running a commercial static timing analyzer.
Measurements are taken after the RUMBLE LP is solved, the latches
are moved and connected nets are buffered. Columns 2-4 report
the initial, final, and improvement in worst-slack of the subcircuit
measured by the timing model presented in Section 3. Columns 5-7
report the same metrics measured by the STA engine.

Model timing vs. reference timing
Model slack (ps) Subcircuit slack (ps)

Subcircuit orig new imprv. orig new imprv.
latch A0 -1799 -48 1751 -1480 26 1506
latch A1 -1509 65 1574 -1268 186 1454
latch A2 -1113 -868 245 -1020 -791 229
latch A3 -1147 -527 620 -953 -390 563
latch A4 -1090 180 1269 -897 356 1253
latch A5 -945 -295 650 -848 -278 570
latch A6 -920 320 1241 -690 395 1085
latch A7 -886 49 935 -645 -19 626
latch A8 -913 213 1126 -633 290 923
latch A9 -800 397 1198 -610 262 872

avg -1112 -51 1061 -904 4 908

Table 2: The RUMBLE model accurately predicts the solution
quality improvements in the reference timing model.

We make the following observations:

• On average, the RUMBLE model overestimates the actual tim-
ing improvement by about 15%. This makes sense since it
assumes an optimal ideal buffering will be achievable, but
this is not always the case, especially for multi-sink nets.

• However, if one compares actual improvement to model im-
provement, there is a 97% correlation, suggesting that the
model is reasonable enough to justify the latch location.

We now show how RUMBLE actually improves the design’s timing
characteristics.

6.3 RUMBLE on a Single Latch
Given that we are solving a new physical synthesis problem, ex-

isting solutions are scarce. Therefore, we first consider straightfor-
ward approaches to solve this problem. One possibility is to take
the center-of-gravity (COG) of adjacent pins. A timing-driven im-
provement of the center-of-gravity technique weights each pin by

its slack. A reasonable version of this heuristic works in the follow-
ing way. For a slack threshold Ts (see Section 4.4), let the weight
w of a pin p with slack Sp be:

wp =

j

1 + |Sp − Ts| Sp < 0
max(0.1, 1 − |Sp − Ts|) Sp ≥ 0

Then compute the x-coordinate of movable gate m as the weighted
average of the x-coordinates of the set of neighboring pins P .

mx =

P

p∈P wppx
P

p∈P wp

and similarly for the y-coordinate.
We implemented the above COG technique within the RUMBLE

framework in place of the LP solver presented in Section 4. We still
allow COG the benefits of ripping up buffers, and reinserting them
after the latches are moved. Table 3 shows a comparison between
RUMBLE and slack-weighted COG on 10 latches. Column 1 shows
the same latches as reported in Table 2. Columns 2-4 show the
initial and final slacks, and improvement for COG. Columns 5-7
show the same for RUMBLE.

Center-of-gravity vs. RUMBLE
COG RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new imprv. orig new imprv.
latch A0 -1480 -527 953 -1480 26 1506
latch A1 -1268 -203 1065 -1268 186 1454
latch A2 -1020 -800 219 -1020 -791 229
latch A3 -953 -615 338 -953 -390 563
latch A4 -897 -78 819 -897 356 1253
latch A5 -848 -319 529 -848 -278 570
latch A6 -690 -690 0 -690 395 1085
latch A7 -645 -645 0 -645 -19 626
latch A8 -633 -633 0 -633 290 923
latch A9 -610 67 677 -610 262 872

avg -904 -444 460 -904 4 908

Table 3: Comparison of RUMBLE’s LP to a slack-weighted
center-of-gravity technique.

We observe the following:
• For all ten cases, RUMBLE generates a better solution than

COG. For three of the cases, COG could not improve the
latch placement. These new solutions are rejected by the
driver so as not to make the design worse.

• On average, COG improves slack by 20.9% of the 2.2ns cy-
cle time, whereas RUMBLE improves slack by 41.3%. This
shows that one must incorporate slack constraints on cells
incident on the latch to achieve the most balanced solution.

6.4 Optimizing Multiple Gates Simultaneously
For our final experiment, we show how an even better solution

can be obtained when one allows cells close to the latch to move.
We show the effectiveness of this technique on two sets of circuits.

• One-hop subcircuits include every gate (while ignoring buffers
and inverters) incident to the latch of interest that shares an
incident net with the latch. Typically this results in 4 or 5
gates being moved.

• Two-hop subcircuits in addition include all non-buffer and
inverter cells incident to cells in the one-hop neighborhood.

We compare this technique to iterated single-move RUMBLE, where
we pick each cell in the neighborhood and solve the LP for that
particular cell, fix it, and then move to the next cell. The experi-
ment is designed to show that multiple cells need to be optimized
simultaneously to obtain the best results.

To measure the improvement one must now consider the slacks
of all cells that may be moved, and the objective becomes to im-
prove the worst slack of the entire subcircuit. However, when one
cannot improve the most critical path, the other paths may have

Iterated RUMBLE vs. RUMBLE: 1-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) FOM (ps) Slack (ps) FOM (ps)
Subcircuit orig new imprv. orig new imprv. orig new imprv. orig new imprv.

subcircuit B0 -1542 -1542 0 -6091 -6091 0 -1542 -130 1412 -6091 -130 5962
subcircuit B1 -1501 -277 1223 -5924 -277 5647 -1501 55 1556 -5924 0 5924
subcircuit B2 -1240 -1240 0 -4354 -4354 0 -1240 -980 261 -4354 -4044 310
subcircuit B3 -848 -278 569 -2523 -812 1710 -848 -279 569 -2523 -813 1709
subcircuit B4 -690 -79 612 -4090 -79 4011 -690 202 893 -4090 0 4090
subcircuit B5 -690 48 739 -2053 0 2053 -690 290 980 -2053 0 2053
subcircuit B6 -645 -18 627 -1921 -32 1889 -645 301 945 -1921 0 1921
subcircuit B7 -595 86 681 -1937 0 1937 -595 503 1098 -1937 0 1937
subcircuit B8 -444 -444 0 -889 -889 0 -444 -92 352 -889 -191 698
subcircuit B9 -418 -46 372 -857 -46 811 -418 6 424 -857 0 857

avg -861 -379 482 -3064 -1258 1806 -861 -12 849 -3064 -518 2546

Table 4: RUMBLE simultaneously moving a one-hop neighborhood compared to iteratively moving the same gates individually.

Iterated RUMBLE vs. RUMBLE: 2-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) FOM (ps) Slack (ps) FOM (ps)
Subcircuit orig new imprv. orig new imprv. orig new imprv. orig new imprv.

subcircuit C0 -719 -719 0 -8313 -8313 0 -719 -675 44 -8313 -5028 3285
subcircuit C1 -719 -719 0 -8004 -8004 0 -719 -653 66 -8004 -4386 3617
subcircuit C2 -690 -79 612 -4090 -79 4011 -690 314 1004 -4090 0 4090
subcircuit C3 -690 -79 612 -4090 -79 4011 -690 337 1027 -4090 0 4090
subcircuit C4 -681 -349 333 -3865 -349 3516 -681 -158 524 -3865 -158 3707
subcircuit C5 -645 -91 554 -3767 -306 3462 -645 371 1015 -3767 0 3767
subcircuit C6 -645 -33 612 -3767 -52 3716 -645 324 969 -3767 0 3767
subcircuit C7 -318 -318 0 -940 -940 0 -318 531 848 -940 0 940
subcircuit C8 -490 227 716 -966 0 966 -490 466 956 -966 0 966
subcircuit C9 -217 -217 0 -652 -652 0 -217 60 277 -652 0 652

avg -581 -238 344 -3846 -1877 1968 -581 92 673 -3846 -957 2888

Table 5: RUMBLE simultaneously moving a two-hop neighborhood compared to iteratively moving the same gates individually.
room for improvement. We use FOM to measure the total improve-
ment of all the slacks in the subcircuit.

Tables 4 and 5 compare iterating RUMBLE over each gate one
at a time versus RUMBLE moving multiple gates simultaneously.
Columns 2-4 show the original and final slack, and the slack im-
provement for iterated single-move RUMBLE, while columns 5-7
show the corresponding FOM measurements for a zero-slack thresh-
old. Columns 8-13 show the same measurements for multi-move
RUMBLE. We make the following observations:

• Multi-move RUMBLE is clearly more effective than iterative
RUMBLE both for one- and two-hop neighborhoods. In fact,
for six out of ten one-hop subcircuits and for seven out of
ten two-hop circuits, multi-move actually brought the FOM
down to zero, meaning it fixed all the timing violations. Iter-
ative single move was able to fix two and four respectively.

• On average, the worst-slack improvements were 849ps and
673ps respectively for one- and two-hop subcircuits. The
diminished improvement for larger subcircuits is likely be-
cause we are including more nets, some of which cannot be
improved as much as those connected to the imbalanced latch
(Figure 6 has an example).

• Solving the LP takes 53ms for one-hop and 325ms for two-
hop, on average.

7. CONCLUSIONS
In this work we observe that wirelength-driven placement leads

to particularly poor timing of “pipeline latches” in modern physical
design flows. To address this challenge, we developed RUMBLE —
a linear-programming based, incremental physical synthesis algo-
rithm that incorporates timing-driven placement and buffering. The
latter justifies RUMBLE’s linear-delay model which exhibited a 97%
correlation to the reference timing model in our experiments. Em-
pirically this delay model is accurate enough to guide optimization;
RUMBLE improves slack by 41.3% of cycle time on average for a
large commercial ASIC design.

The LP used in RUMBLE is general enough to optimize multiple
gates and latches simultaneously. However, when moving multi-
ple gates considering only the slack objective, we encountered two
challenges: placement stability and FOM degradations. We present
our extensions to address these problems directly in our LP objec-
tive. With these additions, moving several gates simultaneously
improves upon RUMBLE used iteratively on the same movables.
8. REFERENCES

[1] C. J. Alpert, C. Chu, and P. G. Villarrubia, “The Coming of Age of
Physical Synthesis,” ICCAD, 2007, pp. 246-249.

[2] C. J. Alpert et al., “Fast and Flexible Buffer Trees that Navigate the
Physical Layout Environment,” DAC, 2004, pp. 24-29.

[3] C. J. Alpert et al., “Accurate Estimation of Global Buffer Delay
Within a Floorplan,” TCAD 25(6), 2006, pp. 1140-1146.

[4] C. J. Alpert, et al., “Techniques for Fast Physical Synthesis,” Proc.
IEEE 95(3), 2007, pp. 573-599.

[5] K-H. Chang, I. L. Markov and V. Bertacco, “Safe Delay Optimization
for Physical Synthesis,” ASPDAC, 2007, pp. 628-633.

[6] A. Chowdhary et al., “How Accurately Can We Model Timing In A
Placement Engine?,” DAC, 2005, pp. 801-806.

[7] J. Cong, L. He, C.-K. Koh and P. H. Madden, “Performance Opti-
mization of VLSI Interconnect Layout,” Integration: the VLSI Jour-
nal, 1996, vol. 21, pp. 1-94.

[8] T. Luo, D. Newmark and D. Z. Pan, “A New LP Based Incremen-
tal Timing Driven Placement for High Performance Designs,” DAC,
2006, pp. 1115-1120.

[9] R. Nair, C. Berman, P. Hauge and E. Yoffa, “Generation of Perfor-
mance Constraints for Layout,” TCAD 8(8), 1989, pp. 860-874.

[10] R. Otten, “Global Wires Harmful?,” ISPD, 1998, pp. 104-109.
[11] H. Ren et al, “Hippocrates: First-Do-No-Harm Detailed Placement”

ASPDAC, 2007, pp. 141-146.
[12] S. Sapatnekar, “Timing,” Springer-Verlag, New York, 2004.
[13] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick, “Repeater

Scaling and Its Impact on CAD,” TCAD 23(4), 2004, pp. 451-463.
[14] L. Trevillyan et al., “An Integrated Environment for Technology Clo-

sure of Deep-submicron IC Designs,” IEEE Des. Test Comput., 2004,
vol. 21, no. 1, pp. 14-22.

[15] Q. Wang, J. Lillis and S. Sanyal, “An LP-Based Methodology for Im-
proved Timing-Driven Placement,” ASPDAC, 2005, pp. 1139-1143.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

