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ABSTRACT
Physical Design of modern systems on chip is extremely challeng-
ing. Such digital integrated circuits often contain tens of millions
of logic gates, intellectual property blocks, embedded memories
and custom RTL blocks. At current and future technology nodes,
their power and performance are impacted, more than ever, by the
placement of their modules. However, our experiments show that
traditional techniques for placement and floorplanning, and exist-
ing academic tools cannot reliably solve the placement task.

To study this problem, we identify particularly difficult industrial
instances and reproduce the failures of existing tools by modifying
public-domain netlists. Furthermore, we propose algorithms that
facilitate floorplacement of these difficult instances. Empirically,
our techniques consistently produced legal placements, and on in-
stances where comparison is possible, reduced wirelength by 3.5%
over Capo 9.4 and 14.5% over PATOMA 1.0 — the pre-existing
tools that most frequently produced legal placements in our exper-
iments.

Categories and Subject Descriptors: B.7.2 [Integrated Cir-
cuits]: Design Aids — placement and routing; J.6 [Computer-
Aided Engineering]: Computer-Aided Design.
General Terms: Algorithms, experimentation
Keywords: Circuit layout, placement, floorplanning, floorplace-
ment, benchmarks, RTL

1. INTRODUCTION
As demonstrated by the ISPD 2005 placement contest, auto-

mated layout of modern systems-on-chip (SoCs) is very different
from traditional sea-of-gates layout, both in scale and sophistica-
tion. Such integrated circuits (ICs) may contain tens of millions of
logic gates, hundreds of complex configurable intellectual property
(IP) blocks, embedded memories that come in different sizes and
aspect ratios, as well as custom RTL blocks. Placement plays a key
role not only in the final implementation stage, but also in the early
stages of the design flow by enabling more accurate interconnect
and performance analysis. To be useful in estimation, placement
techniques must support very high capacity, complete quickly and
be robust across a variety of designs.
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To improve capacity and runtime, we observe that at the register-
transfer level and above, the design intent is expressed in terms
of word-level arithmetic and logical operators within separate par-
allel hardware threads or “always” blocks in Verilog. It is nei-
ther necessary nor even desirable to decompose these operators
into bit-level (gate-level) netlists in order to estimate performance,
which requires knowing locations. Such a transformation often in-
creases the number of modules by 20-50x, especially for designs
with wide datapaths, and complicates interconnect analysis. How-
ever, since word-level operators are known in advance, one can pre-
characterize their area, timing and power, essentially building an
RTL library. During placement, such library components can be
viewed as soft blocks of a particular size and shape, subject to cer-
tain aspect ratio constraints (with hard blocks being a special case).

The task of finding non-overlapping locations of modules of
varying sizes while optimizing for certain objective(s) is usually
called floorplanning. However, traditional floorplanning does not
scale beyond a few hundred placeable modules. On the other hand,
standard-cell placement can deal with millions of instances, except
that those instances are assumed to have identical heights and sim-
ilar lengths, which helps fitting them in equally-spaced rows and
sites. These constraints prevent difficult block-packing, while facil-
itating fast and high-quality detailed placement algorithms. How-
ever, their use for RTL entities remains unexplored.

A recent unification of placement and floorplanning termed
floorplacement [24] seeks to bridge the gap between floorplanning
and placement by combining their best features. Floorplacement
appears promising for SoC layout because of its high capacity and
the ability to pack blocks. However, as our experiments demon-
strate, existing tools for floorplacement are fragile — on many in-
stances we tried they fail, or produce remarkably poor placements.
This observation sets the stage for our work, in which we make the
following contributions:

• We identify hard floorplacement instances derived from in-
dustry designs and modify public-domain netlists to behave
similarly. We explain why existing algorithms for mixed-size
placement and floorplanning fail on hard instances.

• We propose four synergistic techniques for floorplacement
that in particular succeed on hard instances: (i) selective
floorplanning with macro clustering, (ii) improved obstacle
evasion for B*-trees, (iii) ad hoc look-ahead in top-down
floorplacement, and (iv) whitespace allocation by density.
Obstacle evasion is especially important for top-down floor-
placement, even for designs that initially have no obstacles.

• We demonstrate empirical improvements compared to Capo
9.4 and PATOMA 1.0. Our techniques lead to 68% and 36%
increase in success rates in floorplacement, and shorter wire-
length by 3.5% and 14.5%, respectively.



The rest of this paper is organized as follows. We review current
state-of-the-art in mixed-size placement and floorplanning in Sec-
tion 2, and describe the nature of difficult instances in Section 3.
In Section 4 we evaluate existing software tools, show their limi-
tations and identify the weaknesses of core algorithms. Our algo-
rithmic improvements are presented in Section 5 and empirically
evaluated in Section 6. Conclusions are summarized in Section 7.

2. PREVIOUS WORK
In this section, we outline the state-of-the-art in mixed-size

placement and floorplanning. First, we discuss floorplanning and
introduce basic computational techniques for block packing. Then
we show a natural progression to hierarchical floorplanning, mixed-
size placement and floorplacement.

Common approaches to floorplanning. Modern VLSI floor-
planning is predominantly used with fixed outlines [4, 16]. The
fixed-outline floorplanning problem seeks non-overlapping loca-
tions of modules (blocks) within a fixed outline, subject to opti-
mizing for certain objective(s), such as wirelength, power or per-
formance. The most popular algorithmic framework in floorplan-
ning is Simulated Annealing and is implemented using a certain
floorplan representation that captures relative locations of modules
and is easy to perturb, but can also generate non-overlapping mod-
ule locations. Simulated annealing is attractive because it allows
to optimize a wide variety of objective functions and makes cus-
tomization very easy. It can deal with hard blocks with any aspect
ratios and also soft blocks. It also allows to handle fixed modules,
as discussed in Section 5. Sequence-Pair [22] and B*-tree [8] are
two popular floorplan representations.

The Sequence-Pair representation consists of two ordered lists,
which capture geometric relations between pairs of blocks by the
relative ordering of blocks. However, in our work we use the
more complicated B*-tree representation which captures a com-
pacted packing by a binary tree, in which each node corresponds to
a block. The root of the tree is in the bottom-left corner of the out-
line, and the packing is compacted in that direction. The root node
represents the bottom-left block. A left child is the lowest right
neighbor of its parent and a right child is the lowest block above
its parent that shares the same x-coordinate as its parent [7]. Given
a B*-tree, block locations can be found by a depth-first traversal
of the B*-tree. After a block A is placed at (xA,yA), its left child
L is considered and set xL = xA + wA, where wA is the width of
A. Then yL is the smallest non-negative value such that L avoids
overlaps with previously placed blocks. After returning from re-
cursion at L, the right child of A, R is placed at xR = xL, and yR
is the smallest value possible such that R does not overlap with
placed blocks. The contour data structure allows one to evaluate
B*-tree packings in O(n) time. The two floorplan representations
encode large solution spaces: O(n!22n−2/n1.5) for B*-tree and n!2

for Sequence-Pair. According to [7], B*-tree packs somewhat bet-
ter than Sequence-Pair. Additionally, we found that it better sup-
ports the handling of obstacles.

Parquet [1] is a floorplanning framework based on simulated an-
nealing and uses both Sequence-Pair and B*-tree representations.
Parquet produces high-quality solutions, but due to the runtime of
the simulated annealing framework, it cannot be practically applied
on large designs without clustering [24].

Hierarchical floorplanning, mixed-size placement and floor-
placement. PATOMA 1.0 [13] pioneered a top-down floorplan-
ning framework that utilizes fast block-packing algorithms (ROB
or ZDS [12]) and hypergraph partitioning with hMetis [20]. This
approach is fast and scalable, and provides good solutions for many
input configurations. Fast block-packing is used in PATOMA to

Support for blocksS/W tools Algorithms Hard Soft Availability
APlace 2.0 [19] analytic + - binary only
Capo 9.4 [23] min-cut & + + open source

annealing
Dragon [29, 26] min-cut & + - unavailable*

annealing
FastPlace [27] analytic + - unavailable*

FDP [28] analytic + - unavailable*
FengShui 5.1 [21] min-cut & + - binary only

Tetris packing [15]
IMF [11] min-cut & + - binary only

refinement
mPL6 [9, 6] analytic + - unavailable*

PATOMA 1.0 [13] min-cut & + + binary only
fast packing

PolarBear [14] min-cut & + - binary only
fast packing

UPlace [30] analytic + - unavailable*
* Publicly available binaries for FastPlace, mPL and Dragon do not support hard
blocks. Available source code for FDP is outdated relative to published results.

Table 1: The availability of mixed-size placers & floorplanners.

guarantee that a legal packing solution exists, at which point the
burden of wirelength minimization is shifted to the hypergraph
partitioner. This idea is applied recursively to each of the newly-
created partitions. In end-cases, when partitioning cannot be used
because it creates unsatisfiable instances of block-packing, block
locations are determined by fast block-packing heuristics. The
placer PolarBear [14] integrates algorithms from PATOMA to in-
crease the robustness of a top-down min-cut placement flow.

Similar to PATOMA, the floorplanner IMF [11] utilizes top-
down partitioning, but allows overlaps in the initial top-down par-
titioning phase. A bottom-up merging and refinement phase fixes
overlaps and further optimizes the solution quality.

The min-cut placer FengShui is based on the fractional cut tech-
nique [21] that finds tentative locations of macros and standard cells
by minimizing wirelength, but allows modules to overlap. Legal-
ization is performed as post-processing, assuming that the amount
of overlap is small.

The analytic placer APlace [17] uses an iterative algorithm that
optimizes a non-linear objective function. The objective balances
wirelength against a density/spreading function that captures over-
lapping modules. APlace was extended in [18] to handle mixed-
size placement by specializing the density function to large macros.
Global placements are post-processed by legalization, assuming
that the amount of overlap is small.

The Capo software uses hypergraph partitioning in a similar way
to PATOMA, but employs a floorplacement flow [24] and relies on
an annealing-based floorplanner Parquet [1]. When Parquet can-
not solve block-packing, Capo backtracks. Parquet is much slower
than ROB and ZDS because it explores a larger fraction of the solu-
tion space, but it can optimize wirelength better in larger floorplan-
ning instances. Unlike PATOMA, Capo is based on a standard-cell
placer, and can therefore handle both macros and standard cells.
Also, in Capo most floorplanning calls determine final locations of
macros, whereas in PATOMA at least 50% of floorplanning calls
perform look-ahead to guarantee that legal solutions exist.

Several other tools (Dragon, FastPlace, UPlace, FDP and mPL)
claim to support mixed-size placement, but their public-domain
implementations lag behind published results, do not handle hard
blocks, or are entirely unavailable. We therefore cannot use these
tools in our work. We also do not evaluate IMF and PolarBear,
because IMF does not handle standard cells, which are present in
the industrial designs we consider, while PolarBear does not handle
soft blocks (but is otherwise similar to PATOMA). Table 1 summa-
rizes published academic tools for mixed-size placement and large-
scale interconnect-driven floorplanning.



3. DIFFICULT INSTANCES
Since block packing is NP-hard, a key challenge for heuristics

is to moderate their effort (runtime) while ensuring good solution
quality on a variety of inputs. To this end, we identified two sets of
netlists that appear particularly difficult for all tools we evaluated.

Proprietary instances. The designs, provided by Calypto De-
sign Systems, Inc., include customer chips (e.g., CPUs and video
ICs) and internally-generated regression tests [32]. As shown in
Table 2, these designs range in size from 81 to 8827 RTL mod-
ules, have 20% whitespace, and have no fixed modules except for
peripheral I/O pads. Aside from the standard cells present in most
designs, all blocks are soft. The main objective of our experiments
is to perform RTL placement using as many existing alternative
tools as possible. To this end we have access to APlace 2.0, Capo
9.4, FengShui 5.1 and PATOMA 1.0. Of these four tools, APlace
2.0 and FengShui 5.1 do not support soft blocks, so the solution
space is simplified for these placers by changing all soft blocks
to hard blocks with an aspect ratio of 1.0 (the easiest to pack).
However, even when Capo and PATOMA are run on hard-block
variants of these designs, their runtimes and Half-Perimeter Wire-
Length (HPWL) are only slightly worse, while the results are still
better than those of APlace and FengShui, with all other trends re-
produced. The proprietary designs consist mostly of macros, and
the macros may vary greatly in size. As we show next, these de-
signs upset existing academic tools for mixed-size placement and
floorplanning.

Proprietary Movable modules Arealargest Arealargest/
designs Cells Macros Nets (%) Areasmallest

cal040 1 4605 4607 0.1 650
cal098 3200 1212 4673 0.1 529
cal336 17 105 147 2.2 11556
cal353 217 459 908 7.0 11556
cal523 934 1936 4350 0.3 3080
cal542 7 74 92 20.1 11556
cal566 93 1553 5502 1.2 11556
cal583 773 1530 3390 0.4 2916
cal588 293 495 1111 0.6 900
cal643 139 316 598 6.5 6162

calDCT 0 8827 11463 50.0 185330

Table 2: Characteristics of the proprietary designs.

Movable modules Arealargest Arealargest/Benchmarks Cells Macros Nets (%) Areasmallest

ibm-HB+01 0 911 5829 6.4 8416
ibm-HB+02 0 1471 8508 11.3 3004.3
ibm-HB+03 0 1289 10279 10.8 33088
ibm-HB+04 0 1584 12456 9.2 13296.5
ibm-HB+06 0 749 9963 13.6 18173.8
ibm-HB+07 0 1120 15047 4.8 399.5
ibm-HB+08 0 1269 16075 12.1 50880
ibm-HB+09 0 1113 18913 5.4 29707
ibm-HB+10 0 1595 27508 4.8 71299
ibm-HB+11 0 1497 27477 4.5 9902.3
ibm-HB+12 0 1233 26320 6.4 74256
ibm-HB+13 0 954 27011 4.2 33088
ibm-HB+14 0 1635 43062 2.0 17860
ibm-HB+15 0 1412 52779 11.0 62781.3
ibm-HB+16 0 1091 47821 1.9 31093
ibm-HB+17 0 1442 56517 0.9 12441
ibm-HB+18 0 943 42200 1.0 3384

Table 3: Characteristics of the IBM-HB+ benchmarks.

Our experiments were conducted on a 2.4 GHz Athlon worksta-
tion with 3GB RAM. As Capo uses a randomized algorithm, its
results are averaged over 3 independent runs. Empirical results in
Table 4 demonstrate that many existing tools experience difficul-
ties even with smaller designs, indicating that scalability is not the
only problem here. Capo places all designs (some with overlaps),

but times out for the largest design calDCT with 8827 macros, sug-
gesting that scalability is a serious issue nevertheless. The design
cal040 appears challenging for PATOMA and APlace even though
it has a small range of macro sizes, compared to other designs.

Public-domain instances. We reproduce the difficulties ob-
served on hard floorplacement instances by modifying seventeen
of the IBM-HB benchmarks released in [13], for further evaluation
of difficult mixed-size placement1. The IBM-HB [13, 31] bench-
marks were generated from the IBM/ISPD‘98 suite [3] and contain
both hard and soft blocks in a fixed die with 20% whitespace. The
soft blocks are clusters of standard cells while the hard blocks rep-
resent original macros from the IBM/ISPD98 benchmarks. The
benchmarks range from 500 to 2000 blocks in size. Our modifica-
tion is as follows: the largest hard macro is inflated by 100%, while
the areas of the remaining soft macros are reduced to preserve the
total cell area. We call this new benchmark family IBM-HB+ [32].
A more detailed future study can involve varying the dimensions
of more than one macro at a time, and even more difficult floor-
placement problems can be constructed. For now, inflating only
the largest macro and shrinking the rest is sufficient to reveal the
limitations of existing tools and provides enough food for thought.

4. IDENTIFYING WEAKNESSES
IN FLOORPLACEMENT ALGORITHMS

By studying the data and plots collected, as well as logs produced
by various tools, we identify shortcomings of published algorithms.
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Figure 4: The IBM-HB+10 benchmark and the cal040 design
are pathological examples for PATOMA 1.0, which produces
placements with HPWL that are 1.4x and 9.7x larger (resp.),
than the best seen in legal solutions. These examples may
be highlighting shortcomings of fast block-packing algorithms,
even when the variation of block sizes is relatively small.

PATOMA utilizes partitioning-based algorithms [13] that al-
low it to solve floorplacement instances very quickly. When a
set of floorplanning instances falls within the operating range of
PATOMA, resulting solutions are slightly better than Capo’s and
are found several times faster. However, PATOMA seems to trade
robustness for runtime and in some cases generates solutions with
remarkably long wires — for example, Figure 4 shows PATOMA
solutions for the IBM-HB+10 benchmark and the cal040 design,
which have 1.4x and 9.7x worse HPWL, respectively, compared to
the best seen solutions. This suggests that PATOMA’s algorithms
do not adequately search the solution space, making PATOMA’s
performance unpredictable and inconsistent across the benchmarks.

Upon further analysis, the severe degradation in solution quality
can be attributed to PATOMA’s “guarantors” — fast block-packing
heuristics that guarantee legal solutions, but do not guarantee good

1We exclude IBM-HB05 because it does not contain hard macros.
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Figure 1: Proprietary designs used in our work. Macros are shown in blue and standard cells in green.
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Figure 2: Six of the seventeen IBM-HB+ benchmarks.
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Figure 3: The 8827-macro design calDCT.

solutions. Indeed, when PATOMA fails to find a legal partition-
ing solution, it resorts to the “guaranteed” floorplanning solution
produced during look-ahead without sufficient regard to wirelength
minimization. PATOMA’s results suggest that hard instances ex-
pose the gap between PATOMA’s predictions and its ability to im-
plement them. Another possibility is that PATOMA’s fast guar-
antors jump the gun and report failures when good packings exist
(but take time to find). If either of these effects happens early in the
PATOMA flow, PATOMA will produce an essentially random legal
placement, as it does on the cal040 design.

In contrast to PATOMA, Capo uses a much slower simulated-
annealing floorplanner (Parquet) in bins (partitions) created dur-
ing top-down min-cut placement. Parquet can handle up to 50-100
blocks well [7], but then becomes inefficient for larger instances.
A built-in clusterer, also requested by Capo, extends Parquet’s op-
erating range but impacts solution quality. Capo’s floorplacement
flow decides to floorplan a bin when a block is too large to fit in
either child-bin [24]. Given that large blocks are common in mod-
ern designs (e.g., an L2 cache can take 50% of a microprocessor’s
area), Capo may decide to perform annealing near the top level, on
almost all the blocks in the design. When applied to thousands of
blocks, Parquet spends an inordinate amount of time and typically
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Figure 5: The IBM-HB+10 benchmark and cal336 design
placed by Capo 9.4. These plots of illegal placements show
that partitioning may produce bins that are difficult (or impos-
sible) to floorplan, since the partitioner may mis-approximate
the area required by a packing of the blocks. Overlaps between
modules are marked with red crosses.

does not find a reasonable solution. According to logs, Capo 9.4
goes through this scenario on the proprietary design calDCT that
includes a very large block, as shown in Figure 3.



PATOMA 1.0 Capo 9.4 -faster APlace 2.0 FengShui 5.1 SCAMPI (our work)cal HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp timebench (e+04) (%) (s) (e+04) (%) (s) (e+04) (%) (s) (e+04) (%) (s) (e+04) (%) (s)
vs.

PATOMA
(HPWL)

vs.
CAPO

(HPWL)

040 177.2 0.0 9.6 18.7 0.0 45.4 20.7 0.3 ⊗ 239.0 20.6 0.0 37.9 18.8 0.0 44.9 0.11x 1.00x
098 52.3 0.0 11.2 31.8 1.3 788.2 22.6 0.3 271.6 24.0 0.0 ⊗ 6.0 30.7 0.0 302.4 0.59x -
336 2.8 0.0 1.2 3.5 9.1 22.5 2.2 0.1 ⊗ 83.5 7.6 0.0 0.2 3.3 0.0 30.4 1.20x -
353 7.6 0.0 1.0 6.5 0.5 52.6 4.6 0.3 211.8 31.5 1.6 ⊗ 0.8 6.3 0.0 44.5 0.83x -
523 123.7 0.0 3.4 34.7 0.3 240.2 27.5 0.3 920.3 348.7 0.0 2.8 37.1 0.0 460.1 0.30x -
542 0.9 0.0 0.1 0.8 0.0 3.3 0.7 0.1 42.8 × × × 0.8 0.0 2.4 0.89x 1.00x
566 83.6 0.0 4.9 63.8 1.9 225.7 46.9 0.5 341.1 493.6 3.8 ⊗ 3.2 69.3 0.0 162.8 0.83x -
583 47.0 0.0 2.3 26.1 0.6 190.6 20.6 0.2 421.2 × × × 25.1 0.0 342.6 0.53x -
588 8.8 0.0 0.7 6.3 1.1 60.4 4.8 0.5 41.5 × × × 6.9 0.0 102.7 0.78x -
643 4.9 0.0 0.6 3.8 0.9 18.8 3.0 0.4 29.3 15.3 0.2 ⊗ 0.5 3.7 0.0 40.0 0.76x -

DCT × × × × × >1800 33.1 1.7 ⊗ 719.4 184.7 0.0 8.0 37.2 0.0 123.5 - -
Average 0.68x 1.00x

× indicates time-out, crash, or a run completed without producing a solution; ⊗ indicates an out-of-core solution

Table 4: Runs on proprietary designs. Best legal solutions are emphasized in bold.

ibm PATOMA 1.0 Capo 9.4 -faster APlace 2.0 FengShui 5.1 SCAMPI (our work)
-HB+ HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp time

bench (e+06) (%) (s) (e+06) (%) (s) (e+06) (%) (s) (e+06) (%) (s) (e+06) (%) (s)
vs.

PATOMA
(HPWL)

vs.
CAPO

(HPWL)

01 3.9 0.0 5.6 5.4 1.4 651.5 2.7 2.7 68.0 3.0 0.2 ⊗ 16.6 3.4 0.0 62.0 0.87x -
02 × × × 19.1 0.0 1539.7 5.0 2.6 101.5 8.7 0.9 ⊗ 43.6 8.0 0.0 139.6 - 0.42x
03 × × × × × >1800 7.4 2.1 101.3 × × × 9.5 0.0 104.6 - -
04 × × × × × >1800 8.2 2.8 113.9 10.8 0.2 ⊗ 41.4 12.3 0.0 144.1 - -
06 × × × × × >1800 8.2 1.0 122.5 10.7 1.4 ⊗ 36.0 11.0 0.0 170.0 - -
07 16.8 0.0 13.6 15.8 0.0 115.31 13.7 1.4 218.4 37.1 0.0 5.1 15.7 0.0 99.9 0.93x 0.99x
08 × × × × × >1800 16.6 1.0 ⊗ 294.2 21.8 0.5 ⊗ 60.6 20.5 0.0 188.4 - -
09 × × × 20.2 0.2 188.9 15.1 0.9 222.4 20.6 1.2 ⊗ 42.9 22.2 0.0 182.0 - -
10 × × × 45.9 2.7 263.7 36.9 0.3 529.5 × × × 55.2 0.0 319.9 - -
11 25.3 0.0 49.2 28.1 0.0 140.5 24.5 1.1 270.3 30.4 0.2 ⊗ 63.8 27.8 0.0 144.7 1.10x 0.99x
12 × × × 63.4 0.0 482.2 × × >1800 52.3 0.0 ⊗ 39.2 67.6 0.0 406.1 - 1.07x
13 37.5 0.0 34.7 39.6 0.0 221.5 31.7 0.5 240.4 × × × 42.2 0.0 209.6 1.13x 1.07x
14 68.7 0.0 70.9 68.2 0.0 320.7 57.1 1.0 ⊗ 392.9 74.0 2.7 89.7 66.4 0.0 268.3 0.97x 0.97x
15 × × × × × >1800 87.5 1.5 422.2 90.6 0.0 ⊗ 100.3 88.2 0.0 375.9 - -
16 100.3 0.0 74.4 106.9 0.0 431.5 89.8 0.3 528.1 × × × 106.2 0.0 306.5 1.06x 0.99x
17 141.4 0.0 95.9 152.6 0.1 397.1 133.9 0.5 799.3 × × × 152.7 0.0 385.7 1.08x -
18 72.6 0.0 67.2 75.9 0.7 220.1 69.1 0.6 344.0 × × × 77.8 0.0 192.3 1.07x -

Average 1.03x 0.93x
× indicates time-out, crash, or a run completed without producing a solution; ⊗ indicates an out-of-core solution

Table 5: Runs on IBM-HB+. Best legal solutions are emphasized in bold.

Another shortcoming of partitioning-based tools like Capo and
PATOMA is that their area-balance calculations rely on the sums
of block and cell areas. These do not account for dead-space that is
sometimes inevitable around large blocks and is particularly prob-
lematic when most blocks appear in one partition and most cells in
the other. This scenario plays out in Figure 5:left which shows a
placement produced by Capo for IBM-HB+10. The first cut was
vertical with xcutline = 3300. The second cut in the resulting parti-
tion on the left was horizontal with ycutline = 4100. The partition
in the lower left corner failed to floorplan, and it was merged with
its sibling (i.e., the bottom left partition was merged with the top
left partition). However, the merged partition failed to floorplan as
well, at which point Capo accepted a bloated floorplan that it could
not legalize during post-processing. In other words, Capo 9.4 can
only backtrack once. Additionally, we see that a partitioner under-
estimated the amount of area required by the blocks in the left par-
tition and probably over-estimated the area required by the right
partition. This gap between partitioning and floorplanning must be
addressed to improve floorplacement on difficult instances.

FengShui apparently assumes that the amount of overlap gener-
ated by fractional cut is minimal, and relies on a simple legalizer to
produce non-overlapping solutions. This may work for fine-grain
mixed-size placement instances, but fails for complex floorplans,
as shown in Figure 6. In some cases FengShui 5.1 places blocks
out of core and in others produces remarkably high wirelength.

APlace 2.0 also fails to legalize its global-placement solutions –
some modules are placed beyond the fixed outline and some over-
lap, e.g., Figure 7. We believe that all analytic placers are likely
to experience similar difficulties unless they use a strong legalizer
that can accurately manipulate the shape of every module. Another
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Figure 6: The IBM-HB+04 benchmark and cal523 design
placed by FengShui 5.1. The left placement is illegal because
of overlapping modules (marked with red crosses) and a mod-
ule placed outside the core boundary (boundary shown in red).
The right placement is legal but has 5x worse wirelength than
what is possible.

possible limitation is due to the hierarchical clustering algorithm in
APlace 2.0 [19], which prefers to cluster modules and sub-clusters
of similar sizes. Having cells of similar sizes in a cluster may be
useful for area-estimation during cell-spreading and legalization,
but also artificially restricts module locations and could lead to
routing congestion.

In all placers, any problems left after the global placement phase
must be repaired during legalization or detail placement. The more
overlaps in global placement, the harder it will be to produce le-
gal solutions with low wirelength. Based on our results, it is not
clear if the traditional separation into global and detail placement is
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Figure 7: The IBM-HB+10 benchmark and cal542 design
placed by APlace 2.0. Overlaps between modules are marked
with red crosses. These plots of illegal placements indicate that
floorplanning and post-placement legalization are non-trivial,
even when the problem size is small, due to the high area uti-
lization of packed blocks.

even viable in floorplacement. Indeed, PATOMA and Capo, which
pursue correct-by-construction paradigms, appear more robust than
FengShui and APlace, which do not attempt to prevent all overlaps
in global placement in the interest of improving wirelength.

5. SCALING FLOORPLACEMENT UP
Traditional placement techniques such as top-down and analyti-

cal frameworks, bottom-up clustering and iterative cell-spreading,
scale well in terms of runtime and interconnect optimization when
all modules are small. However, handling a wide variety of mod-
ule sizes with these techniques seems considerably more difficult.
On the other hand, simulated annealing has a good track record
in handling heterogeneous module configurations, but can only be
effectively applied to small problem sizes with our current knowl-
edge.2 This dichotomy between large-scale placement techniques
and annealing-based floorplanning necessitates a rethinking of ex-
isting floorplacement flows [24].

In this work we propose a set of mutually-reinforcing floorplace-
ment techniques that significantly improve robustness and perfor-
mance. As our baseline, we selected the floorplacement frame-
work implemented in the Capo software [2], due to its open-source
availability and better-than-average performance in our initial eval-
uation. However, the enhancements detailed below can also be
grafted onto other top-down frameworks, such as those imple-
mented in PATOMA and FengShui. We call our work SCAMPI, an
acronym for SCalable Advanced Macro Placement Improvements.

Selective floorplanning with macro clustering. In top-down
correct-by-construction frameworks like Capo and PATOMA, a key
bottleneck is in ensuring ongoing progress — partitioning, floor-
planning or end-case processing must succeed at any given step.
Both frameworks experience problems when floorplanning is in-
voked too early to produce reasonable solutions — PATOMA re-
sorts to solutions with very high wirelength, and Capo times out
because it has nothing to resort to and runs the Parquet annealer on
too many modules. In order to scale better, Parquet clusters small
standard cells into soft blocks before starting simulated annealing.
When a solution is available, all hard blocks are considered placed
and fixed — they are treated as obstacles when the remaining stan-
dard cells are placed. Compared to other multi-level frameworks,
this one does not include refinement, which makes it relatively fast.

2Several attempts at multi-level simulated Annealing, notably Par-
quet, mPG and MB*-tree, achieved only limited success. However,
we feel that this line of research is not exhausted yet.

Variables: queue of placement partitions
Initialize queue with top-level partition

1 While (queue not empty)
2 Dequeue a partition
3 If (partition is not marked as merged)
4 Perform look-ahead floorplanning on partition
5 If look-ahead floorplanning fails
6 Undo one partition decision
7 Merge partition with sibling
8 Mark new partition as merged and enqueue
9 Else if (partition has large macros or

is marked as merged)
10 Mark large macros for placement after floorplanning
11 Cluster remaining macros into soft macros
12 Cluster std-cells into soft macros
13 Use fixed-outline floorplanner to pack

all macros (soft+hard)
14 If fixed-outline floorplanning succeeds
15 Fix large macros and remove sites beneath
16 Else
17 Undo one partition decision
18 Merge partition with sibling
19 Mark new partition as merged and enqueue
20 Else if (partition is small enough and

mostly comprised of macros)
21 Process floorplanning on all macros
22 Else if (partition small enough)
23 Process end case std cell placement
24 Else
25 Bi-partition netlist of the partition
26 Divide the partition by placing a cutline
27 Enqueue each child partition

Figure 8: Modified min-cut floorplacement (Adya et. al.) flow.
Bold-faced lines are new.

Speed is achieved at the cost of not being able to cluster modules
other than standard cells because the floorplanner does not pro-
duce locations for clustered modules. Unfortunately, this limita-
tion significantly restricts scalability to designs with many macros,
as demonstrated earlier on the design calDCT.

Our proposed technique of selective floorplanning with macro
clustering allows to cluster blocks before annealing, and does not
require additional refinement or cluster-packing steps (which are
among the obvious facilitators) — instead we skip certain existing
steps in floorplacement. This improvement is based on two ob-
servations: (i) blocks that are much smaller than their bin can be
treated like standard cells, (ii) the number of blocks that are large
relative to the bin size is necessarily limited. E.g., there cannot be
more than nine blocks with area in excess of 10% of a bin’s area.

In selective floorplanning, each block is marked as small or large
based on a size threshold. Standard cells and small blocks can be
clustered, except that clusters containing hard blocks have addi-
tional restrictions on their aspect ratios. After successful annealing,
only the large blocks are placed, fixed and considered obstacles.
Normal top-down partitioning resumes, and each remaining block
will qualify as large at some point later. This way, specific loca-
tions are determined when the right level of detail is considered.
If floorplanning fails during hierarchical placement, we merge the
failed bin with its sibling and floorplan the merged bin (see Figure
8). The blocks marked as large in the merged bin include those
that exceed the size threshold and also those marked as large in the
failed bin (since the failure suggests that those blocks were difficult
to pack). After the largest macros are placed, the flow resumes.

The proposed technique limits the size of floorplanning instances
given to the annealer by a constant (in our case 200 modules) and
does not require much extra work. However, it introduces an unex-
pected complexity. The floorplacement framework implemented in
Capo does not handle fixed obstacles in the core region, and none
of the public benchmarks have them. When Capo fixes blocks in
a particular bin, it fixes all of them and never needs to floorplan



1 If block to be added intersects obstacle
2 If (block is a left child)
3 Find the closest legal location for

the block to the right of its parent
4 Else
5 Find the closest legal location for

the block to the top of its parent

Figure 9: Obstacle-evasion during the evaluation of B*-trees.

around obstacles — indeed, Parquet 4.0 does not support fixed ob-
stacles. Another complication due to newly introduced fixed obsta-
cles is in cutline selection. We address both complications below.
Of course, reliable obstacle-evasion and intelligent cutline selec-
tion may be required by practical designs, even without selective
floorplanning (e.g., to handle pre-diffused memories, built-in mul-
tipliers in FPGAs, etc). Therefore we view them as independent
but synergistic techniques.

Obstacle evasion in floorplanning: B*-tree enhancement.
When satisfying area constraints is difficult, it is very important to
increase the priority of area optimization so as to achieve legality
[10]. Because of this, we select the B*-tree floorplan representation
(reviewed in Section 2) over Sequence-Pairs for its amenability to
packed configurations.

The original B*-tree paper [8] explains how to handle obstacles
by iterating the B*-tree evaluation process so as to avoid overlaps
with obstacles. At first, one evaluates a given B*-tree without ob-
stacles, then picks one obstacle and finds the node in the tree closest
to the location of the obstacle. The obstacle is then swapped with
the node in the tree, using a standard B*-tree move. The tree is
re-evaluated, and iterations continue for the remaining obstacles.
We found this process to be very slow, and observed that node-
swapping moves perturb the initial packing too much, adversely
affecting interconnect optimization.

Our new obstacle-evasion algorithm does less work, but accounts
for obstacles during the evaluation of the B*-tree, i.e., when the
B*-tree is traversed and blocks are successively placed in non-
overlapping locations. As each block is added, it is checked for
intersection with fixed obstacles. Obstacle-evasion is triggered by
any such intersection and alters the B*-tree evaluation process, de-
pending on whether the current block is a left or right child (right
children are at the top of their parents, and left children are to the
right of their parents). A given block can evade obstacles by mov-
ing horizontally or vertically from the location where it would nor-
mally be inserted, as shown in Figure 9. In other words, blocks
intersecting with fixed obstacles are snapped to the closest legal
location consistent with the structure of the B*-tree. Such blocks
separate some of their children from the obstacle as well. This
change allows one to use the original annealing algorithm without
further modifications.

The current implementation runs in O(NblNob) time, for Nbl
blocks Nob obstacles because it checks if obstacles overlap with
the contour of the B*-tree. In our experience, with intelligent cut-
line selection and the discreteness of partition boundaries relative to
size of floorplanned blocks caused by hierarchical bisection, only a
few obstacles need to be accounted for in each partition. A faster
implementation of B*-tree contour-obstacle intersection detection
may also improve asymptotic complexity, but it may be difficult to
improve current empirical performance.

Ad-hoc look-ahead floorplanning. As pointed out in Section 4,
the sum of block areas may significantly under-estimate the area re-
quired for large blocks. Better estimates are required to improve the
robustness of floorplacement as illustrated by Figure 5, and look-
ahead area-driven floorplanning appears as a viable approach.

Unlike in PATOMA, where look-ahead is a guarantor of existing

solutions, our look-ahead is used as an estimator — more than an
oracle and less than a guarantor (since Capo can tolerate failures by
backtracking). We use a stronger, less greedy algorithm than those
used in PATOMA, and apply it to at most ten blocks at a time. In
contrast, PATOMA’s look-ahead often processes a large number Nbl
of blocks in O(Nbl logNbl) time, but may overlook many possible
solutions.

We perform look-ahead floorplanning to validate solutions pro-
duced by the hypergraph partitioner, and check that a resulting par-
tition is packable, within a certain tolerance for failure. Look-ahead
floorplanning must be fast, so that the amortized runtime overhead
of the look-ahead calls is less than the total time saved from discov-
ering bad partitioning solutions. Therefore look-ahead floorplan-
ning is performed with blocks whose area is larger than 10% of
the total module area in the bin, and soft blocks containing remain-
ing modules, except that the size of these soft blocks is artificially
reduced. For speed, Parquet is configured to perform area-only
packing, and Capo is configured to only perform look-ahead floor-
planning on bins with large blocks. Dealing with only the largest
blocks is sufficient because floorplanning failures are most often
caused by such blocks.

Top-down whitespace allocation by density. The poor qual-
ity of area estimates produced by summing block areas also affects
whitespace allocation, well-known in standard-cell placement [5].
While uniform whitespace distribution is sufficient in many cases,
we observe that in certain cases, one of two child bins requires
less whitespace than its sibling. By redistributing whitespace from
easy-to-pack child bins to those hard to pack, a floorplacer can be-
come more robust and can also improve runtime.

We propose to adjust whitespace allocation based on block den-
sity. Given two partitions with equal total block area, we say that a
bin with a smaller sum of block-perimeters is denser. The sum of
perimeters will be greater when there are many blocks, which can
be a sign that more whitespace is required. We then alter the tradi-
tional uniform whitespace allocation by redistributing whitespace
between sparser and denser bins. This may remind of whitespace
allocation to decrease routing congestion based on the concept of
perimeter degree [25] to estimate whitespace requirements. Since
block density is an approximation of the difficulty of floorplanning
a bin, we apply our heuristics conservatively in deciding when to
redistribute whitespace. For example, when there is a denser child
bin with only one macro, it is likely to require less whitespace than
its sibling because a single macro has zero dead-space. Conversely,
if a dense child bin has a few blocks while its sibling contains
significantly more, the denser child bin is likely to benefit from
slightly more whitespace, due to the greater amount of dead-space
from the packing of large blocks.

6. EXPERIMENTAL RESULTS
Tables 4 and 5 show the performance of our techniques on the

proprietary designs and on the IBM-HB+ benchmarks. SCAMPI
successfully produces legal placements for all benchmarks and de-
signs. The calDCT design consisting of 8827 macros is placed by
SCAMPI in under 180s on average, improving upon the scalability
of the Capo floorplacement flow which timed-out. Furthermore, the
average HPWL of the placement for calDCT produced by SCAMPI
is 80% better than the best seen solution. The tables also show a
significant runtime improvement in SCAMPI over Capo 9.4 on av-
erage. This can be attributed to reducing the size of floorplanning
windows through clustering, and to better handling of partitioning
solutions using look-ahead floorplanning. Figures 1, 2 and 3 plot
the placements produced by SCAMPI.



In general, SCAMPI increases the stability, robustness and scal-
ability of the top-down floorplacement framework. We consis-
tently produce legal solutions for all 28 evaluated benchmarks,
and achieve best solution quality among all academic tools avail-
able to us. In comparison, PATOMA 1.0 and Capo 9.4 were only
able to place 18 and 9 of the evaluated benchmarks. Consider-
ing the designs and benchmarks successfully placed by PATOMA
1.0 and Capo 9.4, our placements have smaller HPWL by 14.5%
and 3.5%, respectively. Our techniques would have been of limited
use if they only improved results on the most difficult instances of
floorplacement. Therefore we also evaluated SCAMPI against the
published performance of Capo on public mixed-size benchmarks
from the Faraday and IBM-MSwPins suites [24]. Even though
these benchmarks consist mostly of standard cells and have rela-
tively few macros, SCAMPI produces placements with 0.9% lower
HPWL and over 10% better runtime.

7. CONCLUSIONS
We described a set of difficult industrial designs that manage to

upset published algorithms for floorplacement and academic tools,
motivating new research in floorplacement algorithms. We re-
produced the problematic behaviors by modifying public-domain
netlists, analyzed the performance of published algorithms, identi-
fied their limitations, and deduced opportunities for improvement.
We then described algorithmic techniques that significantly en-
hance the scalability and robustness of floorplacement, making it
possible for the first time to solve hard instances mentioned above.
In particular, obstacle evasion is necessary to support fast multi-
level floorplacement of designs with many macros, even when no
fixed obstacles are initially present. Our overall results outperform
prior state-of-the-art in terms of high success ratios, lower wire-
length and lower runtime. As a side-effect, our techniques bet-
ter distribute whitespace, potentially moderating routing conges-
tion. Furthermore, our improvements are not trade-offs — they
enhance the performance of Capo on all benchmark families. As
such, the results of this work have been incorporated into Capo
10.0. While the default configuration of Capo 10.0 should be suc-
cessful on the benchmarks introduced in this paper, reproducing all
of our reported results may require running Capo with the option
-SCAMPI.

We also hope that our work will help improve the quality of other
placers. However, our results indicate that analytical placers tend
to have difficulties with the type of floorplacement instances we
considered.
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