
Are Floorplan Representations Important
In Digital Design?

Hayward H. Chan†, Saurabh N. Adya‡ and Igor L. Markov†

†The University of Michigan, Department of EECS, 1301 Beal Ave., Ann Arbor, MI 48109-2122
‡Synplicity Inc., 600 W. California Ave, Sunnyvale, CA 95054

{hhchan,imarkov}@umich.edu, saurabh@synplicity.com

ABSTRACT
Research in floorplanning and block-packing has generated a vari-
ety of data structures to represent spatial configurations of circuit
modules. Much of this work focuses on the geometry of mod-
ule shapes and seeks tighter packing, as well as improvements in
the asymptotic worst-case complexity of algorithms for standard
tasks. In this work we consider the implications of interconnect
optimization on the value of floorplan representations and estab-
lish a framework for comparing different representations. By ana-
lyzing performance bottlenecks in block packing and properties of
floorplan representations, we show that many of the mathematical
results in floorplanning do not translate into better VLSI layouts.
This is confirmed by extensive empirical data for stand-alone floor-
planners and integrated applications.
Categories and Subject Descriptors: B.7.2 [Integrated Cir-
cuits]: Design Aids — placement and routing; G.4 [Mathematical
Software]: Algorithm Design and Analysis; J.6 [Computer-Aided
Engineering]: Computer-Aided Design.
General Terms: Algorithms, experimentation.
Keywords: Circuit layout, floorplanning, sequence pair, B*-tree.

1. INTRODUCTION
Floorplanning has traditionally been important in VLSI design

because it determines the top-level spatial structure of a chip. To-
day automatic floorplanning is encouraged by the growing adoption
of embedded memories and IP blocks in SoC designs. While hu-
man designers may have non-trivial insights into design objectives,
they cannot analyze millions of possible spatial configurations.

A floorplan can be represented by the locations of the blocks,
as in [10], but this complicates the generation of new overlap-free
floorplans. We note that VLSI floorplanners typically rely on lo-
cal search, especially simulated annealing, and spend most of their
runtime to incrementally modify and evaluate candidate floorplans.
Therefore, topological representations are more common as they
guarantee that all encoded packings are overlap-free. Such a rep-
resentation encodes relative positions among blocks in a way that
is amenable to perturbation. For example, the sequence pair [16]
captures a packing by a pair of permutations and can be modified
in O(1) time, shifting the computational burden to the retrieval of
block locations. Different representations are often compared by
the algorithmic complexity of their evaluation.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

Table 1: Published results of area-minimization on MCNC
benchmarks of different representations, except for several re-
sults for CBL and ECBL that are incorrect (INC), according to
the authors. Results known to be optimal are boldfaced.

Floorplan Published results
representation apte xerox hp ami33 ami49
Optimal [4] 46.9 19.8 8.95 time-out

Sequence pair [22] 46.9 19.8 8.95 1.21 36.5
TCG [13] 46.9 19.8 8.95 1.20 36.8

TCG-S [14] 46.9 19.8 8.95 1.19 36.4
O-tree [18] 46.9 20.2 9.16 1.24 37.7
B*-tree [5] 46.9 19.8 8.95 1.27 36.8

Corner-block list (CBL) [8] INC 19.8 INC 1.18 36.1
ECBL [27] INC 19.9 INC 1.19 36.7

Twin-binary sequence [26] 47.2 19.8 9.03 1.21 37.0
TBS extended [26] 47.4 19.8 9.02 1.19 36.9
Q-sequence [29] 46.9 19.9 9.03 1.19 36.8

ACG [28] 46.9 19.9 9.03 1.19 36.8

Slicing floorplans are those that can be recursively bisected by
horizontal and vertical cut-lines down to single blocks. They can
be encoded by slicing trees or Polish expressions [23]. The first
encoding of an arbitrary floorplan — a sequence pair — appeared
10 years ago [16]. Today more than a dozen representations exist
[5, 7, 8, 13, 14, 22, 26, 27, 28, 29]. Relations among them are
studied in [25] and will be summarized in Section 2.

Competitive VLSI floorplanners frequently use simulated an-
nealing because this allows modifying the objective function in ap-
plications. They differ in the choice of floorplan representation,
which may affect runtime and solution quality. New floorplan rep-
resentations are typically justified by improvements in the algo-
rithmic complexity of evaluation, the type of encoded floorplans,
the amount of redundancy in the encoding and the total number
of encoded configurations. To this end, linear- or near-linear time
evaluation algorithms are already known for a number of represen-
tations (sequence pair, B*-tree, etc), and would be difficult to im-
prove upon if the location of each block is required (a possible ex-
ception is incremental evaluation). Many existing representations
encode a sufficiently broad range of floorplans.

Significant empirical improvements are also unlikely because
popular benchmarks are so small that many publications already
report optimal solutions (see Table 1). The use of simulated an-
nealing leads to particularly controversial reporting of results. For
example, many papers [5, 13, 14, 29] only report best results out
of an unknown number of independent runs. Since temperature
schedules are rarely reported, it is conceivable to tune them to in-
dividual benchmarks. Needless to say, such results may be difficult
to reproduce. For example, the performance of TCG and TCG-S is
questioned in [28] since there are significant discrepancies between
the experimental results and results reported in [13, 14]. Many rep-
resentations [5, 22, 28, 29] have not been evaluated in the context

of interconnect optimization, and in other cases, wirelength opti-
mization is shown in a token experiment without much discussion.
For example, ACG in [28] is presented as “more suitable for inter-
connect plan” than existing representations, but no results on inter-
connect are reported. This state of confusion reminds of the critical
analysis of VLSI placement literature in [15], and our work is mo-
tivated similarly. However, a major difference is that many results
in floorplanning have been mathematically proven, therefore our
focus is on relevance and applicability rather than correctness.

Larger-scale layout is a good context for justifying improve-
ments in asymptotic complexity of optimization algorithms, and
excellent area-packing results were reported recently for bench-
marks with over 100 blocks [4, 12]. However, these results have lit-
tle or no impact on interconnect minimization. The work in [2] sug-
gests that in fixed-outline interconnect minimization [9], annealing
is outperformed for over 100 blocks by a hybrid algorithm that uses
min-cut partitioning where possible and resorts to annealing-based
packing when necessary. Whether or not the choice of topologi-
cal floorplan representations is significant for interconnect-driven
floorplanning is one of the questions addressed in our work.

In this work we group existing floorplan representations into
families of related data structures that have identical “solution
spaces” and/or share similar evaluation algorithms. To avoid redun-
dant comparisons, we then select (i) sequence pair [16] that is used
in the well-known tool Parquet [1] and is related to TCG and TCG-
S [14], as well as (ii) B*-tree [24], which is similar to O-tree [18]
and for which a multi-level extension has been reported [12]. Sev-
eral unrelated representations (e.g., mosaic floorplans) are excluded
from our comparison because their applicability is more restricted.
We replace sequence pair with B*-tree in the annealing-based floor-
planner Parquet [1] so as to compare the two representations using
exact same temperature schedule. Additionally, making fair and
realistic comparisons requires several technical results, which we
develop in this work. Empirical data show that the size of the so-
lution space of a representation and worst-case complexity of its
evaluation are not very relevant to actual performance. To scale our
analysis to mixed-size placement, we embed floorplanning compar-
isons into the framework of min-cut floorplacement that addition-
ally involves min-cut partitioning [2] and has been demonstrated on
up to 220K movable objects. In this framework, the layout is first
partitioned into subregions, minimizing the interconnect between
them. Fixed-outline floorplanning is invoked in regions with rel-
atively large macros in it. In our work floorplacement is used for
benchmarking purposes as a practical application of floorplanning
where both packing and interconnect optimization are significant.
In terms of stand-alone evaluation of block packers, floorplacement
generates a large number of diverse floorplanning instances allow-
ing an unbiased comparison of different block packing techniques.

In the remaining part of the paper, Section 2 describes and com-
pares existing floorplan representations. We outline our evaluation
framework in Section 3, present and analyze experimental results
in Section 4 and conclude with a discussion in Section 5.

2. FLOORPLAN REPRESENTATIONS
A key property of popular topological floorplan representations

is that they capture at least one area-optimal solution. Other than
that, their solution spaces may be quite different. The floorplan in
Figure 3c cannot be captured by a B*-tree but can be captured by a
sequence pair [16] and by a corner-block list [8]. Some representa-
tions may actually capture the exact same set of floorplans, such as
sequence pair, TCG and TCG-S. Therefore, we distinguish several
families of topological representations.

2.1 Families of representations
Sequence pair [16], TCG and TCG-S [14] are shown to be equiv-

alent in [14] in the sense that they share the same (n!)2 solution
space and capture the exact same set of floorplans. Each sequence
pair corresponds to one TCG and vice versa. TCG-S is a hybrid
of TCG and sequence pair, which contains a constraint graph from
TCG and a sequence from sequence pair. Since TCG and TCG-S
capture the same set of floorplans and take O(n2) time to evaluate,
we only evaluate sequence pair since (a) it is simpler, and (b) an-
nealing moves takes less time to evaluate. Multiple sequence pairs
can represent the same floorplan, as we will see in Section 2.2, and
the exact number of general floorplans is in O(n!25n/n4.5), which is
much smaller than (n!)2 [20]. This redundancy is typically viewed
as a limitation of sequence pair, TCG and TCG-S. However, such
an argument is only applicable to exhaustive-search algorithms (as
in [4]), but not necessarily local search. The literature on Boolean
Satisfiability suggests that redundancies in the solution space, e.g.,
symmetries [19], make local search more successful by increasing
the number of paths leading to desirable configurations (i.e., in-
creasing the basins of attraction of global optima).

Both O-tree [7] and B*-tree [5] use a single tree to represent a
horizontally compacted packing (Fig.2), but differ in the bit-level
implementation of the tree. O-tree uses a rooted-ordered tree with
arbitrary vertex degrees, while B*-tree uses a binary tree. Therefore
they share the same O(n!22n−2/n1.5) solution space and capture the
same set of floorplans. As pointed out in [5], the regularity of B*-
tree makes it more attractive in annealing-based floorplanners.

Another family of floorplan representations captures only floor-
plans with zero wasted area (mosaic floorplans) [8] and includes
the corner-block list, twin-binary sequence [25] and Q-sequence
[29]. In practical applications with fixed-sized blocks (e.g., embed-
ded memories, datapaths and IP blocks) it is extremely rare that
no space is wasted. Therefore some mosaic representations are
extended to handle general floorplans by inserting empty rooms.
Area-optimality is guaranteed when enough rooms are inserted.
ECBL [27], an extension of corner-block list, requires n2 empty
rooms to capture the area-optimal solutions, but this leads to a dra-
matic growth of the solution space and makes evaluation runtimes
impractical. Extensions of twin binary sequence to capture area-
optimal floorplans without redundancies [26] do not outperform
published results for sequence pair in [22]. Mathematical prop-
erties of various floorplan representations are discussed in [25].

If the representations share the same solution space, one can
equalize the move set, and thus the differences will only affect run-
time (some moves may be faster or slower). Therefore, we do not
consider TCG and extrapolate results for sequence pair to TCG.
Similarly, we study B*-trees and extrapolate results to O-trees, with
a potential caveat about runtime. On the other hand, the solution
space defines an intrinsic bound on the expressiveness of a rep-
resentation, and this bound may directly impact solution quality.
The example in Figure 3c shows that B*-tree may not necessarily
capture min-wirelength solutions that can be captured by sequence
pair. Therefore, we compare solution spaces rather than specific
details of individual floorplan representations.

Incidentally, the two representations we have chosen for com-
parisons, sequence pair and B*-tree, appear best-studied in the lit-
erature among non-slicing representations. Sequence pair has been
extended to handle fixed blocks [17], arbitrary convex and concave
rectilinear blocks [6] and soft blocks [1]. Similar extensions have
been proposed for B*-tree [24] or can be easily extrapolated. Both
representations have been used in multi-level or hierarchical floor-
planning [1, 12] scaling to tens of thousand blocks.

2.2 Sequence pair
Unlike graph-based representations, a sequence pair [16] is a pair

of permutations (orderings) of the N blocks. The two permutations
capture geometric relations between each two blocks. Recall that
since blocks cannot overlap, one of them must be to the left or
below from the other, or both. In sequence pair

(< .. . ,a, . . . ,b, . . . >,< . . . ,a, . . . ,b, . . . >) ⇒ a is to the left of b (1)

(< .. . ,a, . . . ,b, . . . >,< . . . ,b, . . . ,a, . . . >) ⇒ a is above b (2)

Every two blocks constrain each other in either vertical or hori-
zontal direction, and only these constraints are recorded. There-
fore, placements produced from sequence pair must be aligned to
given horizontal and vertical axes, e.g., x = 0 and y = 0. There are
n!2 sequence pairs for n blocks, but multiple sequence pairs may
encode the same block placement, e.g., for three identical square
blocks, both (< a,c,b >,< c,a,b >) and (< a,c,b >,< c,b,a >)
encode the placement with a straight on top of c, and b aligned
with c on the right (Fig.3a). We say that a block placement is “rep-
resentable” (or “can be captured”) by a sequence pair iff there exists
a sequence pair which encodes that placement. The use of sequence
pair for area minimization is justified by the fact [16] that at least
one minimal-area placement is representable.

B C

A

CB

A
<ABC>,<BCA>

<ABC>,<BAC>

Figure 1: Two sequence pairs with edges of the horizontal
(dashed) and vertical (solid) constraint graphs. Transitive
edges are omitted.

The original O(n2)-time evaluation algorithm from [16] has
been considerably simplified in [21]. Another variant in [21] runs
in time O(n log(n)), and later work in [22] reduces runtime to
O(n log(log(n))) without affecting the resulting block locations.
While O-trees [18] and corner block lists [8] can be evaluated in
linear time, the difference in complexity is dwarfed by implemen-
tation tuning, e.g., the annealing schedule. The implementation in
[22] outperforms many published results in terms of runtime and
solution quality.

2.3 B*-tree
B*-tree represents a compacted packing by a binary tree, in

which each node corresponds to a block (see Fig.2b). The root node
represents the bottom-left block, which must exist if we compact-
ify in that direction. For example, B5 in Fig.2b is the bottom-left
block. A left child is the lowest right neighbor of its parent and a
right child is the lowest block above its parent that shares the same
x-coordinate with its parent. In Fig.2b, B7 and B1 are the left and
right children of B6 respectively.

Given a B*-tree, block locations can be found by a depth-first
traversal of the tree. After block A is placed at (xA,yA), we con-
sider its left child B and set xB = xA + wA, where wA is the width
of A. Then yB is the smallest non-negative value that avoids over-
laps with previously placed blocks. After returning from recursion
at block B, we consider the right child C of A: xC = xB, and yC is
smallest possible so as to avoid overlaps. This algorithm can be im-
plemented in O(n) time with the contour data-structure. The con-
tour of a packing defines its upper outline (jagged) and can be im-
plemented as a doubly-linked list of line segments (Fig.2c). When
we put a new block on top of the contour at a certain x-coordinate,
it takes amortized O(1) time to determine its y-coordinate [5].

(a)

B1

B2B3

B4B5

B6

B7

B8
(b)

B1

B2B3

B4B5

B6

B7

B8
(c)

B1

B2B3

B4B5

B6

B7

B8

Figure 2: A packing represented by (a) an O-tree and (b) an
equivalent B*-tree; the contour of the packing is shown in (c).
Block B5 is the root node. Thicker arrows link parents to their
left children.

(a)
a

bc
(b)

a

bc
(c)

a b

c

Figure 3: (a)-(b) Multiple B*-trees can represent the same
packing; B*-tree does not capture packing (c), which is rep-
resented by the sequence pair (< a,b,c >,< c,a,b >).

(a)

B1

B2B3

B4B5

B6

B7

B8

B1

(b)
B2

B3

B4

B5

B6

B7

B8 (c)

B1

B2B3

B4B5

B6

B7

B8

Figure 4: (a) shows the vertical B*-tree of the horizontal B*-
tree in Fig.2b. (b) shows the reverse horizontal B*-tree of the
B*-tree in Fig.2b. All blocks are packed to the top instead of the
bottom. (c) shows the reverse vertical B*-tree of the vertical B*-
tree in (a). All blocks are packed to the right. Blocks are linked
with their left-child by boldfaced arrows.

All packings represented by B*-trees are necessarily compacted
so that no single block can move down without creating over-
laps. Therefore, some packings representable by sequence pair
cannot be captured by B*-tree, as shown in Fig.3c. The same
packing can be captured by multiple B*-trees (Fig.3). There are
O(n!22n−2/n1.5) B*-trees [5] packings, which is fewer than n!2

possible sequence pair. B*-tree captures all compacted packings,
and hence some area-optimal packings. However, it may capture
none of interconnect-optimal packings.

3. OUR EVALUATION FRAMEWORK
Our evaluation framework is based on the open-source floorplan-

ner Parquet-2.1 that implements simulated annealing and uses the
sequence pair representation [1]. The temperature schedule can be
easily extracted from its source code. Parquet supports both tradi-
tional outline-free min-area floorplanning and fixed-outline floor-
planning [9] for any combination of hard and soft blocks, with op-
tional interconnect optimization. We replace sequence pair with
B*-tree in Parquet to facilitate fair comparisons with exact same
temperature schedules. With some effort, we ensure that all fea-
tures of Parquet are supported when B*-tree is used. Probabilities
of trying and accepting different moves are as similar as possible,
although the move sets for the two representations are slightly dif-
ferent. All our implementations are available in Parquet 3.1 [1].

3.1 Floorplanning
Outline-free floorplanning. The following moves are used

with B*-tree, (i) swapping two blocks, (ii) rotating a block and (iii)
moving a block to another position in the tree (specific to B*-tree).
The following moves are used with sequence pair: (a) swapping
two blocks in either sequence or both, (b) rotating a block and (c)
deleting a block from one of the sequences and inserting it at a
random position (specific to sequence pair). During interconnect

optimization, movements of single blocks are guided towards lo-
cations that optimize adjacent interconnect. For the two floorplan
representations, block rotations and interconnect-driven moves are
applied with the same probabilities. To investigate the effects of
compaction on both area and interconnect optimization, we apply
the compaction algorithm in Section 2.3 every five moves, and re-
port floorplanning results with and without this feature.

Floorplan compaction for B*-tree. Compaction has been stud-
ied in [7, 11] with the goal to compress a given floorplan in both
directions. Note that packings captured by B*-trees and O-trees
are only guaranteed to be compacted in one direction (down). We
developed the following simple compaction scheme. Given a (hor-
izontal) B*-tree, we construct a vertical B*-tree that compacts all
blocks to the left. For example the horizontal B*-tree in Fig.2b has
vertical B*-tree in Fig.4a. From a vertical B*-tree, we construct
a horizontal B*-tree and then iterate this process until all blocks
are compacted downward and to the left. Our algorithm for “re-
orienting” a B*-tree is derived from the B*-tree evaluation algo-
rithm, which places blocks one by one, in a depth-first order. When
we place a block B, we identify the block A (or the bottom edge)
that prevents it from moving towards the bottom as its parent, and
try to mark it as the left-child of A. If block A already has left-child
C, we try to mark the new block B as the right-child of C. If C
already has a right-child, we consider the right-child of C, proceed
similarly until we reach a block C′ with no right-child and mark
new block B as the right-child of C′. In Fig.4a, for example, when
we place the block B2, we identify the bottom edge as its parent,
whose left-child is already set to be block B5. Therefore, we con-
sider its right-child B3, which has no right-child, and set B2 as its
right-child. On the other hand, when block B7 is placed, we iden-
tify block B8 as its parent. Since block B8 has no left-child, we
set B7 to be its left-child. B*-tree evaluation takes O(n) time for
n blocks, but the worst-case overhead for placing block B in our
re-orientation algorithm is O(n) due to the tree-traversal needed to
find B’s parent. We can avoid this traversal by recording the last
left-child of each block, so that next time when we add a block B as
a left-child of block A, we can go directly to the last left-child of A.
For example in Fig.4a, when we place the block B2, we read from
the bottom-edge that B3 is the last left-child of the bottom-edge.
Therefore, we can consider B3 directly, and add B2 as the left-child
of B3 without tree traversal. After we place the new block B2, we
update B2 as the last left-child of the bottom-edge. This last opti-
mization enables constructing the vertical B*-tree in O(n) time.

Fixed-outline floorplanning. In the fixed-outline mode [9],
Parquet uses slack-based moves from [1]. The x-slack of a block is
the distance by which it can move with other blocks fixed. A key
result in [1] shows that the width of a floorplan cannot be short-
ened unless some block with zero x-slack is moved, and similarly
for y-slacks. The slack computation in [1] is specific to sequence
pair, and in this work we develop slack computation for B*-tree.
Conceptually, we construct a reverse B*-tree for a horizontal B*-
tree that compacts blocks to the top, instead of the bottom (Fig.4b).
The difference in y-coordinates of each block in these two horizon-
tal B*-tree is its y-slack. To evaluate the x-slacks, we first con-
struct the vertical B*-tree T that compacts blocks to the left. Then
we construct the reverse vertical B*-tree T ′ from T that compacts
blocks to the right (Fig.4c). The difference in x-coordinates of each
block in T ′ and the original horizontal B*-tree is its x-slack. Note
that slack computation for B*-tree takes O(n) time. This allows us
to make slack-based moves identical for B*-tree and sequence pair.

Optimizing soft blocks. Aspect ratios of soft blocks can be op-
timized based on their x and y slacks. For example, we reshape
blocks with zero x-slack and positive y-slack by decreasing their

widths and increasing their heights. This reduces the number of
critical paths in the x direction without creating new critical paths
in the y direction, and may improve floorplan area. Again, we en-
sure that the soft-block moves for sequence pair and B*-tree are as
similar as possible, and applied with the same probability. Empiri-
cal data suggest the same trends for floorplanning with hard blocks
and for floorplanning with soft blocks. Therefore, we mainly report
on hard-block floorplanning and illustrate the similarity by repre-
sentative results with soft blocks.
3.2 Floorplacement

Min-cut floorplacement introduced in [2] integrates fixed-outline
floorplanning into traditional min-cut placement to solve a more
general layout problem, which includes cell placement, floorplan-
ning, mixed-size placement and achieving routability. At every
step of min-cut placement, either partitioning or wirelength-driven,
fixed-outline floorplanning is invoked, depending on whether large
blocks are present in a given layout region. If floorplanning fails to
satisfy the fixed outline, an earlier partitioning decision is undone,
adjacent regions are merged and the larger region is re-floorplanned
to find a legal placement of the blocks. Empirically, this frame-
work improves the scalability and quality of results for traditional
wirelength-driven floorplanning. A major implication of min-cut
floorplacement is that large layouts with blocks of different sizes
may not require large-scale block packing. Indeed, min-cut par-
titioning may divide the core regions into smaller sub-region be-
fore block packing is involved. For a given layout region (bin), a
block-packing instance is constructed as follows. All connections
between modules in the bin and other modules are propagated to
fixed terminals at the periphery of the bin. As the bin may contain
numerous standard cells, the number of movable objects is reduced
by clustering standard cells into soft placeable blocks using a sim-
ple bottom-up connectivity-based algorithm. Our implementation
only clusters small cells but not large modules.

Preliminary results of floorplacement experiments reported in
the next section indicated to us that wirelength evaluation in block
packing consumed a significant portion of runtime. Therefore we
made several modifications to the floorplacer described in [2], so
as to reduce the number of nets in block-packing instances it gen-
erates. First, when formulating a block-packing instance, the mod-
ified floorplacer ignores all nets whose bounding boxes contain the
fixed outline of the instance. Such nets do not affect the optimal-
ity of block-packing solutions, and removing them is a clear win.
This is similar to removing inessential nets in min-cut placement
[3]. The main difference is that min-cut partitioning affects only
the x-span or the y-span of each net, depending on the direction
of the cutline, but floorplanning affects both. Another improve-
ment to the floorplacer from [2] deals with soft blocks that consist
of small cells clustered together. We noticed that in many cases a
pair of such clusters would be connected by numerous two-pin nets
that can be conglomerated. Therefore, we (i) extended the Par-
quet floorplanner used in [2] to use net weights, and (ii) developed
a near-linear-time algorithm for conglomerating “parallel” two-pin
nets. This algorithm creates an adjacency vector (expandable array)
for every vertex, in which it stores indices of other vertices adjacent
to the current vertex through two-pin nets. Each adjacency vector
is sorted, after which repeated indices always appear next to each
other and can be counted in linear time. Each group of identical in-
dices is then represented by a single two-pin net whose weight is the
multiplicity of the index. Empirically, these two improvements sig-
nificantly reduce the number of nets considered during block pack-
ing, resulting in an overall 10% speed-up of min-cut floorplacement
on the 18 IBM benchmarks (more so on larger benchmarks) with-
out a noticeable impact on solution quality.

Table 2: Comparison of sequence pair and B*-tree in outline-free mode with hard blocks. Parquet is run on a 3.2GHz Linux
workstation with 1GB RAM, and all data are averaged over 50 independent runs.

area weight = 1.0 area weight = 0.6, wire weight = 0.4 time-per-move (area only : area+wire)
dead-space % / HPWL (e3) / runtime (s) / time-per-move (ms) estimated actual

ami33 sequence pair 9.54% / 132 / 0.30s / 4.82ms 14.3% / 76 / 1.77s / 29.7ms 1 : 8.28 1 : 6.16
B*-tree (no compaction) 5.58% / 146 / 0.33s / 7.64ms 15.8% / 75 / 1.52s / 31.5ms 1 : 4.12

B*-tree (with compaction) 5.38% / 145 / 0.45s / 7.40ms 14.6% / 74 / 1.62s / 31.3ms 1 : 4.23
ami49 sequence pair 9.12% / 1855 / 0.66s / 7.24ms 14.1% / 823 / 4.30s / 48.5ms 1 : 7.19 1 : 6.70

B*-tree (no compaction) 5.26% / 2176 / 0.68s / 10.7ms 16.2% / 847 / 3.64s / 50.6ms 1 : 4.73
B*-tree (with compaction) 4.91% / 2120 / 0.95s / 10.8ms 15.1% / 835 / 3.95s / 51.6ms 1 : 4.78

n100 sequence pair 9.18% / 397 / 3.11s / 17.6ms 11.6% / 322 / 16.6s / 93.9ms 1 : 5.48 1 : 5.33
B*-tree (no compaction) 5.48% / 468 / 2.66s / 20.3ms 11.3% / 320 / 14.7s / 99.5ms 1 : 4.90

B*-tree (with compaction) 5.18% / 477 / 3.79s / 20.3ms 8.68% / 322 / 15.6s / 98.6s 1 : 4.86
n200 sequence pair 10.2% / 732 / 12.9s / 37.9ms 13.4% / 589 / 76.6s / 219ms 1 : 3.95 1 : 5.78

B*-tree (no compaction) 5.92% / 931 / 10.7s / 39.4ms 12.0% / 580 / 65.2s / 219ms 1 : 5.56
B*-tree (with compaction) 5.68% / 926 / 15.2s / 39.0ms 9.27% / 592 / 71.2s / 223ms 1 : 5.72

n300 sequence pair 10.7% / 954 / 32.1s / 64.3ms 14.1% / 707 / 159s / 305ms 1 : 3.18 1 : 4.74
B*-tree (no compaction) 6.27% / 1294 / 23.7s / 57.1ms 11.9% / 700 / 141s / 313ms 1 : 5.48

B*-tree (with compaction) 5.73% / 1360 / 33.3s / 56.4ms 9.34% / 730 / 149s / 308ms 1 : 5.46

4. EMPIRICAL RESULTS AND ANALYSIS
We now compare sequence pair to B*-tree within simulated an-

nealing in several different contexts. All experiments are performed
on a 3.2GHz Pentium4 workstation with 1GB RAM running Linux.

4.1 Floorplanning
The first batch of results is on the MCNC and GSRC benchmarks

(see Table 3), except for those with 11 blocks and smaller.
Outline-free floorplanning. In Table 2 we report average re-

sults over 50 runs, while best-seen dead-space is typically 1-2%
smaller. Evidently B*-tree packs better than sequence pair, which
is consistent with B*-tree’s capturing only horizontally compacted
floorplans and with published results [5]. By profiling average
time per move, we empirically determine that floorplan evaluation
dominates in pure area-optimization mode, i.e., when the netlist is
not considered. This is consistent with the emphasis on algorithm
complexity in the floorplanning literature. For example, the linear-
time algorithm for evaluating a B*-tree is considered faster than
the naive O(n2) algorithm for sequence pair. However, as we see
in Table 2, this asymptotic comparison has little value for GSRC
and MCNC benchmarks with 200 blocks or less. The more sophis-
ticated B*-tree evaluation is faster than sequence pair evaluation
only with over 200 blocks. To this end, we recall that O(n log(n))-
time and O(n log(log(n)))-time evaluation algorithms exist for se-
quence pair. In another surprising result, repeated compaction of
the floorplan does not lead to significantly better results even when
only area is minimized, which suggests that floorplan compaction
algorithms are only useful in post-processing.

Interconnect optimization. When we configure our annealer
to optimize a linear combination of area and wirelength, B*-tree
leads to smaller packings, while sequence pair achieves smaller
wirelength (see Table 2). This is consistent with the observation
that B*-tree does not capture interconnect-optimized packings that
are not horizontally compacted. Table 2 shows that runtime is now
dominated by wirelength evaluation, as time-per-move quadruples.
Intuitively this makes sense because floorplanning instances usu-
ally have many more nets and pins than blocks (see Table 3). In this

Table 3: Attributes of MCNC and GSRC benchmarks
float ops: estimated actual

blks nets pads pins WL eval. seq. pair eval.
ami33 33 123 42 522 4089 1320 562
ami49 49 408 22 953 6914 2744 1117
n100 100 885 334 1873 14253 10700 3180
n200 200 1585 564 3599 28669 41400 9710
n300 300 1893 569 4358 34593 92100 15863

context floorplan evaluation is not a runtime bottleneck in practice.
Below, we compare the number of floating-point operations used by
wirelength computation and that by floorplan evaluation, to show
that floorplan evaluation should not be a bottleneck in general.

First, we optimistically count floating-point operations needed to
compute the HPWL of a netlist for a given placement (we ignore as-
signments, etc). The location of each pin p is given by the location
(bx,by) of its module’s center, module dimensions (w,h) and the
pin’s relative offset (fx, fy) from the center. Namely, px = bx +w fx
and similarly for py (here w fx can be precomputed for hard blocks).
Thus, each pin requires 4 operations to compute its location, and
absolute locations of pads are given. To calculate the HPWL of a
degree-d net, one finds the smallest and largest x and y pin coordi-
nates, which takes 4d floating-point comparisons. A special-case
computation for 2-pin nets uses only two comparisons, saving 6
comparisons out of 8. Three more operations compute the HPWL
of a net as (xmax − xmin) + (ymax − ymin). Now assume that the
netlist has p pins, q pads and N nets of which N2 are two-pin nets
and observe that p + q = Σidi. Hence the number of floating-point
operations to compute the HPWL is 4p+4(p+q)+3N −6N2.

Next, we consider the original O(n2)-time algorithm for evaluat-
ing sequence pairs [16]. It uses the horizontal and vertical con-
straint graphs with EH and EV edges respectively. Block loca-
tions are calculated by two depth-first traversals, which requires
(EH +EV) floating-point additions and as many comparisons. Each
pair of blocks is either horizontally or vertically constrained, and
each block is connected to the sources and sinks of the two con-
straint graphs (Fig.1). Therefore EH + EV =

(n
2
)

+ 4n, and the to-
tal is 2(EH + EV) = n(n + 7) floating-point operations. Table 3
estimates such operation counts for evaluating sequence pair and
HPWL, per benchmark. It also counts actual floating-point opera-
tions in the faster algorithm that we use [21] (which does not build
constraint graphs). Both algorithms have worst-case complexity
O(n2), and the one from [16] always takes the same amount of
time. However, plotting the data in Table 3 suggests a difference in
asymptotic average-case behavior. Using more than 500 randomly-
generated floorplans ranging from 16 to 16K blocks, we fit the per-
formance of the faster algorithm to cn1.3 with good accuracy. Fur-
ther, the overhead of wirelength evaluation is shown in Table 2.
Surprisingly, the actual overhead increases for larger benchmarks,
contrary to what floating-point counts suggest. To this end, we ob-
serve that wirelength evaluation operates on much larger datasets
than floorplan evaluation (see Table 3), and larger netlists may not
fit in processor cache. Overall, floorplan evaluation is never a run-
time bottleneck in our experiments.

Table 4: Comparison of sequence pair and B*-tree in fixed-outline mode without HPWL optimization. Parquet is run on a 3.2GHz
Linux workstation with 1GB RAM, and all data are averaged over 50 independent runs. All blocks are hard.

time 10% dead-space 20% dead-space
per aspect ratio = 1.0 aspect ratio = 2.0 aspect ratio = 1.0 aspect ratio = 2.0

move success-rate % / average runtime
ami33 sequence pair 10.4ms 18% / 0.50s 24% / 0.50s 100% / 0.14s 100% / 0.15s

B*-tree (no compaction) 13.9ms 72% / 0.39s 68% / 0.45s 98% / 0.09s 100% / 0.12s
B*-tree (with compaction) 13.9ms 72% / 0.40s 84% / 0.42s 96% / 0.10s 100% / 0.13s

ami49 sequence pair 20.4ms 58% / 0.92s 68% / 0.90s 96% / 0.34s 98% / 0.31s
B*-tree (no compaction) 24.7ms 66% / 0.87s 62% / 1.01s 96% / 0.26s 98% / 0.32s

B*-tree (with compaction) 24.5ms 84% / 0.74s 92% / 0.75s 96% / 0.25s 100% / 0.30s
n100 sequence pair 47.2ms 76% / 4.31s 60% / 4.81s 100% / 1.71s 100% 1.69s

B*-tree (no compaction) 53.3ms 74% / 3.97s 98% / 3.44s 100% / 1.28s 100% / 1.29s
B*-tree (with compaction) 53.5ms 100% / 2.74s 100% / 2.63s 98% / 1.27s 100% / 1.30s

n200 sequence pair 175ms 82% / 20.5s 38% / 23.8s 100% / 8.43s 100% / 8.64s
B*-tree (no compaction) 204ms 20% / 20.5% 62% / 19.2s 100% / 6.31s 100% / 6.78s

B*-tree (with compaction) 205ms 94% / 13.9s 100% / 13.8s 100% / 5.90s 100% / 6.28s
n300 sequence pair 344ms 80% / 51.1s 30% / 59.9s 100% / 22.4s 100% / 23.0s

B*-tree (no compaction) 442ms 2% / 47.6s 14% / 45.7s 100% / 17.3s 100% / 17.3s
B*-tree (with compaction) 400ms 98% / 35.4s 100% / 33.6s 98% / 13.8s 100% / 14.5s

Fixed-outline floorplanning. Tables 4 and 5 show that moves
are more expensive in fixed-outline floorplanning. In particular,
the average time-per-move for B*-tree grows faster than what its
linear-time evaluation algorithm suggests. We trace these effects to
slack-based moves that involve computing the x- and y-slacks for
all blocks, and then prioritizing blocks by slacks. For both repre-
sentations, this involves two floorplan evaluations, two rounds of
floating-point subtractions, etc. However, slack-based moves are
important to ensure that the final floorplan fits into a given outline
[1]. B*-tree typically achieves higher success rates than sequence
pair, which is expected since B*-tree captures only horizontally-
compacted packings. Since Parquet terminates soon after finding
the first legal solution, higher success rates improve runtime.

When optimizing interconnect subject to a fixed-outline, one is
trading off success rate and interconnect cost. More aggressive an-
nealers explore solutions with smaller wirelength at the risk of not
finding any legal floorplans that fit into the outline. Therefore, suc-
cess rates in Table 5 are substantially lower than those in Table
4. Due to compaction, B*-tree packings are more likely to fit into
the outline than those represented by sequence pair. Therefore one
can view B*-tree as more conservative and may expect to achieve
the same trade-off by increasing or decreasing the weight of the
interconnect term in the objective function of simulated annealing.
However, some low-interconnect floorplans may elude B*-tree with
any and all weight configurations. As in the outline-free mode,
wirelength evaluation dominates runtime, and periodic floorplan
compaction does not improve results.

Optimizing soft blocks. The trends we reported so far carry
over to soft blocks — Table 6 compares sequence pair and B*-
tree on soft-block version of MCNC and GSRC benchmarks, with
compaction moves disabled. As before, (i) B*-tree achieves higher
success rates and takes less time on average, and (ii) wirelength
evaluation considerably increases average time per move.

4.2 Floorplacement
To scale our previous comparisons up, we embed them into the

min-cut floorplacement framework, where (i) the netlist and the
layout area are first partitioned into smaller regions, and (ii) block
packing is used only when macros occupy a significant portion of
region. We work with the floorplacer Capo 9.0 [2], which uses the
block packer Parquet. With minor modifications we can now use
either sequence pair or B*-tree within Capo. Our experiments are
performed with a suite of 18 publicly-available mixed-size place-
ment benchmarks IBM-MSwPins [2] that have non-square blocks

Table 6: Comparison of sequence pair and B*-tree in fixed-
outline mode. All data are averaged over 50 independent runs,
and all blocks are soft. The outline has 20% whitespace and
aspect ratio 1.

Without HPWL optimization
sequence pair B*-tree

success rate % / runtime (s) / time-per-move (ms)
ami33 100% / 0.19s / 10.7ms 100% / 0.11s / 14.4ms
ami49 100% / 0.38s / 20.9ms 98% / 0.28s / 25.5ms
n100 100% / 2.11s / 47.4ms 100% / 6.89s / 131ms
n200 100% / 12.6s / 191ms 100% / 8.99s / 217ms
n300 100% / 65.4s / 343ms 100% / 49.7s / 464ms

With HPWL optimization
sequence pair B*-tree

success rate % / HPWL (e3) / runtime (s) / time-per-move (ms)
ami33 98% / 84 1.73s / 36.6ms 82% / 74 1.35s / 40.2ms
ami49 100% / 880 4.44s / 64.3ms 80% / 974 3.06s / 69.9ms
n100 100% / 338 21.0s / 130ms 94% / 340 14.9s / 134ms
n200 100% / 638 124s / 363ms 86% / 647 104s / 417ms
n300 100% / 740 356s / 563ms 70% / 810 378s / 747ms

and non-trivial pin offsets. Final wirelengths and overall runtimes
of mixed-size placement are shown in Table 7. Sequence pair out-
performs B*-tree by <1.0% in wirelength and, marginally, in run-
time.1 The difference is insufficient to declare a winner as fur-
ther tuning may improve results by 1-2%. However, the choice of
floorplan representation appears to make little impact overall. Of
course, this is partly due to the fact that final results of mixed-size
placement also depend on other subsystems of Capo, such as sev-
eral min-cut partitioners and end-case placers. We also note that
regularly compacting B*-tree floorplans during annealing does not
impact final results. The fraction of floorplacement runtime used by
block packing is also reported, where we again see little difference.

Our next experiment aims to distinguish block-packing effects
from floorplacement, and yet avoid overspecializing to MCNC and
GSRC benchmarks. We collect a rich set of over 2000 block-
packing instances generated during floorplacement and solve them
with stand-alone sequence pair and B*-tree floorplanners. Recall
that during floorplacement standard cells may be clustered into soft
blocks, as described in Section 3.2. Table 8 suggests that our saved
instances are fairly diverse, ranging from 1 or 2 blocks to more
than 100 blocks, which is interesting for benchmarking purposes.
While average block counts are small, fairly large block-packing

1In min-cut placement, it is common to see that better optimization
of interconnect at higher levels speeds up lower levels.

Table 5: Comparison of sequence pair and B*-tree in fixed-outline mode with HPWL optimization. Parquet is run on a 3.2GHz
Linux workstation with 1GB RAM, and all data are averaged over 50 independent runs. All blocks are hard.

time 10% dead-space 20% dead-space
per aspect ratio = 1.0 aspect ratio = 2.0 aspect ratio = 1.0 aspect ratio = 2.0

move success-rate % / HPWL / average runtime
ami33 sequence pair 36.4ms 0% / - / 2.11s 2% / 80 / 2.08s 80% / 80 / 1.67s 86% / 83 / 1.60s

B*-tree (no compaction) 39.9ms 2% / 79 / 1.88s 0% / - / 1.91s 58% / 76 / 1.32s 58% / 79 / 1.28s
B*-tree (with compaction) 40.2ms 6% / 82 / 1.93s 2% / 82 / 1.99s 92% / 81 / 1.05s 92% / 84 / 1.11s

ami49 sequence pair 63.6ms 6% / 868 / 5.11s 4% / 855 / 5.09s 90% / 934 / 3.90s 78% / 942 / 4.10s
B*-tree (no compaction) 67.4ms 0% / - / 4.58s 0% / - / 4.54s 52% / 926 / 3.34s 38% / 948 / 3.63s

B*-tree (with compaction) 67.7ms 0% / - / 4.71s 0% / - / 4.76s 78% / 1022 / 2.45s 88% / 1057 / 2.85s
n100 sequence pair 132ms 38% / 340 / 20.5s 28% / 348 / 19.7s 100% / 338 / 15.3s 100% / 345 / 15.4s

B*-tree (no compaction) 139ms 10% / 340 / 17.5s 2% / 334 / 18.0s 100% / 343 / 8.69s 100% / 342 / 8.14s
B*-tree (with compaction) 139ms 100% / 398 / 2.74s 100% / 411 / 2.63s 98% / 404 / 1.27s 100% / 419 / 1.30s

n200 sequence pair 351ms 24% / 621 / 88.7s 0% / - / 97.5 100% / 614 / 68.0s 100% / 630 / 68.0s
B*-tree (no compaction) 410ms 0% / - / 84.3s 0% / - / 82.4s 98% / 633 / 40.8s 100% / 642 / 41.1s

B*-tree (with compaction) 410ms 94% / 729 / 13.9s 100% / 756 / 13.8s 100% / 745 / 5.90s 100% / 770 / 6.28s
n300 sequence pair 565ms 20% / 749 / 199s 2% / 805 / 209s 100% / 745 / 149s 100% / 771 / 150s

B*-tree (no compaction) 719ms 0% / - / 177s 0% / - / 82.4s 98% / 633 / 40.8s 100% / 642 / 41.1s
B*-tree (with compaction) 721ms 98% / 951 / 35.4s 100% / 996 / 33.6s 100% / 971 / 13.8s 100% / 1018 / 14.5s

Table 8: Comparison of sequence pair and B*-tree on clus-
tered floorplanning instances generated by floorplacement on
IBM-MSwPins benchmarks. ibm05 does not have any macros.

inst- max / min avg # % of successful instances
ances # blocks blocks sequence pair B*-tree

ibm01 74 47 / 1 16.8 68 / 91.9% 68 / 91.9%
ibm02 50 93 / 1 13.6 45 / 90.6% 45 / 90.0%
ibm03 27 69 / 1 18.6 18 / 66.7% 19 / 70.4%
ibm04 92 62 / 1 20.3 71 / 77.2% 74 / 80.4%
ibm06 68 49 / 1 20.3 53 / 77.9% 54 / 79.4%
ibm07 50 59 / 1 18.7 43 / 86.0% 41 / 82.0%
ibm08 79 78 / 1 17,9 62 / 78.5% 57 / 72.2%
ibm09 55 144 / 1 23.3 43 / 78.2% 43 / 78.2%
ibm10 303 65 / 1 16.2 242 / 79.9% 243 / 80.2%
ibm11 81 57 / 1 18.4 61 / 75.3% 59 / 71.8%
ibm12 206 213 / 1 17.2 188 / 91.3% 190 / 92.2%
ibm13 130 71 / 1 17.2 100 / 83.3% 98 / 81.7%
ibm14 286 93 / 1 18.0 219 / 76.6% 219 / 76.6%
ibm15 198 52 / 1 17.7 157 / 79.3% 154 / 77.8%
ibm16 154 172 / 1 23.1 123 / 79.9% 123 / 79.9%
ibm17 236 48 / 1 19.2 215 / 91.1% 214 / 90.7%
ibm18 110 67 / 1 21.1 85 / 77.3% 81 / 73.6%

instances appear once in a while — typically when a large block
triggers floorplanning in a region with many small macros (Capo
currently does not cluster macros, but this can be implemented if
needed). Again, all results for sequence pair and B*-tree are close.

In Table 9 we break down the 286 instances generated from
ibm14 by size to study the performance of sequence pair and B*-
tree at different levels of physical hierarchy in floorplacement . One
may suspect that sequence pair and B*-tree respond differently to
clustered instances of different sizes, but Table 9 shows little differ-
ence at every min-cut level. This reinforces our earlier observation
that sequence pair and B*-tree perform very similarly.

5. CONCLUSIONS
Floorplan representations have been the center of floorplanning

research in the last decade, and their geometric properties have
been extensively investigated. However, empirical evaluations have
been restricted to a small set of benchmarks, and anecdotal evi-
dence points to several versions of MCNC benchmarks that gen-
erate incompatible area and wirelength results. To this end, our
work offers a comprehensive comparison of two well-researched
floorplan representations in stand-alone block packing and in the
context of min-cut floorplacement. This comparison is facilitated
by several technical results presented in our work, such as the eval-
uation of floorplan slack in terms of B*-tree and the simplification

Table 9: Comparison of sequence pair and B*-tree on clus-
tered floorplanning instances generated by floorplacement on
the ibm14 benchmark.

min-cut # inst- max / min avg # # (%) of successful instances
level ances # blocks blocks sequence pair B*-tree

5 2 95 / 49 72.0 2 / 100% 1 / 50.0%
6 0 - / - - 0 / - 0 / -
7 4 56 / 5 39.8 4 / 100% 3 / 75.0%
8 6 38 / 14 25.7 4 / 66.7% 4 / 66.7%
9 55 49 / 2 23.4 47 / 85.5% 49 / 89.1%

10 87 49 / 2 17.7 63 / 78.8% 60 / 69.0%
11 107 49 / 1 15.6 79 / 73.8% 82 / 76.6%
12 22 28 / 1 8.6 17 / 77.3% 17 / 77.3%
13 3 7 / 1 3.3 3 / 100% 3 / 100%

total 286 95 / 1 18.0 219 / 76.6% 219 / 76.6%

of block-packing instances generated by min-cut floorplacement.
Our experiments strongly suggest that many theoretical results

in block packing, traditionally formulated in the context of simu-
lated annealing, have little relevance in digital design. For exam-
ple, we show that a well-known algorithm for evaluating sequence
pairs [21] runs in Θ(n1.3) time in practice, which is better than its
estimated worst-case complexity O(n2). Given that practical block-
packing instances rarely exceed 300 blocks, this algorithm empir-
ically outperforms a linear-time algorithm for B*-tree, but the dif-
ference is dwarfed by wirelength evaluation. Other popular proper-
ties of representations, such as redundancies in the solution space,
make little impact in the presence of wirelength optimization. Since
congestion, delay and power usually take longer to compute than
wirelength, interconnect evaluation in general is the bottleneck in
annealing-based floorplanning. To this end, move-based incremen-
tal algorithms for interconnect evaluation can be very useful, but
are difficult to design because even minor changes to relative block
locations can significantly affect the structure of packed floorplans.
Without incremental evaluation that is faster both asymptotically
and empirically, new floorplan representations and fast evaluation
algorithms seem irrelevant. Our conclusions are supported by ex-
tensive experiments on standard MCNC and GSRC benchmarks, as
well as a rich set of block-packing instances derived from min-cut
floorplacement of large mixed-size netlists.

Algorithms that are not based on annealing may be competitive
in area packing [4], but are often impractical because their objective
function cannot be modified in applications. More generally, while
we have not considered all possible algorithmic and design contexts
for justifying new floorplan representations, changing the current
status quo on their utility may require new breakthroughs.

Table 7: Floorplacement using sequence pair and B*-tree respectively on IBM-MSwPins mixed-size benchmarks. Capo is run on a
3.2GHz Linux workstation with 1GB RAM. Best HPWL for each benchmark is boldfaced. ibm05 does not have any macros.

sequence pair B*-tree
with compaction no compaction

HPWL (e6) / time (s) / % time used in floorplanning / no. successful FP instances / no. FP instances
ibm01 2.48 / 221 23.3% 71/80 2.51 / 230 29.0% 68/82 2.47 / 217 25.4% 78/86
ibm02 5.21 / 447 10.2% 42/45 5.64 / 468 21.1% 53/59 5.56 / 519 23.9% 49/54
ibm03 8.27 / 647 18.8% 40/45 8.15 / 580 13.2% 63/65 8.05 / 533 7.50% 24/29
ibm04 8.81 / 727 22.6% 93/99 8.84 / 738 20.7% 90/100 8.91 / 676 16.7% 84/96
ibm06 7.34 / 751 12.5% 50/56 7.36 / 758 12.6% 66/75 7.21 / 770 14.6% 53/57
ibm07 12.24 / 1091 10.5% 53/57 11.55 / 1039 6.48% 86/92 11.44 / 1072 8.97% 78/85
ibm08 14.57 / 1343 23.3% 49/59 14.83 / 1227 16.5% 67/78 14.88 / 1753 40.8% 63/75
ibm09 15.06 / 1302 10.1% 59/66 15.60 / 1348 11.8% 49/57 15.51 / 1376 13.5% 40/44
ibm10 34.30 / 2346 20.9% 265/298 34.71 / 1227 17.4% 254/293 33.27 / 2224 20.0% 263/294
ibm11 21.95 / 1814 7.74% 69/76 21.82 / 1348 10.5% 60/69 22.14 / 2009 16.4% 56/67
ibm12 41.23 / 2614 15.3% 165/180 43.44 / 2254 18.0% 195/218 40.69 / 2427 16.6% 220/246
ibm13 27.29 / 2411 12.2% 90/101 27.23 / 1867 15.1% 79/87 28.55 / 2565 16.5% 94/103
ibm14 40.79 / 4048 10.9% 250/275 41.02 / 4123 11.2% 216/245 41.21 / 4101 11.3% 257/285
ibm15 57.30 / 5532 10.3% 136/160 53.96 / 5218 7.95% 197/230 64.14 / 5799 8.98% 201/234
ibm16 65.41 / 5851 7.60% 138/148 64.49 / 5877 8.02% 117/134 64.42 / 5802 8.28% 121/142
ibm17 77.31 / 6010 3.26% 213/225 77.69 / 6096 5.42% 230/254 77.39 / 6134 4.14% 241/265
ibm18 48.81 / 5320 2.88% 61/75 48.85 / 5204 2.98% 72/77 49.45 / 5309 2.38% 94/100

Average 0% / 0% +0.53% / -0.44% +0.68% / +2.39%

6. REFERENCES
[1] S.N. Adya and I.L. Markov, “Fixed-outline Floorplanning: Enabling

Hierarchical Design,”IEEE Trans. on VLSI 11(6), pp.1120-35, 2003.
http://vlsicad.eecs.umich.edu/BK/parquet/

[2] S.N. Adya, S.Chaturvedi, J.A. Roy, D.A. Papa and I. L. Markov,
“Unification of Partitioning, Floorplanning and Placement,” ICCAD
2004, pp. 550-557.

[3] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Optimal Partitioners
and End-case Placers for Standard-cell Layout,” IEEE Trans. on
CAD 19(11), pp. 1304-1314, 2000.

[4] H. H. Chan, I. L. Markov, “Practical Slicing and Non-slicing
Block-Packing without Simulated Annealing,” ACM/IEEE Great
Lakes Symp. on VLSI 2004, pp. 282-287.

[5] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, “B∗-trees: A
New Representation for Non-Slicing Floorplans,” DAC 2000, pp.
458-463.

[6] K. Fujiyoshi and H. Murata, “Arbitrary Convex and Concave
Rectilinear Block Packing Using Sequence Pair,” ISPD 1999, pp.
103-110.

[7] P.-N. Guo, C.-K. Cheng and T. Yoshimura, “An O-tree
Representation of Non-Slicing Floorplan,” DAC ‘99, pp. 268-273.

[8] X. Hong et al., “Corner Block List: An Effective and Efficient
Topological Representation of Non-Slicing Floorplan,” ICCAD
2000, pp. 8-13.

[9] A. B. Kahng, “Classical floorplanning harmful?” ISPD 2000, pp.
207-213.

[10] R. E. Korf, “Optimal Rectangle Packing: New Results,” ICAPS
2004, pp. 142-149.

[11] M. Lai and D. Wong, “Slicing Tree Is a Complete Floorplan
Representation,” DATE 2001, pp. 228–232.

[12] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. H. Yang, “Multilevel
Floorplanning/Placement for Large-Scale Modules using B*-trees,”
DAC 2003, pp. 812 - 817.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

(a) HPWL= 2.538e+06

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

(b) HPWL= 2.531e+06
Figure 5: Sample placements produced by Capo 9.0 on ibm01
using (a) sequence pair and (b) B*-tree. The discrepancies in
wirelength versus Table 7 represent variability in Capo results.

[13] J.-M. Lin and Y.-W Chang, “TCG: A Transitive Closure
Graph-Based Representation for Non-Slicing Floorplans,” DAC
2001, pp. 764–769.

[14] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal Coupling of
P*-admissible Representations for General Floorplans,” DAC 2002,
pp. 842–847.

[15] P. H. Madden, “Reporting of Standard Cell Placement Results,”
IEEE Trans. on CAD 21(2), Feb. 2002, pp. 240-247.

[16] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “VLSI
Module Placement Based on Rectangle-Packing by the Sequence
Pair,” IEEE Trans. on CAD 15(12), pp. 1518-1524, 1996.

[17] H. Murata and E. S. Kuh, “Sequence-Pair Based Placement Methods
for Hard/Soft/Pre-placed Modules”, ISPD 1998, pp. 167-172.

[18] Y. Pang, C.-K. Cheng and T. Yoshimura, “An Enhanced Perturbing
Algorithm for Floorplan Design Using the O-tree Representation,”
ISPD 2000, pp. 168-173.

[19] S. Prestwich, “Supersymmetric Modelling for Local Search,”
SymCon ‘02, September 2002.
http://user.it.uu.se/˜pierref/astra/SymCon02/

[20] Z. C. Shen and C.C.N. Chu, “Bounds on the Number of Slicing,
Mosaic, and General Floorplans,” IEEE Trans. on CAD 22(10),
pp. 1354 - 1361.

[21] X. Tang, R. Tian and and D. F. Wong, “Fast Evaluation of Sequence
Pair in Block Placement by Longest Common Subsequence
Computation,” DATE 2000, pp. 106-111.

[22] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for Block
Placement Based on Sequence Pair,” ASPDAC 2001, pp. 521-526.

[23] D. F. Wong and C. L. Liu, “A New Algorithm For Floorplan
Design,” DAC 1986, pp. 101-107.

[24] G.-M. Wu and Y.-C. Chang and Y.-W. Chang, “Rectilinear block
placement using B*-trees,” ACM Trans. on Design Autom. of
Electronic Systems 8(2), pp. 188–202, 2003.

[25] B. Yao et al., “Floorplan Representations: Complexity and
Connections,” ACM Trans. on Design Autom. of Electronic Systems
8(1), pp. 55–80, 2003.

[26] E.F.Y. Young, C.C.N. Chu and Z.C. Shen, “Twin Binary Sequences:
A Nonredundant Representation for General Nonslicing Floorplan,”
IEEE Trans. on CAD 22(4), pp. 457–469, 2003.

[27] S. Zhou, S. Dong, C.-K. Cheng and J. Gu, “ECBL: An Extended
Corner Block List with Solution Space including Optimum
Placement,” ISPD 2001, pp. 150-155.

[28] H. Zhou and J. Wang, “ACG–Adjacent Constraint Graph for General
Floorplans,” ICCD 2004.

[29] C. Zhuang, Y. Kajitani, K. Sakanushi and L. Jin, “An Enhanced
Q-Sequence Augmented with Empty-Room-Insertion and
Parenthesis Trees,” DATE 2002, pp. 61-68.

