
Almost-symmetries of Graphs

Igor L. Markov

Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2121
imarkov@eecs.umich.edu

Abstract. Many successful uses of symmetries in discrete computa-
tional problems rely on group-theoretical properties. Almost-symmetries
can be more numerous, but do not have the same properties. In this
work, we study almost-symmetries of graphs, proposing data structures
for representing them, algorithms for finding them, and logic predicates
for symmetry-breaking.

1 Introduction

A structure-preserving reversible transformation of a structured object is often
called a symmetry (or automorphism), with prime examples being (1) a per-
mutation of vertices of a given graph, that maps edges to edges and preserves
vertex labels, (2) a permutation of variables in a system of constraints, that pre-
serves the system, (3) a permutation of possible values of some variables, such
as the simultaneous negation of two Boolean (or two integer) variables, (4) a
permutation of input and output variables of a Boolean function that leaves the
function invariant. Computational applications often involve finite domains. For
example, identifying a pair of symmetric variables x and y in an equation allows
one to introduce the additional constraint x ≤ y so as to reduce the amount of
searching by up to 25%, or closer to 50% for non-Boolean variables. Combining
many such symmetries sometimes reduces the complexity of search, proofs or
refutations from exponential to polynomial, both in provable lower bounds [9]
and empirical performance [1].

Identifying and using a greater variety of symmetries often improves compu-
tational efficiency. Hence, it is natural to relax the notion of symmetry and deal
with almost-symmetries which retain useful properties, occur more often and
may have greater impact. In this work we consider a class of almost-symmetries,
their representation, discovery and usage. Our approach is to relax the no-
tion of graph symmetries (automorphisms) to account for vertices whose colors
may change and whose edges may appear or disappear. In particular, our algo-
rithms can discover a small number edge additions or removals that can make
a given graph more symmetric. We show that almost-symmetries can be com-
pactly represented by unordered lists of unordered lists of permutations, from
which almost-symmetry-breaking predicates can be constructed, analogous to
the well-known technique for full-fledged symmetries.

2 Almost-symmetries and Their Properties

Many existing notions of symmetry can be and often are modeled by graph
automorphisms, i.e., vertex permutations that map edges to edges. As a matter
of convenience (but not generalization), vertices may bear colors, so that blue
vertices cannot map into red vertices.

Almost-symmetries can be defined either as transformations that violate
some conditions for being symmetries, or as symmetries of slightly modified ob-
jects [7]. For example, adding or removing one constraint can make the overall set
of constraints more symmetric. In this work, we pursue the latter approach and
consider two possibilities: (1) vertices with undefined color (or a set of possible
colors), (2) edges that can be added or removed. Formally speaking, the second
case can be reduced to the first by representing every edge and every non-edge
by a pair of fake edges and a fake vertex of appropriate color. If an original
edge is allowed to disappear, its fake vertex can assume either color. While this
reduction can introduce gross inefficiency in practical algorithms, it is conve-
nient to illustrate key concepts. Another reduction that does not require loss of
generality is to assume that vertices of variable (chameleon) color can take on
any specific color without further restrictions. To relax the original color-related
limitation, a chameleon vertex can be mapped to a chameleon vertex or a vertex
of any regular color. Additionally, a vertex of a regular color can be mapped to
a chameleon vertex. Since almost-symmetries are permutations from Sn,
– products of almost-symmetries are unambiguous,
– the identity permutation is an almost-symmetry,
– each almost-symmetry has a unique inverse.

Unfortunately, almost-symmetries are not closed under the compositional
product. For example, consider a 3-vertex graph with no edges, the permutation
π1 that swaps the blue vertex v1 with the chameleon vertex v2, and π2 that
swaps v2 with the red vertex v3. The product π1 · π2 maps the blue vertex v1
to the red vertex v3, which is forbidden. We cannot fix all products, but we can
require that all powers of an almost-symmetry be almost-symmetries.

We further restrict almost-symmetries to those automorphisms of
the underlying unlabeled graph G∗ with the property that each cycle
contains vertices of no more than one regular color.

With their compositional product defined only partially, almost-symmetries
do not form groups, semi-groups, monoids or groupoids. In particular, consider
the products (π1 ·π1) ·π2 and π1 ·(π1 ·π2). Since π1 ·π1 = (), the former is defined
(= π2), but (π1 · π2) is not. Almost-symmetries do not form cosets because any
coset containing the identity permutation () must be a subgroup.

Note that for any given color-based almost-symmetry of a graph, there is a
specialization of colors for the graph’s chameleon vertices that turns the almost-
symmetry into a regular symmetry. Indeed, each cycle can include vertices at
most one regular color, to which all chameleon vertices in this cycle can be

specialized. If all vertices in the cycle are chameleon-colored, specialize all of
them to any existing color.

Now consider all possible color specializations of the chameleon vertices (par-
titions of the vertex set into as many cells as we have regular colors). In each
case we obtain a regular labeled graph with a group of symmetries, and each
almost-symmetry is contained in at least one of those groups. Thus

The set of almost-symmetries is a union of subgroups of Sn.

In an irredundant union-of-subgroups expression no subgroups can be skipped.
Greedy removal of redundant subgroups from an expression ensures irredun-
dancy, but not the smallest size. Even solving the (implicit) set-covering problem
for given subgroups may not produce a union with fewest subgroups possible.1

Observe that all relevant subgroups are contained in the automorphism group
Aut(G∗) of the unlabeled (colorless) graph G∗ and contain all automorphisms
of G∗ whose cycles do not mix chameleon vertices with regular vertices. Such
permutations form a subgroup that can be recovered in two steps: (1) construct
the labeled graph G] by specializing all chameleon vertices to a color that has
not been used before, (2) finding Aut(G]). The algebraic structure described
above is visualized in Figure 1. In practice the intersection of subgroups can
be larger than Aut(G]), e.g., consider two disconnected vertices v1 (blue) and
v2 (chameleon), for which Aut(G]) = {()} but the only non-trivial almost-
symmetry (12) generates a larger subgroup.

Solutions to the graph almost-automorphism problem can be represented
by subgroup generators arranged in potentially-overlapping unordered
lists — one list per subgroup of Sn in the union-of-subgroups structure.

1 Consider Z2 × Z2, the symmetry group of the letter H represented by the union of
its three two-element subgroups.

Aut(G])

Aut(G∗)

S
n

G1

G2
G3

Fig. 1. Algebraic structure in almost-symmetries — a set-union of subgroups:
Aut(G]) ⊆ G1 ∪ G2 ∪ G3 ⊆ Aut(G∗). All shapes represent groups or subgroups, and
illustrate containment relations geometrically.

3 Finding Almost-Symmetries

To find almost-symmetries and represent them compactly by lists of lists of per-
mutations, we extend a common graph-automorphism algorithm, used in solvers
NAUTY [10] and SAUCY [8], to handle color-based almost-symmetries. Our goal
here is to capture all almost-symmetries by a small set of colorings, i.e., vertex
partitions. Fortunately, existing algorithms are based on partition refinement,

First, vertices are partitioned by degree. Further, an immediate refinement
step is based on external adjacencies, e.g., two vertices in the same cell m1 can-
not be symmetric if one is adjacent to a vertex cell m2 and the other is not
adjacent to any vertex in m2 [8, Figure 1]. After such refinements are exhausted
Hopcroft’s procedure, the algorithm resorts to (traditional) branching by, con-
ceptually, picking a non-singleton cell and mapping its lowest-indexed vertex vi

to another vertex vj [10, 8]. This may trigger another round of immediate parti-
tion refinement — neighbors of vi can only map to neighbors of vj . The overall
algorithm proceeds by alternating between branching and refinement until all
vertices in some cells are mapped to other vertices (or themselves), which allows
one to test the resulting permutation for being a symmetry of the original graph
[8, Figure 2]. Confirmed symmetries are accumulated,2 and the algorithm back-
tracks to explore other branches of the search tree. With appropriate pruning
[10], the algorithm ignores all branches leading only to symmetries expressible
as compositions of accumulated symmetries. This ensures that group generators
at the output are irredundant and can implicitly express an exponential number
of symmetries in polynomial space.

We extend the above algorithm by interleaving traditional branching and
partition refinement with branching on colors of chameleon vertices. To minimize
the number of different subgroups in the union-of-subgroups structure, we delay
such branching. The algorithm repeatedly applies prioritized rules:

1. Since all almost-symmetries of a given graph G are in Aut(G∗), apply an
existing graph-automorphism algorithm to G∗ (i.e., ignore vertex colors) until
it needs branching or terminates.

2. Any cell with vertices of more than one regular color, but no chameleon ver-
tices, must be split immediately. Cells containing chameleon vertices cannot
be split based on internal vertex colors.

3. Apply partition refinement based on adjacencies to cells of regular colors.

4A. If a cell contains only chameleon vertices, then specialize all vertices to one
arbitrary color.

4B. If a cell contains chameleon vertices and vertices of one regular color, then
specialize all chameleon vertices to this regular color.

5. In a non-trivial cell without chameleon vertices, invoke traditional branching
in the hope that some cells with chameleon vertices will be refined through

2 For graphs in engineering applications it is relatively rare to reject potential sym-
metries at this stage, but such bad leaves are common for highly symmetric Cayley
graphs. With no bad leaves, the algorithm runs in polynomial time.

adjacencies. This rule does not use traditional branching in cells with un-
specified chameleon vertices due to difficulties with color assignment, implied
in some, but not all branches.

6. Branch on chameleon vertices in cell j with the smallest branching factor:

– Specialize all kj chameleon vertices in cell j at once — otherwise splitting
and traditional branching will not work (Rules 2 and 5).

– Assign only cj regular colors used in cell j.

– Select j to minimize branching factor c
kj

j .

Symmetry generators accumulated since the last branching on chameleon
vertices can only be used in that branch, hence we output a new subgroup upon
returning from the lowest-level chameleon branch.

Rule 2, 3 (immediate refinement) and Rules 4A, 4B (dominant colors) per-
form constraint propagation, interleaved with two types of branching (Rules
5 and 6). Pruning by accumulated symmetry ensures that generators of each
subgroup are irredundant. For many graphs, constraint propagation alone will
specialize all chameleon vertices, and for most randomly-generated graphs no
branching will be invoked at all. However, even when almost-symmetries form a
group, chameleon branching may be necessary, as shown in Figure 2. This exam-
ple also shows that our algorithm may produce redundant unions-of-subgroups
and therefore needs post-processing. However, in general, delayed branching on
chameleon vertices and the minimization of branching factors lead to more com-
pact union-of-subgroup expressions. The core algorithm above allows a number
of engineering improvements, e.g., its decoupled branching on chameleon vertices
can honor color-based constraints and preferences. Another major extension (not
described here due to space limitations) is to explicitly track chameleon edges.

v1 v2 v5

v4 v3 v8 v7 v6

Fig. 2. A graph with three red vertices (v1, v2, v3), two blue vertices (v5, v7) and three
chameleon vertices (v4, v8, v6). Rule 1 separates v8 from other vertices, and Rule 4A
colors v8 red. The remaining cell cannot be split (Rule 2), and traditional branching
is not allowed in it (Rule 5). Therefore, Rule 6 must be applied with branching factor
4 — on two vertices (v4,v6) with two colors. Three of those branches produce non-
trivial almost-symmetries after traditional branching (Rule 5), but one of the resulting
subgroups contains two others. Indeed, every almost-symmetry becomes a symmetry
when v4 is colored red and v6 is colored blue.

4 Almost-symmetry-breaking

Consider the DNF-SAT instance ac+ bc as example. This formula has one non-
trivial permutational symmetry (ab), with SBP (a ≤ b) = a′ + b. We can also
swap either (a with c) or (b with c), but not both. The obvious almost-symmetry-
breaking predicate (a ≤ c) + (b ≤ c) = (a′ + c) + (b′ + c) = a′ + b′ + c removes
the non-solution 110 allowed by a′ + b.

To generalize this technique to larger instances, we need to develop theory
analogous to the case of full-fledged symmetries. When modeling symmetries
on graphs, the group isomorphism Hsym ' Aut(G) is key — it allows one to
pull back group generators (important in symmetry-breaking) from graphs to
non-graph objects. Therefore, we now define isomorphism of almost-symmetries
so that descriptions of almost-symmetries in terms of generators always map to
valid descriptions.

An isomorphism of almost-symmetries is a one-to-one mapping γ such
that ∀ almost-symmetries π1, π2, their product π1 · π2 is defined if and
only if the product γ(π1) · γ(π2) is defined, in which case we require that
γ(π1 · π2) = γ(π1) · γ(π2).

Isomorphism-of-symmetries proofs for graph constructions (that model con-
straints and objective functions) [1, 3] all extend to almost-symmetries. Omitting
details, each such graph construction defines an isomorphism of containing Sk

groups (for k initial variables and k graph vertices), and this mapping remains
an isomorphism on every subgroup in the union. Hence, if either of the two
permutations γ(π1) ·γ(π2) and π1 ·π2 is in a valid subgroup, then so is the other.

When defining SBPs, the key issue is not to prohibit all good solutions. To aid
in this, we build global SBPs from known lex-leader SBPs [2] for every generator
of almost-symmetries. In particular, generator SBPs can be conjoined within
subgroups because the respective almost-symmetries can be freely composed.
When the union of subgroups is derived from a disjunctive constraint, we can OR
all subgroup SBPs because the lex-smallest assignment satisfying a disjunctive
term will satisfy one of subgroup SBPs. Yet, for a general CSP, a unique overall
solution may violate all subgroup SBPs, which suggests additional conditions
per subgroup Gi. We propose to pick lex-leaders only among those assignments
that enable almost-symmetries in Gi.

For almost-symmetries gi1, gi2, . . . , gim from subgroup Gi, we build their
SBP as Ψ(Gi) := (ΦGi

⇒ (∧jψ(gij)) where ψ(g1j) is a lex-leader SBP
for the permutation gij and ΦGi

is a pre-condition. The overall SBP for
∪iGi then ∧iΨ(Gi).

For function f , ΦGi
is (ideally the weakest) specialization of don’t-cares that

turns gij , ∀j into symmetries. For a constraint graph, if turning gij into symme-
tries requires adding (or removing) an edge, then ΦGi

expresses the new con-
straint represented by this edge (or its negation). When a good precondition is
hard to build, we can skip Gi by assuming ΦGi

= 0, Ψ(Gi) = 1.

References

1. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Solving Difficult
Instances of Boolean Satisfiability in the Presence of Symmetry”, IEEE Trans. on

CAD, Sep. 2003, pp. 1117-1137.
2. F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Efficient SymmetryBreaking for

Boolean Satisfiability,” in Proc. IJCAI ‘03, pp. 271-282.
3. F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “Symmetry-Breaking

for Pseudo-Boolean Formulas”, in Proc. ASPDAC ‘04, pp. 884-887.
4. I. P Gent, B. M. Smith, “Symmetry Breaking in Constraint Programming”, in

Proc. ECAI‘00, pp. 599-603.
5. I. Gent, W. Harvey, T. Kelsey, “Groups and Constraints: Symmetry breaking dur-

ing search”, in Proc. CP ‘02, LNCS 2470, pp. 415-430, Springer.
6. I.P. Gent et al, “Conditional Symmetry Breaking,” in Proc. CP ‘05, pp. 256-270.
7. P. Gregory and A. Donaldson, “Concrete Applications of Almost-Symmetry”, in

Workshop on Almost-Symmetry in Search, pp. 1-5, Comp. Sci. TR-2005-201, Univ.
of Glasgow, 2005.

8. P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov, “Exploiting
Structure in Symmetry Detection for CNF”, in Proc. DAC ‘04, pp. 530-534.
http://vlsicad.eecs.umich.edu/BK/SAUCY/

9. B. Krishnamurthy, “Short Proofs For Tricky Formulas”, Acta Informatica, vol. 22,
pp.327–337, 1985.

10. B. D. McKay, “Practical Graph Isomorphism”, Congressus Numeran-

tium 30(‘81), pp. 45-87.

Appendix A: Exp-sized Union of Subgroups

Consider n + 2 disconnected vertices: v1 is red, v2 is blue, and n vertices are
chameleon. All color specializations are indexed by j = 0..2n − 1 such that 1s
in the binary expansion of j correspond to red vertices. With #j red vertices
and n − #j blue vertices, Gj ' S1+#j × S1+n−#j . No element of Gj for any j
maps v1 7→ v2, hence this is an invariant of ∪jGj . However, ∀ i 6= j, the minimal
subgroup containing Gi and Gj contains a permutation that maps v1 7→ v2.
Hence in any union-of-subgroups expression for almost-symmetries of the graph
in question, each Gj must be contained in a separate term. Therefore, any list
of lists of generators representing such an expression requires Ω(2n) space.

Appendix B: Handling Chameleon Edges

We will now outline preliminary results on extending the algorithm from Section
3 to handle chameleon edges, using the same overall framework that interleaves
branching and partition refinement. The simplest approach is to first branch on
all chameleon edges and then continue the existing algorithm. This is indeed
a correct overall algorithm, but will generate unions with the greatest possible
number of subgroups. Further improvements need to delay branching as much as
possible, identify chameleon edges that can be specialized without branching, and

v5 v2

v1

v4 v3

Fig. 3. A graph with one regular and two chameleon edges illustrating difficulties in
ensuring that powers of almost-symmetries are, too, almost-symmetries. Consider a
clockwise 45◦-rotation about the center.

let partition-refinement prune unpromising branches. For example, if we know
that each of the two vertices vi and vj can only be mapped to itself, the chameleon
edge connecting them can be specialized arbitrarily, without branching.

Some of the difficulties in generalizing partition refinement to chameleon
edges are largely the same as for chameleon vertices. Namely, the relation “a
given edge/vertex can be mapped to another given edge/vertex by an almost-
symmetry” is not transitive and therefore is not an equivalence relation. The
former prevents free composition of almost-symmetries and the latter means
that almost-symmetries do not have orbits in the same sense that symmetries
do. This is what complicates splitting a cell with one blue, one yellow and one
chameleon vertex.3 In the presence of chameleon edges, each vertex with χi

incident chameleon edges may have a range of (χi+1) possible degrees depending
on how those edges specialize. In the graph from Figure 3, vertices v2 and v4 have
degrees 1 and 0 respectively, however vertices v3 and v5 may each have degrees
0 or 1 independently, and vertex v1 may have degrees 1, 2 or 3. At this point,
we see that v4 cannot map to v1 and v2, but we cannot split v4 away vertices
because v4 can map to v3, while v3 can map to v2. Thus, we have to branch
on both chameleon edges from the start, and soon discover that the resulting
four-subgroup union cannot be simplified — the initial branching factor could
not have been reduced.

To fathom the scale of additional changes required to improve the naive
algorithm, we list several fundamental differences between chameleon edges and
vertices.

1. If chameleon edges are present, graph vertices do not have fixed degrees,
which undermines the initial degree partition in Rule 1.

2. Existing partition-refinement algorithms do not work in the presence of
chameleon edges, which defeats Rule 3.

3 Color information is used in traditional branching, but partition refinement can often
draw more implications from color information that eventually prune additional
branches.

3. Unlike specializations of chameleon vertices, specializations of multiple chameleon
edges are not vertex partitions. This obstructs possible analogues of Rules
4A and 4B for chameleon edges.

The problem we have identified so far with the initial degree-partition (Rule
1) can be addressed effectively as follows (Rule 1′). After having computed the
degree interval of each vertex, consider the corresponding interval graph — it uses
the original vertex set, but an edge between vi and vj is established if and only
if the intervals labeling these vertices intersect. Without chameleon vertices,
every vertex has a fixed degree, and the interval graph is a disjoint union of
cliques (one per possible vertex degree). The cells of the degree-partition are
connected components of the interval graph, and can be found without building
the interval graph explicitly or traversing all of its edges. Chameleon vertices can
make the interval graph a lot more complex, but vertices in different connected
components still cannot be mapped to each other, and connected components
can still be found without building the interval graph explicitly or traversing all
of its edges. The proposed Rule 1′ is unconditional, just as Rule 1 it replaces.
It builds an interval graph (or a reduced version discussed below) and uses its
connected components as an initial vertex partition.

The graph in Figure 3 has a connected interval graph, but one can build a
non-trivial example based on the graph in Figure 2, whose interval graph consists
of a 7-clique and the disconnected vertex v8. Pick three edges incident to v8 and
color them chameleon. This will leave v8 with at least four incident edges —
more than any other vertex may have. The remaining 7 vertices may still all
have degree 3, suggesting that the interval graph has not been affected. The
interval graph defined so far can be reduced by removing some edges. Namely,
when two vertices connected by one chameleon edge have degree intervals [m1, d]
and [d,m2] respectively, these vertices cannot simultaneously have the same
degree (e.g., vertices v1 and v3 in Figure 3). From now on, we shall use this
reduced interval graph (RIG). However, without new branch-pruning rules for
chameleon edges, similar to rules Rules 4A and 4B, it is not useful to build an
initial partition before specializing chameleon edges.

We now use the following idea.

Label each pair of vertices by non-edge, edge or chameleon. Given a
vertex-partition, induce a partition on the sets of vertex pairs (edge-
partition) where each edge-cell corresponds to a pair of vertex-cells. Two
pairs of vertices in different edge-cells cannot be mapped to each other.

The concept of edge-partition facilitates analogues (but not replacements) of
Rules 3, 4A and 4B.

3B Edge-cells that contain edges and non-edges, but no chameleon edges, should
be split immediately.

4C If an edge-cell contains only chameleon edges, then specialize all of them to
non-edges (or, if desired, specialize all to edges).

4D If an edge-cell contains chameleon edges, but all other vertex pairs in it are
non-edges (edges), then specialize all chameleons to non-edges (edges).

These rules can be incorporated into the process of inducing an edge-partition.
An implementation can ignore edge-cells consisting entirely of non-edges, which
improves efficiency for sparse graphs, and only keep track of the remaining two
types of cells: (i) edges only, (ii) edges, non-edges and chameleons.

Rule 4D can be illustrated using our running example with the graph from
Figure 2 where three edges incident to v8 are changed into chameleons. The
initial vertex partition separates v8 from 7 remaining vertices. In the induced
edge-partition, one particular edge-cell consists of vertex pairs (v8, vj), j = 1..7
and qualifies for Rule 4D. As a result, all chameleons are specialized to edges,
and the degree intervals of some vertices get truncated. In general, the latter
can cause the deletion of edges from the RIG and split some vertex cells. This
does not happen in our example, where we have specialized all chameleon edges
without branching and can now fall back on Section 3.

We have not yet extended vertex-based partition-refinement in Rule 3 to
work with chameleon edges, which means that Rule 3 can only be applied after
all chameleon edges are specialized. However, we can already formulate the first
non-trivial algorithm for finding almost-symmetries with chameleon edges and
vertices. The algorithm first builds a RIG and finds its connected components
to build an initial degree partition. If some vertex-cells can be split by colors as
in Rules 2 and/or 3, this is done and all edges in the RIG that connect newly-
split cells are removed (we will abbreviate split RIG as SRIG). The presence of
chameleon edges blocks partition refinement in Rule 3 so far. If there is more
than one vertex-cell, the algorithm induces a non-trivial edge-partition. If any
of Rules 3B, 4C and 4D trigger, some degree intervals can be adjusted, possibly
splitting vertex-cells. Some cells may be eligible for Rules 2, 3, 4A and/or 4B. If
the vertex-partition changes, the edge-partition must be refined, and so on. When
this cycle stops, branching on chameleon edges can be considered, especially that
the branching factor is only 2 per edge (if we want to minimize the number of
subgroups, we should delay this branching further, as discussed below).

As it turns out, maintaining edge-partitions also allows us to repair Rule 3.
The first step is to reword immediate partition-refinement without chameleon
edges in terms of edge-partitions. Namely, each vertex is incident to some edge-
cells, regardless of its color, and a vertex-cell can be split so that only vertices
incident to exact same edge-cells remain in the same [sub-]cell. This is equivalent
to the original partition-refinement by adjacency because edges incident to a
given vertex-cell can only be differentiated by their incident vertex-cells on the
other side.

The second step is to check that the two-step partition-refinement still works
if we calculate incidence to edge-cells through edges and chameleon-edges (with-
out distinguishing them at this point). The two-step refinement remains valid be-
cause edge-partition remains an equivalence relation even when chameleon edges
are present. We replace Rule 3 with Rule 3′ by swapping two-step partition-
refinement for immediate partition-refinement.

The improved algorithm, starts with Rule 1′, attempts to refine the vertex-
partition by Rule 2, then induces an edge-partition and applies Rules 3B, 4C and
4D, then tries color-related rules 4A and 4B, followed by Rule 3′ and partition
refinement. When such combined refinement stops, we first seek non-singleton
cells without chameleon vertices and not incident to chameleon edges. In such
cells we invoke traditional branching, which is likely to trigger combined refine-
ment again. At some point, we may have to branch on either chameleon edges or
vertices – this branching is deliberately decoupled from traditional branching to
(i) reduce the number of subgroups, and (ii) allow honoring chameleon-related
constraints. Since the branching factor of chameleon edges (=2) is smaller while
branching may have a greater impact, chameleon-edge branching is preferable
apriori. Rather than branch on all remaining chameleon edges, we seek small
sets of chameleon edges such that specializing them may split some connected
components of the SRIG, at least in some branches. A good heuristic is to find
small vertex-cuts in SRIG components and branch on chameleon vertices inci-
dent to those vertices — the idea is to truncate vertex degree intervals enough
to disconnect the cuts.

Future work. Algorithmic extensions outlined in this appendix appear to
address key challenges in handling chameleon edges and suggest that imple-
mentation efforts proceed by modifying existing software. Here the main goal
would be to add new functionality without affecting the current performance of
NAUTY and/or SAUCY in cases without chameleon vertices and edges. Note,
however, that efficient data structures used for vertex-partition refinement need
to be reworked to support edge-partitions and two-step variant of this classical
algorithm.

Closing remarks. While the handling of chameleon vertices and chameleon
edges appear so different, they can be reduced to each other via transformations
with O(V 3) overhead. First note that vertex colors can be simulated with vertex
degrees if we add large numbers of fake edges connecting existing vertices to new
vertices of degree 1. Suppose M is the maximal vertex degree in the original
graph (M < V − 1), then to simulate color k we can add kM < (V − 1)2 edges
to each vertex of that color (more economical constructions are likely possible).

To simulate chameleon vertex colors by chameleon edges, the newly-added
edges can be chameleon. Another transformation allows one to simulate chameleon
edges by chameleon vertices — remove all edges, add a new vertex vij for each
pair of existing vertices vi,vj and establish pairs of edges: (vij , vi) and (vij , vj).
Now artificially increase the degree of newly added vertices to M + 1 by adding
fake edges. If the edge eij existed in the original graph, color vij pink, else color
it violet. Similarly, chameleon edges can be modeled by chameleon vertices.

The two transformations just described allow us to bound the conceptual
differences between chameleon edges and chameleon vertices, but are not neces-
sarily useful in practice.

