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ABSTRACT
Physically Unclonable Functions (PUFs) combat counterfeit
ICs by identifying each chip using inherent process variation.
PUFs must produce sufficiently many bits, but replicating
the same PUF design requires care since process variation
and its spatial correlation may change in the next 10 years.
Additional challenges arise in system-on-chip and heteroge-
neous 3D integration of diverse PUFs. Responding to these
challenges, we introduce methods for combining PUFs, with
provisions for sampling process variation throughout the IC.
When multiple sources of entropy are available, our opti-
mization algorithms select sources to maximize joint entropy
and minimize physical overhead. Empirical validation uses
SPICE simulations for a 45nm technology node.

1. INTRODUCTION
As entire industries grow more dependent on electronics,
there is an increasing need for authentication of semicon-
ductor devices and electronic systems. Counterfeit ICs are
particularly challenging, as they are often cheaper than orig-
inal ICs but less reliable; they can fail, slowly degrade, or
undermine systems and networks. Counterfeit ICs damage
IC suppliers’ reputation and displace IC sales [6, 7].

To guard against counterfeit ICs and facilitate authentica-
tion, it is important to distinguish different chips produced
from the same mask [17]. A straightforward approach to au-
thentication is to store a secret key in non-volatile memory
such as EEPROM. Cryptographic primitives such as digi-
tal signatures can then use the secret key to authenticate
the IC [3]. Unfortunately, embedded non-volatile memory
is not only expensive, but can also be probed, allowing the
adversary to read secret keys and potentially clone authen-
ticated chips [2, 1, 20]. As an alternative, researchers de-
veloped Physically Unclonable Function (PUF) designs that
generate secret keys by sampling on-chip process variation
— their introspective circuits produce different outputs on
every chip and are sensitive to tampering [9, 10, 11, 13, 21].
The secret key is based on these small differences and is not
stored explicitly — it is only available during PUF read-out.
Nondestructive probing of a powered-up IC is much harder
than probing a non-volatile memory on a powered-down IC.
A reliable secret key facilitates a variety of cryptographic
primitives. Incorporating a challenge-response protocol into
the PUF design further complicates attacks [9, 15].

PUF readouts for a given chip must be reproducible over

time and under different environmental conditions [4, 14].
On the other hand, they must provide sufficient differences
across multiple chips and cover a broad range of possibil-
ities, so as to defeat guessing. In this paper, we employ
the concept of entropy to measure and compare the unpre-
dictability of PUF readouts. We calculate the entropy of
different PUF designs using statistical models of IC compo-
nents and demonstrate algorithmic optimizations that max-
imize entropy. We believe that such techniques deserve a
much wider use in PUF studies than previously reported.

Most PUF designs are local to a small section of an IC and
compare multiple copies of one PUF circuit sensitive to pro-
cess variation (Section 2). To produce more bits, one can
use more copies, but this brings diminishing returns when
the resulting bits are correlated in at least some process cor-
ners under at least some environmental conditions. Another
looming problem is smaller uncorrelated process variation
available to PUFs in circuits with FinFETs (where doping
is reduced), depleted Si, and after the upcoming transition
to 13.5nm-wavelength EUV-based manufacturing with di-
rected self-assembly. To address these challenges, we advo-
cate PUF designs that combine diverse sources of entropy
placed throughout the IC. These sources may be sensitive
to different types of variation and may be supplied by pre-
designed hard IP blocks. The idea to sample process vari-
ation that is sensitive to clock skew at selected spatially-
distributed clock sinks has recently appeared in ClockPUF
[22]. We generalize this idea to include other sources and
reduce the added overhead.

Our contributions toward PUF theory and heterogeneous
PUF integration are as follows:

• A physical architecture to link entropy sources through
a single path and algorithms to optimize source selec-
tion to reduce implementation overhead (Figure 3).

• Combining different PUF circuits to produce a cohe-
sive challenge-response system, e.g., from IP blocks.

• PUF considerations for 3D IC integration to take full
advantage of relevant technologies.

The remainder of the paper is organized as follows. Section
2 provides an overview of known PUF designs and motivates
our work on PUF integration. Section 3 shows the advan-
tages of hybrid PUFs. Sections 4 describes process variation
found on an IC and the methods used to calculate their en-
tropy. The SuperPUF architecture and necessary support
in terms of algorithmic EDA are covered in Sections 5-7.
Section 8 reports empirical validation.



2. BACKGROUND
Threat models in IP privacy and overbuilding are reviewed
in [17, Section 3]. PUF designs developed to counter such
threats often use challenge-response pairs (CRPs) to authen-
ticate an IC [9, 15]. The number of possible challenges
should be large in order to increase the number of CRPs
and to make the PUF difficult to mimic. The response bit
is dependent on the challenge bits and the variation in the
PUF circuitry. This variation is composed of non-dynamic
process variation and dynamic variation which changes every
time the PUF is used. For a PUF to be robust, the effects
of dynamic variation should be minimized so that the CRPs
do not change. Most PUFs cannot completely eliminate dy-
namic variation and require error-correcting codes [14].

2.1 State of the art in PUF design
Novel PUF designs are reported frequently.
Arbiter PUFs are composed of pairs of identical small de-
lay paths, MUXes, and an arbiter. This type of PUF is dis-
cussed in [16] for use in FPGAs. The small delay paths are
connected by MUXes to form two longer delay paths. The
MUXes control how one small path pair connects to the next
small path pair so that MUXes can vary the composition of
the large paths. The small paths are usually composed of
inverters and wires. A signal is sent through both long paths
and an arbiter is used to detect which path propagates the
signal through first. The challenge bits are used to control
the MUXes and the arbiter produces the response bit. The
main advantage of arbiter PUFs is that they have a large
number of possible challenges (2N for N MUXes). However,
the generated responses are highly correlated which makes
the responses more predictable.

Ring Oscillator (RO) PUFs generate CRPs by compar-
ing the frequencies of identical ring oscillators. In [21], the
frequency of a RO is measured by counting the number of
oscillations that occur during a given number of clock cy-
cles. The challenge bits are used to select which two ROs
to compare, and the response bit is measured by comparing
the oscillation counts of the ROs. The oscillation counts de-
pend on the temperature, but the comparison between them
does not. RO PUFs are good to use when there is little pro-
cess variation because the multiple oscillations compound
the small differences in the circuits into large differences in
the output.

Clock PUFs use clock skews to generate CRPs. Introduced
in [22], Clock PUFs select clock sinks and connect them to
a central circuit where the skews are compared. The paths
that carry the clock signals are designed to have the same
delay so that ideally every signal arrives at the same time.
Challenge bits use MUXes to select two sinks and an arbiter
compares their delays to generate a response bit. Clock
PUFs are connected to many parts of the IC which makes
them difficult to separate and very sensitive to tampering

SRAM PUFs, unlike previously covered PUF designs, forego
CRPs for a secret key by using the bistability of SRAM
cells. On chip power-up, process variation biases an SRAM
cell to start at either a 1 or a 0. A single cell can be used
to generate one bit of a secret key, and a large secret key
can be drawn from multiple cells. SRAM PUFs are simpler
than most other PUF designs because they do not require
precisely-timed circuits and SRAM arrays are widespread.

2.2 Statistical Models of Process Variation
We distinguish manufacturing variations from slight physical
differences between cloned PUF components, such as small
differences in route lengths that affect measured timing dis-
crepancy. Unlike process variations, these differences are not
unique to each chip and should not be relied upon to produce
unique PUF responses. A third type is dynamic variation,
including thermal fluctuations, EM noise and IR drop, as
well as circuit-aging effects that occur over time, at different
scales. To ensure stability, PUF responses should be as in-
sensitive as possible to dynamic variation. On-chip temper-
ature variation is problematic due to its impact on electrical
parameters and its coupling to ambient temperature, which
can be controlled when trying to sabotage PUFs. To lessen
the impact of dynamic variation, most PUFs generate re-
sponses by comparing near-identical circuits, cancelling out
the bulk of dynamic variation.

Statistical models of PUFs are built from component mod-
els, such as wires, transistors or small circuits (e.g., ring
oscillators for RO PUFs). Component models must capture
variance (σ2) and correlation between the components (ρ).
Most PUF designs ultimately use timing differences between
sampling circuits to generate CRPs, calling for timing mod-
els of sampling circuits. Given that timing differences can
be small, such models require SPICE accuracy.

Statistical models of sampling circuits should distinguish
granular, spatial, and dynamic variation. Thanks to the
Central Limit Theorem, normal distributions represent sums
of random variables fairly accurately regardless of how in-
dividual variables are distributed — in practice, sampling
circuits are affected by many sources of process variation.
We represent the variance of granular variation by σ2

g and
assume no correlation with other components: ρg=0. Spa-
tial variation has variance σ2

s and exhibits correlation ρs(r)
at locations separated by distance r. These values can be
derived using methods in [19], including the spherical equa-
tion to calculate ρg. In the definition below, φ represents
the distance at which spatial correlation vanishes.

ρs(r) =

{
1− 3r/(2φ) + r3/(2φ3) if r ≤ φ
0 otherwise

(2.1)

Empirical characterization of sampling circuits may be un-
available or prohibitively expensive. Instead, statistical mod-
els of the sampling circuits are developed based on gate
models supplied with the standard cell library. Equation
2.2 calculates σg of a sampling N -component circuit with
individual variances σgi. To estimate spatial variance σs in
the case of nearby components, we assume full correlation,
which results in arithmetic sum.

σ2
g =

N∑
i=1

σ2
gi σs =

N∑
i=1

σsi (2.2)

By the Cauchy-Schwarz inequality, spatial variation results
in a larger parameter variance in the final circuit than gran-
ular variation. While appropriate for simpler PUFs, Equa-
tions 2.2 would be insufficient for spatially distributed PUFs
with complicated correlation structures, such as ClockPUFs.



3. THE NEED FOR SuperPUFs
Requirements for PUF readouts share some similarities with
those for cryptographic random number generators [8] - they
must contain sufficient entropy to defeat even partial pre-
diction between multiple devices (e.g., by machine-learning
attacks). On the same device, both cryptographic random
numbers and PUF readouts must be insensitive to environ-
mental conditions, such as ambient temperature. But PUF
readouts from the same device must be repeatable. Our
work seeks to increase the entropy available to PUFs, while
ensuring stability of PUF readouts on individual devices.
Whereas previous work usually treats entropy qualitatively,
we propose quantitative metrics and optimizations.

Entropy as an Explicit Design Concern for PUFs
IC components experience process variation which can be
separated into two types: spatially-correlated and granular.
Spatial correlation decays with distance and vanishes at a
sufficiently large scale. This classification is applicable to
existing PUF constructs, which are typically confined to a
small area of an IC and may experience spatial correlation if
duplicated. When a PUF is designed to survive various envi-
ronmental conditions and process corners, worst-case spatial
correlations must be considered. The upcoming transition
to manufacturing based on 13.5 nm EUV and directed self-
assembly, as well as depleted silicon and FinFETs, promise
to diminish process variation and limit the number of unique
bits generated from cloned PUFs. To address these technol-
ogy trends, we use Shannon’s diffusion principle advocated
in [18] and propose a distributed PUF design which spreads
its circuitry across the IC to survive spatial correlation and
draw additional entropy from interconnect delays. Depend-
ing on the variances of granular and spatial variation, het-
erogeneity can greatly increase total available entropy. Such
PUFs are more difficult to sabotage, as they depend less on
any one type of variation. IC designers need not bet on one
PUF type, instead a SuperPUF selects an optimized portfo-
lio of constituent PUFs best suited to a given manufacturing
process and IC application.

Toward Greater Robustness
As a design principle, it is often assumed that every PUF,
no matter how carefully designed, is susceptible to dynamic
variation. Whereas PUFs convert continuous values (tran-
sition time, voltage, transistor strength, etc.) into bits by
comparing those values to thresholds, minute dynamic varia-
tions of near-threshold values routinely produce undesirable
fluctuations in generated bits. Since a small amount of fluc-
tuation cannot be avoided, it is common to stabilize PUF
output using error-correcting codes. The overhead of error-
correction grows quickly with the amount of correctable er-
rors, which depends on the impact and likelihood of dynamic
variations. Two identically designed circuits must produce
sufficiently different outputs sufficiently often to prevent dy-
namic variation from causing fluctuations in the response
bit. To increase the number of possible responses, RO PUF
and ClockPUF designs use numerous information sources
with limited value ranges and compare them to each other.

PUFs for Heterogeneous IC Integration
Modern ICs are almost never designed from scratch, but
rather combine previously-designed blocks, often from differ-
ent vendors. 3D integration can stack several dice produced
in drastically different manufacturing technologies. These

new assemblies entered the consumer market in 2013, offer-
ing new levels of complexity and making them prime targets
for counterfeiting. Developing PUFs for 3D IC authentica-
tion is important but challenging because such hybrid PUFs
must accommodate diverse PUFs from individual dice. 3D
ICs offer additional sources of entropy for PUFs, including
process variation in through-silicon vias (TSVs) and die-to-
die variation. The principles for designing SuperPUFs pro-
posed in this work help analyze the impact of these addi-
tional sources. Our SuperPUFs can also mix the entropy
generated by 2D and 3D sources to meet requirements and
constraints of a specific IC design.

4. ENTROPY AND ROBUSTNESS OF PUFS
Accurate measurements of entropy based on the CRPs of a
PUF are difficult to obtain for a PUF with a large number
of unique responses. As shown in [8], an RNG based on a
low-entropy source may pass standard tests for randomness
but be open to exploitation. Poorly-designed PUFs may also
exhibit much smaller entropy than intended. Tests based on
future advances in machine-learning may help recognize low
entropy and exploit it. Hence, we advocate statistical mod-
eling based on process variation to estimate PUF entropy
and compare the effectiveness of PUF designs.

Differential entropy h estimates the amount of informa-
tion extractable from an N -dim random vector, which we as-
sume (for convenience) to be normally distributed with the
covariance matrix Σ̄. In the PUF context, the vector repre-
sents contributions from individual entropy sources. Below,
∆ is the accuracy (resolution) of time measurement.

h = 0.5
[
N log2(2πe) + log2 det(Σ̄/∆2)

]
(4.1)

We propose using this information-theoretic metric for com-
paring PUFs based on identical or different designs.

Discrete entropy quantifies individual entropy sources and
offers upper bounds on differential entropy. It can help quan-
tify losses during integration and the extraction of discrete
PUF readouts. To extract discrete entropy from a continu-
ous distribution, one can perform quantization into ∆-sized
sections, assign a single probability to each section, and ap-
ply Shannon’s formula H =

∑
pi log2 pi. Discrete entropy

can be a more reliable metric of the final (sampled) dis-
tribution in an integrated PUF. However, when σ � ∆,
univariate differential entropy provides accurate estimates
of discrete entropy. Depending on the accuracy of the mea-
surement/sampling circuits and the amount of variance in
entropy sources, this shortcut may or may not apply.

Robustness of PUFs discussed in Section 3 improves with
coarser measurements, but this decreases extractable en-
tropy. With process variation below measurement accuracy,
no entropy is available. But when dynamic variation ex-
ceeds measurement accuracy, PUF readouts become unsta-
ble. Hence, it is more effective to use low-correlated high-
entropy sources. Robustness can be estimated as the ex-
pected fraction of stable responses, calculated in terms of
∆ and the amount of process variation in generating each
response. Thus, one can capture tradeoffs with extracted
entropy — greater entropy (say, with lower ∆) tends to re-
duce robustness. The discrete entropy of RO PUFs and
some other designs, meets a ceiling with sufficient process
variation, while PUF robustness tends to 1.0 in general.
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Figure 1: The rise and fall of SuperPUF: linking entropy sources (from ClockPUF) with

a single path using XOR gates. SPICE waveforms are shown for 6 (top), 12 (middle) and 24

(bottom) XOR gates. To integrate hundreds of entropy sources, SuperPUF readout can be

performed with a slower clock rate. Additionally, by scheduling enable signals connected to

AND gates, it is possible to configure multicycle operation and integrate a large number of

entropy sources, accounting for the delay along the path.

5. THE SuperPUF ARCHITECTURE
We now introduce our SuperPUF architecture using the rea-
soning from Sections 3 and 4 . Our illustrations draw on the
ClockPUF infrastructure [22], which can be viewed as ex-
tracting entropy from spatially distributed sources. Section
6 describes algorithmic EDA support for SuperPUF, and
Section 7 generalizes SuperPUFs further.

5.1 Combining On-chip Entropy Sources
We assume that on-chip entropy sources are represented by
time-varying signals that depend on process variation, for
example clock sinks in the ClockPUF [22]. Section 4 intro-
duced ways to measure information content of such individ-
ual sources, as well as their joint information content. Mul-
tiple sources can be combined by designing an interconnect
network. While the return network in ClockPUF provides a
good example, we propose a different architecture for Super-
PUF that is more flexible and efficient. Individual entropy
sources are connected by a path, rather than a tree, and
their time-varying signals are combined with the signal car-
ried by the path using XOR gates, as illustrated in Figure
1. The choice of XOR gates is important — XOR gates do
not possess logic don’t-cares and propagate input changes
to the output more faithfully than AND/OR gates. On the
other hand, we use AND gates to handle (optional) enable
signals that can be used to reduce power-consumption when
PUF readout is not performed.

Figure 1 shows waveforms of signals collected on the com-
mon path in several configurations (SPICE simulations at
the 45nm technology node). The impact of process varia-

tion is represented by the timing of rise and fall transitions
in this waveform, and can be measured to produce PUF bits.
A clear seperation between signal transitions is crucial for
many reasons: (i) poor separation can complicate measure-
ment, (ii) lack of separation may result in loss of information
as positive and negative transitions will start cancelling out,
(iii) lack of sharp waveforms may lead to chaotic behavior
in measurement circuits and would thus require more reli-
able circuits with larger overhead, (iv) well-separated tran-
sitions make the information content of the Entropy Collec-
tion Path (ECP) independent on the ordering, which we use
in algorithmic optimizations in Section 6.

Figure 2 describes measurement circuits used to collect PUF
bits from paths introduced in Figure 1. Each path is forked,
and delay buffers are inserted, alternated with RS latches
that check which of their two inputs transitions earlier. De-
lay buffers are tuned to balance mean delays, remove design
bias, and maximally expose the impact of process variations.
Each latch measures one bit tied to a particular signal edge.
The approach outlined so far has an apparent limitation —
pulses that are too narrow will be filtered out by XOR gates
with subsequent loss of information. Hence, we must lower-
bound the time separation between adjacent rise and fall
transitions, limiting the number of transitions that can oc-
cur within the clock cycle. This limitation is circumvented
by disabling the inputs of XOR gates after one clock cycle,
but allowing for multicycle operation of measurement cir-
cuits. One can also use a slower clock for SuperPUF readout
to support more signal transitions per cycle.
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Figure 3: (a) entropy-source selection and routing in the original ClockPUF architecture [22], (b) SuperPUF routing
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diamond used in the ClockPUF architecture.

5.2 Reducing Wiring Overhead
Recall that ClockPUF [22] selects a subset of sinks of an on-
chip clock tree, gently taps out arriving clock signals from
sinks, and returns those signals to a central location for pair-
wise comparisons of transition times that are sensitive to
process variation. Here entropy is drawn from clock skews,
which are exceptionally robust to process variation and envi-
ronmental conditions. The sinks are selected to be approx-
imately equidistant from the central location (at distance
∼ R),1 and each sink is connected to a dedicated return
path. With shortest paths, total wirelength is L ≈ nR.

To reduce the wiring overhead of ClockPUF [22], SuperPUF
replaces the tree-like return structure with a single path that
collects entropy from selected sinks and feeds a measurement
circuit that extracts PUF bits. When drawing entropy from
clock sinks (to facilitate a comparison to ClockPUFs), Su-
perPUF links each selected sink to the path with an XOR

gate to absorb skew information (Figure 1).

Approximately equidistant sinks in ClockPUF lie in a dis-
tinct thin diamond-shaped band (a Manhattan annulus) with
extraction circuits in the center. As illustrated in Figure 3,
the perimeter of the diamond is 8R, regardless of n, and
approximates a shortest path connecting all sinks. Given
that n � 8 in practice, such a path is much shorter than
the ClockPUF return network. The equidistance condition
is now unnecessary, which allows us to use a greater number

1R is the smallest radius that facilitates the required number
of equidistant locations [22].

of clock sinks, not limited to the diamond band. However,
finding such a path requires at least as much computational
effort as solving the planar Travelling Salesman Problem
(TSP). On the other hand, the freedom of sink selection
helps reduce wiring overhead by using closely located sinks.
It also allows us to account for correlations between sinks.

The proposed physical architecture for path-based Super-
PUF leads to the following optimization problems

• selecting entropy sources, and

• connecting them by an entropy-collection path (ECP)
to increase joint entropy with low overhead.

We develop two algorithmic techniques: (i) a combination
of Travelling Salesman Problem (TSP) heuristics with Re-
verse Cuthill-McKee (RCM) matrix ordering from numerical
analysis, and (ii) a multiobjective greedy approach.

6. DESIGN AUTOMATION FOR SuperPUFs
To support the implementation of SuperPUFs and decrease
their overhead, we developed several algorithmic optimiza-
tions, outlined in Figure 4 for the simple case when all poten-
tial entropy sources have a priori locations. In the context
of ClockPUF infrastructure, Steps 1-3 are performed as fol-
lows: potential entropy sources are clock sinks, the entropy
matrix is constructed based on accurate circuit simulations
that account for process variation, and the distance matrix
stores Manhattan distances between sink coordinates. The
remainder of this sections deals with Steps 5 a-c from Figure
4, whereas complications arising from heterogenous sources
and 3D IC integration are discussed in Section 7.



Figure 4: The process of creating an ECP. For Step
1: in ClockPUF, the eligible entropy sources are all
clock sinks; in SuperPUF eligibile entropy sources
span all PUFs which could potentially be placed on
the IC. Steps 4-6 can be re-tried to improve results.

6.1 Optimizing the Entropy Collection Path
For the selection of entropy sources, we noted that the amount
of entropy collected by the path is largely independent of the
sink order. Then minimizing the wiring overhead reduces to
the problem of finding a least-cost path through selected ver-
tices, which is related to the Travelling Salesman Problem
(TSP) through the use of a ghost vertex (Figure 3b).
Observation 1. View n points in the Manhattan plane
as vertices of a clique G with Manhattan distances as edge
weights. Form a larger clique G′ by adding a ghost vertex
g connected to all other vertices in G through 0-cost edges.
Then each least-cost path of G corresponds (one-to-one) to
a least-cost tour in G′ with the two edges adjacent to g re-
moved.
Observation 2. Without a ghost vertex, removing a longest
edge in a least-cost cycle can produce a suboptimal path.

We implemented the Lin-Kernighan (LK) TSP heuristic [12]
with random initial solutions and adapted it to produce low-
cost paths by removing the ghost vertex and its adjacent
edges from a low-cost cycle. LK-TSP runs in O(n2.2) time,
is fast in practice, and finds solutions within 1-2% of opti-
mal (better with several independent starts). Optimal TSP
solvers, e.g., Concorde, can also be used and scale to fairly
large TSP instances, but take much longer than heuristics.

6.2 Ordering and Selecting Entropy Sources
The use of TSP heuristics and the ghost-vertex method al-
lows one to link up a selection of sinks in a way that min-
imizes path length. However, it does not address the sink-
selection problem. Our technique for sink selection draws in-
spiration from the reverse Cuthill-McKee algorithm from nu-
merical analysis which speeds up sparse-matrix linear alge-
bra [5]. Given a symmetric n×n matrix (considered sparse),
Cuthill-McKee produces an ordering which renumbers the n
rows to reduce matrix bandwidth, i.e., it views the matrix

as a graph and seeks to cluster closely connected vertices.
Reverse Cuthill-McKee traverses that ordering from the end
to beginning. In our application, ordering closely correlated
vertices next to each other allows us to select every K-th ver-
tex to improve diversity. In other words, at most one vertex
should be selected from each cluster of correlated vertices.

Algorithmically, Cuthill-McKee is a variant of Breadth First
Search (BFS). It operates on a binary n × n matrix which
may be interpreted as an adjacency matrix of a graph. In the
context of SuperPUF, given n entropy sources, we consider
an n × n matrix of conditional entropies between pairs of
sinks. Uncorrelated pairs are more desirable. Such pairs are
represented by higher numerical entries. This n× n matrix
may be interpreted as an adjacency matrix of a weighted
graph. While the matrix is not sparse, the intuition behind
the RCM method still applies. Algorithmically, we replace
the BFS traversal by a Dijkstra traversal which can account
for edge weights (the logn increase in algorithmic complexity
is negligible in our application). To select m sinks from a
resulting ordering, we select every n

m
th sink.

6.3 Greedy Optimization with Lookahead
While LK-TSP reliably produces near-optimal solutions, it
only addresses half the problem as it does not account for
entropy. Combining LK-TSP with the RCM-based heuristic
accounts for both distances and entropy, but such a two-step
optimization leaves room for improvement. Hence, we de-
velop a simultaneous optimization. Starting at the sink clos-
est to PUF readout, we iteratively select the next entropy
source to minimize wiring overhead, subject to meeting pre-
set thresholds for conditional entropy and distance.2 Avoid-
ing highly-correlated sources improves robustness of readout
and helps collect sufficient entropy with smaller overhead.
Avoiding sinks that are too close helps ensure a“clean”wave-
form (Figure 1). This algorithm may stop in a deadend when
greedy selection exhausts eligible vertices.We then backtrack
and employ a lookahead for the number of eligible vertices
after each possible path continuation, as seen in next-sink
selection pseudocode below.

Function: choose_next_sink

Input: Sink set S[1...n], matrix C[1...n][1...n] of entropy
values, eligibility bitvector E[1...n], path P [1...i], int cutoff,
int sinksNeeded
Output: path P [1...i+1]
1. if(P .size() == sinksNeeded) return true
2. if(numEligible(E) == 0) return false
3. candidates[1...5] = find_candidates(S,E,cutoff,P .back())
4. for (i = 1 to 5) {
5. P .add(candidates[i])
6. E’ = update_eligibility(S,C,cutoff,candidates[i])
7. if (choose_next_sink(S,C,E’,P ,sinksNeeded))
8. return true
9. P .pop(candidates[i])
10. } return false

Since the results produced by this fast algorithm depend on
the starting location (PUF readout), one can run it from
several starting locations and choose the best result.

2Conditional entropy is defined using conditional probabili-
ties in the Shannon formula. In our context, conditioning is
performed based on previously selected entropy sources.



7. MORE GENERAL SuperPUFs
The SuperPUF methodology and algorithms can be used
with multiple spatially-distributed entropy sources, includ-
ing RO PUFs, but this introduces complications. First,
PUFs that require different readout regimes (ClockPUF, RO
PUF, etc) must be multiplexed on a single ECP with ap-
propriate enable signals, or connected by disjoint ECPs.
Second, the introduction of entropy sources with flexible
locations (such as RO PUFs) requires revisions in Steps 1-3
of Figure 4. A simple solution is to consider a large num-
ber of possible RO PUF locations and estimate their cor-
relations as functions of distance. Only a small subset will
be chosen by our algorithms. A more directed optimiza-
tion that places entropy sources along an ECP is also pos-
sible. Third, estimating conditional-entropies3 between
heterogenous sources, such as small inverters and isolated
PUFs, may require more complicated simulations. Once
these issues are resolved for a particular SuperPUF config-
uration, algorithms in Section 5 select entropy sources and
route connections between them.

In the context of 3D IC integration, through-silicon vias
(TSVs) act as additional entropy sources that can be linked
by a path. TSVs must also be accounted for as interconnects
in both the entropy matrix (Figure 4 Step 2) and the dis-
tance matrix used by the path selection heuristics (Figure 4
Step 3). Pairwise distances between entropy sources on ad-
jacent 2D dice are calculated by first finding the TSV that
ensures the shortest total distance (the sum of the Manhat-
tan distances on individual 2D dice) and then adding the
cost of the TSV to that of the planar interconnects. As ex-
plained earlier, it is possible to consider a large number of
possible TSV locations and use our algorithms to include
only some of them in the ECP. TSVs are particularly useful
when they link uncorrelated entropy sources on adjacent 2D
dice, reducing interconnect overhead of PUF integration.

8. EMPIRICAL VALIDATION
We implemented the proposed algorithms in C++ and com-
piled them with g++4.7 on a Linux system. CMOS param-
eters represent a 45nm technology. Accurate circuit simula-
tion was performed by 500x Monte Carlo runs of ngSPICE-
25 to model process variation. The performance of Super-
PUF on standard tests (robustness, uniqueness, random-
ness, etc) is inherited from the underlying PUF components.
Here we we only demonstrate salient features of SuperPUFs.

Path construction
To compare the technique outlined in Sections 6.1 and 6.2 to
greedy optimization from Section 6.3, we benchmarked them
using clock networks from the ISPD 2010 Clock-network
Synthesis Contest organized by Intel and IBM. For each
benchmark, we generate a path using each technique.4 The
RCM-LK paths always connect to 64 sinks. The greedy
approach targets 64 sinks but often stops short due to eligi-
bility constraints. Results in Table 1 indicate that despite
reasonable derivable total discrete entropy, RCM-LK paths
tend to be rather long. We evaluate the efficiency of a path

3We experimented with differential and discrete calculations
for pairwise conditional entropy, and Pierson correlation.
With no clear winner, we chose discrete conditional entropy.
4Our LK-TSP implementation has been extensively bench-
marked against a much slower optimal solver and shown to
produce solutions within 1-2% from optimal solutions.

Table 1: Path overhead of the greedy approach vs RCM-

LK. Discrete entropy is expressed in bits. Wire length

is expressed in millimeters.

Greedy RCM-LK
Bench Sinks Discrete Wire Discrete Wire
marks entropy length entropy length

01 1107 101.25 41.09 75.23 53.86
02 2249 97.72 38.17 89.35 70.58
03 1200 43.41 7.13 36.96 11.11
04 1845 62.30 13.98 42.89 14.57
05 1016 39.74 7.01 36.01 13.51
06 981 37.99 6.08 30.96 9.01
07 1915 63.12 11.56 45.93 12.94
08 1134 43.86 9.21 33.89 10.57

by calculating its discrete entropy/mm. This metric favors
the greedy approach, which usually selects adjacent sinks
that are close to each other. RCM can be biased toward
closer sinks by dividing each entry in the entropy matrix by
the distance between respective two sinks, but this does not
significantly improve entropy/mm.

In summary, near-optimal TSP solvers do not help obtain
best results, as RCM is relatively weak in sink selection. Our
multiobjective greedy approach with lookahead finds better
paths. Other path-selection strategies, including simulated
annealing, were inferior in our experiments.

Dependencies on spatial correlation
Using Equation 2.1, Figure 5 illustrates how changes in spa-
tial correlation and the distance between sources affect the
entropy and robustness of an RO-based SuperPUF. Note
that both the number of extractable bits and % stable bits
plateau as distance approaches φ, the point at which spatial
correlation vanishes.

9. CONCLUSIONS AND PERSPECTIVES
Our work draws motivation from several trends and chal-
lenges. One is the decrease of process variation with up-
coming major changes in IC manufacturing, which may un-
dermine existing PUF constructs. Some of these concerns,
along with the need to disperse the sources of randomness
on the chip, have been reviewed in [18]. Another major de-
velopment is the integration of multiple PUFs from reusable
IP blocks and new entropy sources, increasingly likely with
3D ICs. Viewing these challengees as opportunities, we de-
velop a technique for integrating distributed on-chip entropy
sources, termed SuperPUF, that dramatically reduces wiring
overhead compared to recently published related techniques.
Our empirical validation shows how SuperPUFs adapt to
different process-variation profiles.

In the context of our empirical validation, we would like to
particularly emphasize the differences between simulation-
based validation and that based on test chips. Unlike most
prior work, our empirical methodology includes entropy cal-
culations. However, evaluating PUF entropy from test chips
requires an unacceptably large number of defect-free ICs.
Equally important is our ability to experiment with a range
of process-variation profiles — this ability is not available
with manufacturing-based validation. Since test-chip vali-
dation often uses full-chip synthesis, we note that proposed
circuitry is fairly independent from the main netlist, and
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Figure 5: The impact of spatial variation on an RO-

based SuperPUF. [Left:] we vary the distance between

constituent RO PUFs and observe changes in ex-

tractable differential entropy [upper-left] and robust-

ness (% stable bits) [lower-left], for three different ra-

tios of variances of spatial vs granular variation (σ2
s/σ2

g).

[Right:] we plot multiplicative gains in entropy [upper-

right] and robustness [lower-right] against varying spatial

versus granular variation ratios. The three lines repre-

sent three tested levels of dynamic performence varia-

tion: low, medium and high.

PUF readout can be performed in dedicated mode. Hence,
full-chip synthesis should not affect relevant parameters.

We have not explored in this paper the construction of strong
PUFs, but this can be done in several ways, for example
through the use of the AES counter mode. A more econom-
ical approach is to use programmable delay buffers. Here,
the challenge is to ensure that the amount of entropy in PUF
response for each challenge is approximately the same.

Our research has outlined extensions of SuperPUFs which
can accomodate multiple types of on-chip entropy sources.
Such heterogenous SuperPUFs are particularly pertinent dur-
ing system-level design when many available IP blocks must
be gainfully combined. These considerations are amplified
in the context of 3D IC integration which can combine 2D
dice optimized for random logic, FPGAs, SRAM, analog, etc
— each die provides a unique, uncorrelated entropy source,
which we connect by an ECP. We hope that this work boosts
the development of high-quality, licensed and trusted com-
mercial PUF IP, especially given pending technological de-
velopments that promise to lower granular process variation
— 13.5nm-wavelength EUV-based manufacturing with di-
rected self-assembly, as well as depleted Si FinFETs.
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