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ABSTRACT
The increasing IC manufacturing cost encourages a business
model where design houses outsource IC fabrication to re-
mote foundries. Despite cost savings, this model exposes
design houses to IC piracy as remote foundries can manu-
facture in excess to sell on the black market. Recent efforts
in digital hardware security aim to thwart piracy by using
XOR-based chip locking, cryptography, and active metering.
To counter direct attacks and lower the exposure of unlocked
circuits to the foundry, we introduce a multiplexor-based
locking strategy that preserves test response allowing IC
testing by an untrusted party before activation. We demon-
strate a simple yet effective attack against a locked circuit
that does not preserve test response, and validate the effec-
tiveness of our locking strategy on IWLS 2005 benchmarks.

1. INTRODUCTION
The challenges of counterfeit electronics have been publi-
cized by US Congressional hearings in November 2011 after
large quantities of substandard devices were found in mili-
tary electronics. They were featured on CNN and covered
in depth by a US Department of Commerce study [5]. To
this end, we seek to counteract unauthorized manufacturing
(overbuilding) and support active-metering techniques. As
explained in [8], the heavy costs of semiconductor manufac-
turing force IC supply chains to stretch across the Pacific.
By outsourcing fabrication, the owner of IP rights invites
unauthorized production of black-market ICs that undercut
legitimate ICs. Whether such acts of IC piracy are condoned
by the management of fabrication facility, or committed at a
different facility, does not diminish the damage caused and
does not help address the problem. Another threat model is
to intentionally produce degraded or altered ICs looking like
normal ICs, so as to facilitate sabotage. Despite significant
interest from US DoD and Legislature, these challenges have
been ignored by the EDA industry until recently. Yet, in the
late 2013, major EDA companies started exploring business
opportunities in the fight against IC piracy.

Threat models in IC piracy and countermeasures are re-
viewed in [18]. A key countermeasure developed in [1, 2, 7,

8, 19] is active IC metering, which forces every new IC pro-
duced to be activated through real-time electronic contact
with owners of IP rights. Otherwise, the IC will not work.
Active-metering schemes [1] have recently attracted signifi-
cant interest: in addition to suggesting improvements, [13]
noted a step-ordering ambiguity in the DATE 2008 version
of EPIC [19], which was clarified in the journal version [19].
Exploits for the DATE 2008 version of [19] were also claimed
by [16], offering ways to strengthen the proposed protocols.

We focus on a key feature of EPIC [19] — the need to ac-
tivate the chip before circuit test, most likely at the fab-
rication facility. This unnecessarily exposes the activation
protocol and the unlocked ICs, facilitating various attacks,
as shown in [13,19]. To reinforce this point, we develop a new
algorithmic attack that uses test-patterns and observed re-
sponses. The algorithm performs a randomized local search
with restarts, guided by the number of matching bits in the
output response, that typically produces a correct key value.
The (surprising) empirical success of this key-extraction at-
tack hints at an underlying mathematical structure in the
behavior of large combinational circuits.

To thwart the new attack and to rule out attacks suggested
in [13,16], we develop a methodology for combinational lock-
ing that supports post-manufacturing test of locked circuits
before activation. Unlike prior methods that insert XOR gates
(Figure 1), our new combinational locking inserts multiplex-
ors. The insertion is based on functional simulation and tries
to match logic covers of internal signals. The importance
of performing IC testing before IC activation as a security
measure was recently articulated in [3]. Their strategy re-
quires significant infrastructure for remote testing and on-
chip logic to scramble test response, including cryptography
and binary tags. In comparison, our proposal is lightweight.

The remaining part of this paper is structured as follows.
Section 2 outlines relevant background on active IC me-
tering, highlighting its key aspects considered in our re-
search, then reviews recent literature and interaction with
circuit test. It also articulates technical opportunities pur-
sued in this paper. Section 3 introduces an algorithmic test-
based attack on EPIC and partially motivates the develop-
ment in Section 4 of combinational locking to enable post-
manufacture test of locked circuits. Empirical validation on
IWLS 2005 benchmarks is reported in Section 5, which also
discusses embedding of proposed techniques in realistic de-
sign flows. Conclusions are given in Section 6. Readers con-
fused by inconsistent terminology in recent literature may
benefit from the Appendix.



2. BACKGROUND: ACTIVE METERING
Given recent interest in active metering [1], we illustrate it
by combinational locking in the EPIC protocol [19], and re-
view its cost-vulnerability tradeoffs (a formal description of
EPIC can be found in [13], along with analysis and improve-
ments). We also briefly discuss attacks from [16].

EPIC. Building on prior work [1], [19] proposes a chip-
locking and activation system for IC metering, while aiming
to make “physical tampering unprofitable and attacks com-
putationally infeasible.” In other words, defending against
an omnipotent attacker with unbounded resources is not the
goal — simpler attacks should be given priority.1 For exam-
ple, reverse-engineering (a part of) circuit layout is harder
than running a live circuit on given inputs. Observing inter-
nal dynamic voltage levels in a live circuit is more difficult
than observing static gates or wires. Modifying a circuit typ-
ically requires understanding some part of it. Since EPIC
draws on unique process variations to ensure different re-
sponses in ICs produced from the same mask, an attack
that requires work for each individual IC will require con-
siderable resources. Due to low margins in the IC business,
a per-chip cost increase can make mass-production unprof-
itable. Moreover, physical inspection and modification of
ICs are becoming increasingly challenging at each new tech-
nology node due to smaller features.

To establish a combinational lock, EPIC [19] modifies a com-
binational circuit by adding XOR/XNOR gates with fanins con-
nected to the bits of common key (CK) that unlocks the
circuit, as shown in Figure 1. Correct key bits simplify the
XOR/XNOR gates to wires, while incorrect key bits produce un-
intended inversions. Locked IC will fail post-manufacturing
test, hence unlocking must occur at the fabrication facility
before test. Care is taken to avoid circuit delay overhead
on critical paths [19]. Simple removal of XOR/XNOR gates is
ineffective if inversions are propagated through the circuit
and/or logic restructuring is performed after locking. The
work in [2] is similar in principle to EPIC but uses LUT-
based locks that hinder attempts to reverse-engineer func-
tionality from the layout.

Several attack vectors. Both EPIC [19] and the analy-
sis in [13] contemplate sophisticated attackers that obtained
CK with some effort (guessing CK is shown difficult in [19]).
They note that EPIC does not provision for direct entry of
CK to unlock the circuit. Instead, the encrypted version
of CK arriving from the owner of IP rights is protected by
the RSA cryptosystem, which offers strong guarantees both
in theory and in practice, though implementation-specific
vulnerabilities exist [15]. The work in [16] assumes that
the circuit has been reverse-engineered and develops attacks
that simplify the search for CK, using unfortunate configu-
rations of locking gates that may be created when inserting
gates at random. Some of these configurations can be opti-
mized during logic synthesis, and others are easy to avoid,
e.g., as suggested in [16]. More critically, the authors of [16]
consider an attack successful when CK is found and then
focus on hiding CK better. In this context, recall that (i)
reverse-engineering a large 22nm IC is going to be extremely
difficult without access to the gate-level netlist, (ii) even if
CK is found, entering it directly through mask modifica-

1There is hardly an effective defence against an attacker who
can reverse-engineer, replicate, and alter any IC design.
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Figure 1: Locking a combinational circuit with
XOR/XNOR gates. Initially, the key bit is repre-
sented with either an XOR or an XNOR gate, but
then hidden by propagating inversions upstream or
downstream in the circuit, using Boolean equiva-
lences and subsequent logic optimization.

tion demands advanced expertise and access to adequate
infrastructure, increasing attacker’s costs and barriers. In
comparison, attacks discussed in [13] can be perpetrated by
intercepting communications during activation session.

In Section 3, we describe a surprisingly effective CK-finding
attack that uses either (i) a reverse-engineered or stolen
gate-level circuit for simulation, or (ii) a live circuit with
controllable inputs and accessible outputs. It does not make
assumptions about how gates are inserted and is therefore
completely unaffected by logic optimization or restructuring.
The conclusion one should draw from this attack, as well as
from those in [13, 16], is that chip activation should not be
performed at the fabrication facility. On the other hand, as
EPIC combines multiple layers of protection, viewing it as
either secure or defeated would be misleading.

Observations and opportunities. Returning to the al-
gorithmic description of EPIC, we note its interaction with
circuit test. Activation is performed at the fabrication facil-
ity before circuit test because locked ICs will fail test. This
exposes additional information to the manufacturer and en-
ables additional attack vectors.

• The unlocked functionality is known after IC activa-
tion and during test, which may simplify and acceler-
ate search for CK, including its encrypted form that
can be entered directly,

• Including CK bits in post-manufacturing scan-test of
locked circuits can significantly undermine EPIC if this
facilitates entering CK bits directly [4, 17]

To improve IC security, testing and fabrication can be per-
formed at separate locations by different commercial and
legal entities. Such an arrangement can be described as
split test. It has been explored in [3], at the cost of signifi-
cant overhead. We pursue split test in a context that avoids
significant changes in infrastructure by relying on more so-
phisticated ATPG algorithms. For further security, tamper-
resistant packaging can deny access to activated chips avail-
able on the open market. On the other hand, ICs intended
for sensitive military equipment (commonly mentioned as



motivators for IC security research) should not be available
on the open market.

Split test requires support in ATPG algorithms. To this
end, we develop techniques to find patterns for testing both
locked and unlocked ICs, so as to move activation from the
fabrication facility without hampering yield optimization.
Given the multiple concerns addressed by modern circuit
test and its logistical complexity, it is important to maintain
significant freedom for test-patterns.

3. AN EPIC ATTACK
We now introduce an algorithmic attack on EPIC that de-
rives CK by simulating a set of test patterns. It can be
executed on a stolen or reverse-engineered gate-level netlist,
or on a physical circuit with direct access to CK inputs and
circuit outputs (e.g., through scan-chains or maliciously in-
serted side-channels). Without the gate-level circuit, the
attack additionally needs (i) test patterns and expected out-
put responses, or (ii) an unlocked circuit that can produce
correct responses on random inputs.2 On the other hand,
since EPIC does not offer direct control of CK bits on an ac-
tual IC (Section 2), using the results of the proposed attack
would require malicious, although small, mask modification.

Input: Locked Circuit: ckt, Patterns: patterns
Response: resp
Output: CK: kbits {0,1}
found = false;
while found do

kbits ← list random{0,1};
foreach kbit in kbits.random() do

resp1 = test(ckt(kbits), patterns);
diffs1 = diff(resp1,resp);
// flip one random bit
kbit = !kbit;
resp2 = test(ckt(kbits), patterns);
diffs = diff(resp2, resp);

if diffs1 < diffs then
// original value of random bit
kbit = !kbit;
diffs = diffs1;

end
if !diffs then

if correct(ckt) then
found = true;

end
break

end

end

end
Algorithm 1: Extracting CK bit values from a locked cir-
cuit given test input and output vectors using a hill-climbing
algorithm that monitors output response.

Our attack, introduced in Algorithm 1, is iterative in nature:
a random key candidate is gradually improved based on ob-
served test responses. It uses hill-climbing search guided by
the number of differences in the output response (for a key
combination). At each iteration, randomly-selected key bits

2Security pitfalls of scan-chains are well-known [17] and are
being addressed through compression and encryption [4].

are toggled one by one. The function test() applies all test
patterns to the current key combination. A key bit value of
0 or 1 is chosen to minimize these differences. As described
so far, the algorithm resets all key bits if no solution is found
in one iteration. In practice, this foreach loop can be run
multiple times until a local minimum is reached, followed by
a restart with a new random configuration. The function
correct() is an oracle that checks whether the current key
combination, which satisfies the test response, is equal to
CK. In practice, the oracle could be implemented through
more exhaustive validation with an unlocked circuit or other
expected response. If correct() is called several times, we
can save lock-down key bits (not shown in algorithm) that
do not vary between each solution.

Unlike the work in [16], our proposed approach does not re-
quire isolated sensitization of key bits or even netlist access
(assuming that the scan chain is exposed). The insight is
that the output response often betrays a gradient toward
the target configuration (this need not occur every time,
but sufficiently often). A key combination with fewer errors
indicates an improvement in key combination. To develop
intuition, consider a circuit where each XOR lock impacts
a circuit output not impacted by other XOR locks. For a
random combination of key bits, the output will differ from
the expected test response by M bits. Toggling one key bit
produces a different M value, and of the two resulting key
bit combinations, the one with fewer differences is closer to
a correct combination. Repeating such steps from a random
initial combination often leads to a combination that un-
locks the circuit. If not, the process can be restarted from a
different random initial combination. The same logic applies
with random placement of XOR locks, as in [19], as well as
alternative techniques.

The complexity of this algorithm, in terms of the number
of iterations required, does not directly depend on the size
of the circuit. A higher density of locks in the circuit could
add complex correlations [16] and jeopardize our strategy.
However, more sophisticated strategies may explicitly seek
key bits that impact the output in a correlated way, involve
randomization, and maintain a pool of candidate configura-
tions not to get trapped in local minima. More advanced
attacks would examine the circuit’s response to constrained
stimuli. Among countermeasures against gradient-based at-
tacks, we mention mapping CK key bits to pseudorandom
locking combinations.

4. TEST-AWARE LOCKING
In this section, we introduce a strategy for locking a cir-
cuit that preserves test responses and is therefore immune
to our proposed attack, as its response betrays no gradi-
ent. We advocate a lightweight locking approach (where
the CK is encrypted) that allows a manufacturer to test the
chip without a fully functional circuit. While our locking
strategy does not rule out attacks that consider any circuit
output response in the spirit of Algorithm 1, it significantly
complicates such efforts as test response is identical for all
key combinations. An attack would require comparing out-
puts with an unlocked chip (or netlist) and potentially a
prohibitive simulation to expose deep circuit state.

We first introduce an approach using logic signatures to find



logic covers that preserve test response. Then we introduce
an algorithm for inserting combinational locks in a circuit.

4.1 Test-Proof Locking using Logic Signatures
In [19], a lock at node F consists of creating an alternative
signal F ′ created by adding an XOR (or XNOR) between F
and a key bit. An incorrect key bit value gives F ′ ≡ ¬F ;
the correct one gives F ′ ≡ F . ¬F will not preserve the test
response unless F is redundant. Alternatively, we try to
find (or synthesize) an F ′ that preserves the test response
as explained in the next few paragraphs.

A logic signature is a partial truth table that captures the
function of a given circuit node [10]. For a circuit and its
K input vectors X1...XK , the logic signature of a functional
node F in the circuit is:

SF = {F (X1), ..., F (XK)} (1)

Evaluating all input combinations turns SF into a complete
truth table. In practice, a set of random input vectors ap-
plied to a circuit can provide a useful mechanism for analyz-
ing restructuring opportunities, such as identifying potential
node equivalences [11, 14]. Since SF = SG does not imply
that F = G, such equivalences must be verified in general
(more on this below). The time complexity of producing K-
bit signatures for an N -node circuit is O(NK). Signatures
are generated quickly, as K is typically small. We generate
signatures using both random input vectors and test input
vectors. Figure 2a illustrates a circuit stimulated with dif-
ferent test vectors. For instance, SX4 = {0, 1, 1}. Given
these signatures, we seek an alternative implementation of
a signal (in this example x3) that preserves test response.
We can look first for a node in the circuit that has an equiv-
alent signature to Sx3 . Since no such signature exists, we
must synthesize a function. We use the signatures to iden-
tify nodes that cover x3 (similar to the strategy in [9]). A
logic cover Y of x3 is defined as:

Sx3 ⊆ SY ⇒ Sx3 & SY ≡ Sx3 (2)

(we say that Y covers x3 up to given test vectors). In Figure
2a, signature Sx4 covers signature Sx3 since x4 = 1 every
time x3 = 1 for the input patterns that define the signatures.

Unlike previous work, we do not need to formally validate
that a candidate logic cover or node equivalence exists for all
possible input combinations. On the contrary, we must show
that input combinations that are not test vectors violate the
equivalences. Figure 2b shows that we can use random sim-
ulation to generate another set of signatures that disproves
the logic covers previously found. In this example, Sx4 does
not cover Sx3 . Therefore, x4 does not cover x3. Any function
that replaces x3 with x3&x4 will preserve test response but
will alter the circuit’s behavior in general. Figure 2c shows
that a MUX gate can be added where the select is the locking
key bit that chooses between the correct x4 and x3&x4.

4.2 An Algorithm for Adding Key Locks
We outline our approach to circuit locking in Algorithm 2,
which assumes the circuit to be locked and test patterns as
inputs. It first generates two sets of signatures, one gener-
ated from random simulation and one from test-pattern sim-
ulation. The algorithm randomly traverses the netlist trying

to find a logic cover for the selected signal. iscover() is true
if a cover is found but disproved by random simulation. If
there is a cover, the function cover() synthesizes it from S1

and S2 (or returns S2 if it is equivalent to S1). To ensure
that the differences between SN and S1 propagate to the
output, we check its observability under random simulation.
insertmux replaces S1 with the output of a MUX between S1

and SN . The algorithm terminates once numlock locks are
added.

Input: Circuit: ckt, Patterns: patterns,
Number of locks: numlock
Output: Locked Circuit: ckt

randsigs = simulate(ckt);
testsigs = simulate(ckt, patterns);
foreach S1 in random({ckt.signals}) do

foreach S2 in ckt.signals do
if iscover(S1, S2) then

SN = cover(S1, S2);
if ckt.observable(SN) then

newkey = random({0,1});
if newkey then

ckt.insertmux(S1, S1, SN);
else

ckt.insertmux(S1, SN , S1);
end
numlock–;
break;

end

end

end
if !numlock then

break;
end

end
Algorithm 2: Inserts MUX locks in a circuit where key bits
choose between the correct signal and a logic cover.

In this approach, cover() generates SN as a function of S1.
In general, any signal or combination of signals equal to S1

under test simulation could be used. However, using S1 is
advantageous since it may be testable even with the wrong
key bit value. Also, S1 and SN would ideally be local to
reduce violations of aggressive design constraints.

To guarantee that an incorrect key input leads to a difference
at the outputs, we check the observability of each locked sig-
nal ckt.observable . Hence, incorrect key bits result in a
malfunctioning circuit. Our experiments check the observ-
ability of a locked signal with a set of random input pat-
terns assuming that this is a subset of expected circuit pay-
load (and that corresponding output values represent valid
state). In more realistic settings, simulation patterns can
be chosen among valid input states; output differences can
be checked against valid output states. Two locked signals
could theoretically cancel each other out, but even if such
cases are not explicitly ruled out when positioning locks, this
is astronomically improbable when the number of inserted
MUXes (64 or 128) is small compared to circuit size.

A locked signal can be untestable given a wrong key bit
value. In a circuit with N potentially untestable locked sig-
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Figure 2: Signatures are used to add locks to a circuit so as to preserve circuit-test properties: (a) signatures
can identify potential covers, (b) random simulation disproves the cover, (c) the insertion of a MUX between
the logic cover and the locked signal that preserves the test vectors but are different under random simulation.

nals, we can test them by repeatedly applying test patterns
with different key combinations. If there is little interfer-
ence between locked circuit regions, the number of untested
signals for t testing iterations is roughly governed by:

Nuntested ≈
N

2t
(3)

Notably, by ensuring that added locks are observable un-
der random simulation, we miss potential locks that are
rarely stimulated, which could enhance the resistance to
simulation-based attacks. Also, we could make our approach
visually harder to decipher (for an attacker with netlist ac-
cess) by emphasizing locks that use local signals that are
equivalent up to test vectors. Extracting the unlocking key
bit value would be difficult since it is determined by the
order of the MUX inputs.

5. EMPIRICAL VALIDATION
Our experiments use circuits from the ISCAS89 and IWLS’05
[22] benchmark suites. We derive combinational circuits
from sequential ones by removing sequential elements and
exposing their inputs and outputs to the whole circuit. Test
patterns are generated using ATALANTA [12] with default
settings. IWLS benchmarks are structurally hashed using
ABC [21]. Circuit simulation, lock insertion, and key combi-
nation attack algorithms are implemented in C++, compiled
by g++4.6, and run on an Intel Core i7 workstation.

5.1 Attacks using Logic Simulation
We now demonstrate that locking strategies that impact test
response are susceptible to the attack in Algorithm 1. In
particular, circuits that use XOR-based locking schemes can
be unlocked by examining the gradient of output response.

As in [19], we randomly insert 32, 64, and 128 XOR key
gates in each circuit (this is not a limitation of the experi-
ment, but rather a representative strategy). Table 1 reports
results for our attempts to determine CK from the provided
test input and output response, as introduced in Algorithm
1. The results are averaged over 4 runs to produce detailed

results, although in practice it is sufficient for a single run
to succeed. The keys column indicates the number of dif-
ferent key combinations tried within our limits (1, 000, 000
combinations or two hours of simulation). For each key com-
bination, test vecs is the number of test patterns applied.

We successfully unlock all circuits with 32 XORs, typically
requiring only around 1000 key combinations. For circuits
with 64 locks, we correctly determine the keys for all circuits
except c880 and one run of usb_phy, as indicated by the col-
umn %Extracted. These circuits are more resistant to at-
tacks due to their small size and the relatively large number
of locking gates added. As outlined in Section 3, the number
of iterations in Algorithm 1 does not grow with the size of
the circuit, but rather depends on the interactions between
different locked signals. Also, the key combinations needed
for usb_phy vary greatly as one run produced a circuit that
was more resistant to attacks. Potentially, a more sophis-
ticated simulation-based search strategy (rather than ran-
domized hillclimbing) could better isolate interactions be-
tween different XOR key bits. When using 128 XOR locks,
the interactions between them increase and hinder ability to
discern the key combination. Despite this, we unlock spi

in three of our trials. Furthermore, gradient descent quickly
determines the majority of key bits for all circuits.

It is possible to find key combinations that satisfy the out-
put response but do not unlock the circuit. This happens
in over half of the circuits, as indicated by False Match. In
other words, multiple global minima may exist. For a given
circuit, if our gradient descent algorithm does not unlock the
circuit after 10 random restarts, we analyze the common key
bits between these key combinations (the randomness in our
algorithm results in finding different minima). By removing
the key bits common between these combinations, we effec-
tively reduce the number of key bits to be examined. Then
we re-solve the resulting smaller problem instance. As might
be expected, larger circuits tend to have more global min-
ima. Decreasing the observability of the locks increases the
number of combinations that produce equal test response.



Table 1: Extracting a 32, 64, and 128 bit key using test patterns. The number of test patterns applied to
each key combination is given by vecs. key indicates the number of keys tried. False Match indicates the
number of times a key was found that preserved test results w/o unlocking the circuit. %Extracted is the
percentage of random runs where the circuit was unlocked.

Circuit gates test 32 bit 64 bit 128 bit
vecs keys false % Ex- keys false % Ex- keys false % Ex-

match tracted match tracted match tracted

c880 383 53 65560 2 100 - 0 0 - 0 0
usb phy 1197 67 1739 2 100 37709 1 75 - 0 0
sasc 1651 67 42 0 100 1334 2 100 174517 2 25
c3540 1669 149 1274 1 100 22624 2 100 - 0 0
i2c 2902 164 1061 4 100 11722 0 100 - 1 0
pci spoci ctrl 3483 246 839 32 100 13196 98 100 - 0 0
systemcdes 9008 123 231 1 100 4767 53 100 55005 205 50
spi 10109 554 605 25 100 2290 57 100 13112 606 75
tv80 22575 878 333 4 100 1727 42 75 - 1 0
systemcaes 26717 426 91 1 100 2247 6 100 489 4 50

While our attack succeeds surprisingly often, less robust at-
tacks may also cause heavy damage, especially when they
can be repeated until success.

5.2 Circuit Locking with MUXes
In this section, we validate the effectiveness of locking a cir-
cuit with MUXes so as to preserve test response. We demon-
strate that there are several such transformations available
in a circuit, and that, in general, these locks do not under-
mine fault diagnosability or create significant area overhead.

Table 2 shows the results of randomly adding 64 logic locks
using MUXes and logic covers. For the more realistic larger
circuits, the gate area increase (shown under %Overhead)
was minimal. Unlike [3], we do not require additional logic
to lock each scan chain. All circuits contain several locking
opportunities (as indicated in %Candidate). This column
denotes the percentage of wires with at least one cover. As
a first-order strategy to preserve path timing, we skip logic
covers that increase the number of logic levels in the circuit.
As noted previously, additional flexibility in choosing logic
covers can be attained by considering covers without using
the locked signal. Finding locking candidates by simulation
is fast, as reported under time(s). The larger runtimes
in spi and tv80 are due to several potential locking sites
being unobservable at the circuit outputs under a small set
of random simulation patterns.

The addition of locking logic could limit the testability of
the circuit. We briefly explore the coverage of gate output
stuck-at faults for the MUX-locked designs (sans the locking
logic, which is small). The first two columns of Table 3 show
the fault coverage %COV and the number of untested faults
#UNTEST in an unlocked circuit. The next two columns show
results for the corresponding locked circuit with a random
key combination. The coverage is nearly identical. This is
due to (i) the number of locked sites being a small fraction
of the design and (ii) synthesizing logic covers that include
the locked logic such that it is still exposed to fault cover-
age. Notice that in some cases, like spi, the fault coverage
actually improves. The added MUX logic can produce more
sensitizing paths in the design, resulting in higher coverage.

Table 2: Locking a circuit with a 64-bit key by find-
ing logic covers that preserve testing but scramble
the output response. %Overhead is the increase in
circuit size. %Candidate is the percentage of wires
that have a candidate cover. Time(s) gives runtime.
circuit %overhead %candidate time(s)

c880 33.42 66.39 1.81
usb phy 10.69 54.01 1.03
sasc 7.75 57.48 0.19
c3540 7.61 58.47 116.94
i2c 4.41 52.99 4.74
pci spoci ctrl 3.67 73.36 12.28
systemcdes 1.42 66.97 6.94
spi 1.23 82.60 499.19
tv80 0.56 85.53 506.06
systemcaes 0.48 34.33 32.76

Table 3 illustrates how the output response of a locked cir-
cuit compares to that of an unlocked circuit when a fault
occurs. To aid circuit diagnosis, it is desirable for the locked
circuit’s output response to match the unlocked circuit. While
our locking algorithm does not explicitly consider the impact
of locking on diagnosability, we observe that most locked
circuits achieve equivalent output response for about 90%
of the faults with a random key combination. Note that
c880, the smallest circuit, only matches 60% of the faults.
To improve diagnosability, the same test patterns can be ap-
plied with different key combinations, producing matching
output response for at least one of the combinations. Five
testing runs of c880 result in almost 90% of faults matching.
The high percentage of matches with our locking strategy is
due to (i) a relatively small amount of added locking logic
and (ii) the locking strategy aiming to not change behavior
under test in a functioning circuit.

5.3 Use in Industrial Design-and-Test Flows
Industrial IC design flows are remarkable in their handling
of multiple optimization objectives and constraints. When
incorporating a new technique, there is danger of disturbing
carefully optimized tradeoffs and the overall stability of the
design process. In the context of circuit test, it is important



Table 3: Fault coverage of a circuit with test-aware locking (using gate output stuck-ats). The first two
columns show coverage (%cov) and untested faults (#untest) in unlocked circuits. The next two columns
show coverage in locked circuits for random key assignments. The final five columns show how the output
response of a locked circuit compares to an unlocked circuit in the presence of single faults in a circuit. A
high percentage indicates that a high number of faults produce the same output in both locked and unlocked
circuits. Checking the output response for different random key combinations increases the percentage of
faults that have output response that matches an unlocked circuit.

Unlocked circuits Locked circuits % identical output response
(function of # random combinations)

circuit %cov #untest %cov #untest 1 2 3 4 5

c880 100.0 0 99.5798 3 60.36 70.87 77.03 87.11 87.25
usb phy 95.31 103 95.2641 104 86.38 92.30 92.71 95.99 96.58
sasc 98.65 41 98.458 47 91.63 96.10 97.54 98.16 98.46
c3540 96.93 101 96.8427 104 85.64 88.34 89.62 91.74 91.99
i2c 96.92 171 96.8457 175 94.65 96.61 97.17 97.67 97.69
pci spoci ctrl 87.84 832 87.9784 823 90.58 93.66 95.47 96.44 96.67
systemcdes 95.00 881 94.9819 885 84.68 91.32 94.81 95.51 95.84
spi 91.12 1753 91.1973 1738 92.54 93.37 94.04 94.68 95.49
tv80 90.78 4098 90.7896 4092 95.90 96.56 97.47 97.51 97.99
systemcaes 91.92 4207 91.9165 4211 94.99 96.67 98.85 99.09 99.22

to provision for yield optimization by process learning, which
may alter or reduce the set of test patterns.

A commercially-viable combinational logic-locking strategy
must incur minimal area overhead and negligible impact on
the timing paths. The techniques we advocate offer sev-
eral practical advantages. First, the number of locking sites
is a small fraction of a large design — enough to scramble
the output response while difficult to disable through mask
modifications. Second, the large number of candidate cov-
ers shown in Table 2 reveal sufficient flexibility in common
netlists to avoid critical timing paths, which we used in our
experiments (to preserve critical paths). In fact, heavily-
optimized, deep logic designs with inserted control signals
may enjoy many more candidate covers as the resulting logic
signatures will be similar for most test patterns. The MUX
insertion strategy is scalable as it only relies on the gen-
eration and comparison of logic signatures from initial test
vectors (these signatures are not only easy to compute but
may be available from DFT tools). Very large designs are
typically partitioned to improve testability. Once test vec-
tors are identified for a given partition, identifying MUX
candidates depends only on simulating these patterns and
comparing logic signatures. Our proposed techniques are
also compatible with yield optimization because a sizable
variety of test patterns are supported, allowing to add and
remove individual patterns as process is optimized for yield.
Thanks to numerous candidate locking sites, choosing locks
that satisfy a very large number of test vectors up front will
allow testing different subsets of vectors without undermin-
ing the locking scheme.

6. CONCLUSIONS
Counterfeiting poses serious yet hard-to-quantify risks to
the semiconductor industry, whereas successful protection
efforts may not lead to easily observable events. Thus, the
industry and the research community face significant chal-
lenges but also enjoy a range of opportunities. To promote
consistent implementation of countermeasures, recent stan-
dardization efforts, such as the IEEE 1149.1TM-2013 stan-

dard [6], focus on chip authentication and detection of ille-
gally produced chips. But existing standards do not elimi-
nate the exposure of IP to foundries, which can be viewed as
a more fundamental challenge than detecting pirated chips.

Effective protection from IC piracy requires integrating sev-
eral layers of security such as active metering and chip lock-
ing, as advocated in [13, 16, 18, 19]. While the use of RSA-
based preprocessing in EPIC makes circuit-based key at-
tacks less effective, the original EPIC protocol leaves room
for improvement. In this paper, we identify a weakness
in combinational circuit locking to attacks based on sim-
ulation and/or post-manufacturing test. To eliminate such
weaknesses, we propose to restructure EPIC using novel,
lightweight IC locking strategy invariant to test response.
Compared to traditional combinational XOR-locking, we de-
velop a MUX-locking scheme. Our detailed experiments on
IWLS 2005 circuits demonstrate opportunities for such logic
locks and confirm the scalability of this procedure to large IC
designs. After proposed restructuring of EPIC, chip testing
can be performed at the fab before the circuit is unlocked at
a trusted facility by the owner of IP rights.3 This more ad-
vanced form of EPIC rules out several classes of attacks and
makes contract IC manufacturing more secure. Consider-
ing possible attacks against our revised variant of EPIC, we
note that a successful attack would also likely work against
the previosly known versions of EPIC [13,19], for which at-
tacks have been studied in depth and countermeasures are
known [13,16,19].
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Appendix: Locking, obfuscation, encryption
and scrambling
Recent literature [13, 16, 19] shows a surprising discord of
terminology. While [19] and its conference version studied
in [13, 16] describe proposed circuit modifications as com-
binational locking, the authors of [16] discuss obfuscation,
and [8] uses both (following terminology introduced earlier
in the FSM context). The analysis in [13] accurately follows
original terminology. Yet, the work in [20] scrambles busses,
and recently these methods have been summarized as circuit
encryption, since [19] includes RSA cryptography.

Accounting for idiomatic usage in the English language, it
is surprising to hear that “piracy is best fought with ob-
fuscation,” given that locking and encryption are stronger
words that carry concrete meanings and connotations. Rep-
resentative concepts include house locks, scrambled cable TV
signals, the obfuscated C contest, and Javascript obfuscators.
To find adequate terminology for [8,13,16,19,20] recall that

locking preserves the structure, but renders the system tem-
porarily unusable, until it is unlocked

obfuscation preserves the function but renders the struc-
ture unintelligible, usually with no hope to restore it,
hampering reverse engineering and modification

encryption is usually applied to data, rather than exe-
cutable programs or live circuits, to render data unus-
able. Like locking, encryption is reversible by definition,
but it preserves neither function nor structure.

scrambling is close to encryption, but easier to undo.

Echoing the calls in [18], we hope that trustworthy terminol-
ogy consistent with colloquial and technical usage of English
words can be established in the field.


