
Sensitivity-Guided Metaheuristics
for Accurate Discrete Gate Sizing

Jin Hu†, Andrew B. Kahng‡+
, SeokHyeong Kang‡, Myung-Chul Kim† and Igor L. Markov†

†University of Michigan, 2260 Hayward St., Ann Arbor, MI 48109, {jinhu, mckima, imarkov}@eecs.umich.edu
UC San Diego, ‡ECE and +CSE Depts., La Jolla, CA 92093, {abk, shk046}@ucsd.edu

ABSTRACT
The well-studied gate-sizing optimization is a major contributor
to IC power-performance tradeoffs. Viable optimizers must accu-
rately model circuit timing, satisfy a variety of constraints, scale
to large circuits, and effectively utilize a large (but finite) number
of possible gate configurations, including Vt and Lg. Within the
research-oriented infrastructure used in the ISPD 2012 Gate Sizing
Contest, we develop a metaheuristic approach to gate sizing that in-
tegrates timing and power optimization, and handles several types
of constraints. Our solutions are evaluated using a rigorous pro-
tocol that computes circuit delay with Synopsys PrimeTime. Our
implementation Trident outperforms the best-reported results on all
but one of the ISPD 2012 benchmarks. Compared to the 2012 con-
test winner, we further reduce leakage power by an average of 43%.

1. INTRODUCTION
The sizing problem in VLSI design seeks to determine design

parameters (e.g., gate width and threshold voltage) for each gate,
so as to optimize timing, area and power of a circuit, subject to
constraints. The problem has been extensively studied, and a num-
ber of heuristics have been proposed. However, there have been
no definitive comparisons (empirical or mathematical) of different
techniques. Moreover, many published techniques make unreal-
istic assumptions about the underlying circuits, such as the pos-
sibility of continuous gate sizing and Vt assignment and the con-
vexity of delay functions. Some publications neglect the effect of
rounding when using a discrete gate library, or do not account for
realistic capacitance and slew constraints. Scalability to circuits
with hundreds of thousands of gates is also an important issue,
whereas many previous publications use much smaller benchmarks
mapped into outdated technologies. To address these shortcom-
ings in published literature, Intel researchers have recently prepared
and released an extensive infrastructure for research on large-scale
gate sizing [23]. This includes (i) a set of benchmarks ranging
from small to large, mapped into a modern discrete gate library,
and (ii) a set of evaluation protocols that includes checking tim-
ing constraints using industry-standard software (Synopsys Prime-
Time [33]) and measuring total leakage power for a particular sizing
solution. This infrastructure has been used in the ISPD 2012 Gate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA
Copyright 2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

Sizing Contest which provided a definitive baseline for further re-
search on this topic.

Our research reported in this paper focuses on large-scale op-
timization of gate sizes under realistic circumstances. Our tech-
niques accurately track circuit timing throughout the optimization
process, ensure the satisfaction of several types of constraints, and
identify the gates with the greatest impact on power-performance
tradeoffs. Rather than approximate gate sizing by continuous con-
vex optimization, as is done in many prior publications, we fully
account for the discrete nature of the problem and the nonconvexi-
ties of circuit delay functions. Our optimizations try not to overlook
available opportunities to improve power-performance tradeoffs,
but are also fast and can quickly traverse large regions of the solu-
tion space. They are highly modular, and are organized in a hierar-
chy where high-level metaheuristics configure and drive heuristics,
which are assembled from lower-level optimization blocks. The
lower-level optimizations are in turn based on high-performance
timing and power analysis, constraint repair, search, gain calcula-
tions, sorting and prioritization, as well as roll-back. Some of these
ideas have been known before, but every hierarchical level in our
techniques contains some novel elements. Moreover, in a highly
studied and competitive field such as gate sizing, reliable individ-
ual components form only a small fraction of overall success — a
larger fraction of success is in the selection, ordering and compo-
sition of these components, as well as the overall flow. Our most
important decisions rely on new insights into large-scale gate sizing
and its interaction with design constraints. The main contributions
of our work are summarized below.
• We use a sensitivity-guided metaheuristic approach based on se-

quential importance sampling [1] that integrates power and tim-
ing optimization, and handles several types of constraints.
• We propose to use Total Negative Slack (TNS) rather than just

the worst slack within sensitivity functions, but observe that the
impact of individual gate sizing changes on TNS takes too long
to compute. Therefore, we apply a fast technique to estimate
TNS impact of gate sizing.
• We define a parameterized space of sensitivity functions for gate

sizing and traverse this space using a multistart technique that
naturally lends itself to efficient parallelization on multi-core and
shared memory CPU architectures, and distributed systems.
• Empirical results on the ISPD 2012 contest benchmarks show

that our heuristics further improve the best-found solutions in
the contest on 13 out of 14 benchmarks by 11% (Table 3). Given
that different contestants excelled on different benchmarks, our
sizer Trident outperforms any one contestant by a wide margin.
The rest of this paper is organized as follows. Section 2 covers

background and reviews prior work. Section 3 introduces our gate
sizing heuristics and their details. Section 4 provides experimental
results and analysis. Section 5 concludes the paper.

2. BACKGROUND AND PRIOR WORK
The problem of sizing standard cells in digital circuits has been

extensively studied due to its importance, and many optimization
techniques have been developed. Before discussing specific ideas,
we introduce the optimization objectives and relevant constraints.

2.1 Gate Sizing Formulation
Consider a netlist N = (C ,I ,P), where C is the set of cells, I

is the set of interconnects between cells, and P is the set of pins on
C . Also given is the input technology library L , where each cell
c ∈ C has a set of valid (manufacturable) sizes. Given N and L ,
the objective of (discrete) gate sizing is to map C to L while min-
imizing the total power consumption subject to design constraints.
We consider (i) slack constraints, (ii) capacitance constraints, and
(iii) slew constraints.

2.2 Previous Work on Gate Sizing
The vast majority of gate sizing research has focused on find-

ing continuous solutions, where parameters can take values within
certain contiguous ranges. Some techniques optimize transistor pa-
rameters (e.g., threshold voltage), and others focus on entire stan-
dard cells and deal with drive strength and input-pin capacitances.
However, as modern digital methodologies use only discrete cell
types, continuous-valued parameters must be efficiently rounded to
allowed discrete values.
Continuous methods. As the gate-sizing problem is easily formu-
lated as an optimization problem, many different implementations
have shown success, including:
• Linear programming [2, 5, 17] and network flow [25]
• Convex nonlinear optimization [6, 26, 27, 31],

including Lagrangian relaxation [4, 6, 19, 30, 31]
• Slew budgeting [14]

Due to the complexity of modern designs, the two most scalable
approaches are those based on Lagrangian relaxation and sensi-
tivity. Instead of satisfying every imposed constraint, Lagrangian
relaxation changes the original constrained problem into an uncon-
strained problem such that the solutions to the latter can be mapped
back to the former. However, Lagrangian relaxation is typically
formulated for continuous-variable functions and does not natu-
rally handle discrete gate sizes. Numerical optimization techniques
used with Lagrangian relaxation sometimes also assume convexity,
which does not hold for practical circuit-delay models.

Discrete methods. In contrast to continuous methods, discrete
methods assume a fixed cell (and technology) library with a set
of discrete cell sizes. While discrete methods avoid the difficult
“rounding” problem that continuous methods face, they must di-
rectly solve an NP-hard problem [18]. Branch-and-bound [24] and
dynamic programming [15, 19, 22] based approaches can be cate-
gorized as discrete.

Another discrete method, the sensitivity-based (iterative) app-
roach, modifies individual components one at a time, such as by
changing (i) transistor width, (ii) threshold voltage (in dual-Vt de-
signs), (iii) source voltage (in dual-VDD designs), and (iv) gate and/
or wire resistances and capacitances. To further improve perfor-
mance, the authors of [7] developed a multi-directional search, and
the authors of [3] suggested using multistarts.

Recently, the authors of [22] developed a Lagrangian-relaxation
graph-based approach to efficiently assign cell types in very large
netlists. Their optimizations have significantly improved power-
performance tradeoffs in ICs designed at Intel. This work has also
spurred the ISPD 2012 (Discrete) Gate Sizing Contest [23].

2.3 The ISPD 2012 Gate Sizing Contest
To more accurately model the discrete gate-sizing problem for

modern technologies, researchers from Intel organized the ISPD
2012 Gate Sizing Contest [23]. Here, contestants are given (i) a
set of benchmarks and (ii) a (simplified) modern standard-cell li-
brary. The benchmarks are derived from the IWLS 2005 bench-
marks [16] and have between 25K and 995K cells. The contest em-
ploys standard industry formats for benchmarks, including Verilog
netlists, interconnect parasitics in IEEE SPEF format, and timing
constraints in Synopsys Design Constraints (SDC) format. The li-
brary implements 12 different logic functions, and 30 different cell
types (options) for each logic function — three different threshold
voltages (Vt) and ten different sizes for each Vt . The cell library also
has lookup tables for (a) delay and transition time (slew), and (b)
max load capacitance (in the Synopsys Liberty format) for each cell
type. An industry timing engine – Synopsys PrimeTime – is used
as the reference timer. For simplicity, the contest does not capture
false paths, placement-dependent distributed interconnect parasitic
models, or multiple clock domains. The contest compares leakage
power of violation-free solutions. Specific constraints include (i)
zero negative slack on all pins, (ii) a 300ps transition time upper
bound, and (iii) maximum load capacitance per cell type.

2.4 Stochastic Combinatorial Optimization
High-dimensional, hard combinatorial optimization problems do

not admit such mathematically elegant solutions as Lagrangian re-
laxation, and are often solved using simulated annealing or other
metaheuristics that combine local search with a global strategy [9]
(e.g., stochastic hill-climbing, tabu search, or genetic crossover).
These techniques are difficult to implement well (e.g., require heavy
parameter tuning), are generally not reproducible, and require so-
phisticated mathematics to analyze their asymptotic performance.

The go-with-the-winners (GWTW) metaheuristic [1] repeatedly
invokes greedy heuristics within randomized multistarts to (i) ex-
plore a large search space by maintaining a small set of best-seen
solutions, and (ii) find a global optimum with high probability, as
proven in [1]. Local minima are avoided when better intermediate
solutions are found (e.g., in parallel search threads) and yield mul-
tiple derived solutions. GWTW is asymptotically more efficient
than a single round of independent randomized restarts, and is on
par with simulated annealing but significantly easier to analyze [1].

The maintenance of the best-seen solutions in GWTW is like the
“survival of the fittest” invariant in genetic algorithms [9]. How-
ever, GWTW does not employ genetic crossover, does not exclude
repeat solutions, and allows the number of kept solutions to vary.
GWTW can be viewed from the statistics perspective as sequential
importance sampling and traces its roots to statistical physics [10].

3. OUR METAHEURISTICS
Our proposed heuristic has two stages – Global Timing Recov-

ery (GT R) and Power Reduction with Feasible Timing (PRFT).
GT R first seeks violation-free (feasible) solutions, and then PRFT
iteratively reduces total leakage power of sizing solutions by local
search, as illustrated in Figure 1. At each stage of our optimiza-
tion flow, we parameterize the space of sensitivity functions, and
traverse this space to find the best configurations of sensitivity by
independent multistarts (Figure 2). After each multistart, we com-
pare all obtained solutions and retain the best/non-dominated so-
lutions. This is accomplished by adapting the go-with-the-winners
(GWTW) metaheuristic (Section 2.4). However, our optimization
is purely deterministic in that our multistart procedure begins with
the small set of the best-seen solutions, whereas GWTW is typi-
cally randomized. Solutions after each stage are ensured to be fea-
sible, which enables pruning of dominated solutions by GWTW.

no

best
solution

n best

solutions

Input Design
[Netlist, Spef, Cell Library]

Assign Initial
Cell Configurations

*

“Go with
the Winners”

Power Reduction with Feasible Timing (PRFT)

Coarse-grain
Search

Fine-grain
Search I

Fine-grain
Search II

n best

[,]α γ

Global Timing Recovery (GTR)

n best

[,]α γ

Multi-threaded

Only if necessary

SGGS

Slack Legalization*

yesBest
Seen?

Speed Up
Bottleneck Cells

SF
kSF

i

SF
1

Sensitivity-guided
Greedy Sizing (SGGS)

Slack Legalization*

Sensitivity-guided
Greedy Sizing (SGGS)

Slack Legalization*

SF
best

SGGS

Slack Legalization*

yes Best
Seen?

Speed Up
Bottleneck Cells γ

1 γ
j

γ
m

Final Cell
Assignments

no

for each solution

Figure 1: During GTR (Section 3.1), our algorithm maintains
the n best-seen timing-valid solutions by performing one stage
of coarse-grain (global) search followed by two stages of fine-
grain (local) search. Then, during PRFT (Section 3.2), we re-
cover power while respecting timing constraints.

3.1 Global Timing Recovery
This stage starts with an arbitrary cell configuration that is in-

crementally refined by increasing/decreasing gate sizes or down-
scaling/upscaling threshold voltages. The interaction of these steps
in our implementation has been optimized for the case where the
initial solution generally underestimates optimal power dissipation
of individual gates and likely violates timing constraints. There-
fore, we start with timing recovery by upsizing gates or downscal-
ing threshold voltages. We observe that best-seen solutions for sev-
eral ISPD 2012 benchmarks configure most cells at or close to their
minimum-leakage configurations (Table 3), making minimum-leak-
age configurations for all cells an appropriate initial setting. For
benchmarks with tighter timing constraints, alternative initial set-
tings may save runtime. However, our optimization techniques

Stage II

Stage I

[,]

Search Space

Fine-grain Search

Step Size

∆αFGS ∆ FGSγ

Search Space

Coarse-grain Search

Step Size

(0,]init
γ

[,]∆αCGS ∆ CGSγ

(,)
initγα init

Thresγ

(0,]initα
Thresα

[- /2, + /2]αThresiαiα αThres

[- /2, + /2]
i
γ Thresγ

i
γ Thresγ

Best solutions
(,)γ

i
α

i

Best solutions
(,)γ

i
α

i

Best
solutions

(,)γ
i

α
i

Figure 2: Search-range changes during the GTR search pro-
cedure (Algorithm 1). During coarse-grain search, the algo-
rithm sweeps parameters α and γ. Then, fine-grain search lo-
cal search focuses on ranges around the best-seen (α,γ) from
coarse-grain search. Compared to each previous search stage,
the ranges (as well as the step sizes) of both α and γ are reduced.
After all search stages, GTR produces a set of the best-found
solutions based on leakage power.

Algorithm 1 Global Timing Recovery (GT R).

Procedure TimingRecovery(N)
Inputs : power_exponent 0≤ α≤ 3.0, commit_ratio 0 < γ≤ 60%
Output : sizing solution S

1. Set the current solution S with a minimum-leakage setting;
2. FixCapacitanceViolations(); (Section 3.3)
3. Run STA to initialize slack and delay values for the netlist N;
4. while (!S. f easible()&&S.leakage < best_seen_leakage) do
5. Update NPathsi for all cell instances ci in the netlist N;
6. M← /0; counter← 0;
7. for all cell instances, ci in the netlist N do
8. if cell ci is upsizable then
9. mk.target← ci; mk.change← upsize;

10. mk.sensitivity← ∆T NS/∆leakage_powerα(ci,upsize);
11. M←M∪{mk};
12. end if
13. if cell ci is not a LV T cell then
14. mk.target← ci; mk.change←Vt -downscaling;
15. mk.sensitivity← ∆T NS/∆leakage_powerα(ci,downscale);
16. M←M∪{mk};
17. end if
18. end for
19. while (counter < γ∗M.size()) do
20. Pick a modification mk with maximum sensitivity in M;
21. Commit mk.change;
22. M←M \ {mk};
23. counter ++;
24. FixCapacitanceViolations();
25. end while
26. Run STA to evaluate the current sizing solution S;
27. end while
28. if S. f easible() then
29. Update best_seen_leakage;
30. end if

are sufficiently fast and robust to start with minimum-leakage con-
figurations. Empirically, finding a timing-feasible solution in the
“coarse-search” stage of our optimization accounts only for a single-
percent fraction of the total required runtime (Section 4.1).

Starting with an underpowered configuration, we seek to gener-
ate feasible solutions by monotonically (i) increasing cell sizes or
(ii) lowering cell threshold voltages (Vt). Both cell upsizing and
Vt downscaling are performed in smallest possible steps; the order-
ing of these actions is determined by their sensitivities, which are
calculated by impacts on TNS and leakage power.

sensitivityGT R =
∆T NS

∆leakage_powerpower_exponent (1)

When estimating the impact of a single cell modification, invok-
ing STA can be computationally prohibitive. Therefore, we ap-
proximate the impact on TNS of a single cell modification (mk

i) on
cell ci using NPathsi, the number of negative-slack paths that pass
through ci. We define the nearest-neighbor set of ci to be the set of
cells that have a driver (fanin) in common with ci, and Ni to be the
union of ci’s nearest-neighbor set and ci itself.

∆T NS(mk
i)≈ Σc j∈Ni−∆delayk

j ·
√

NPaths j (2)
Here, ∆delayk

j is an estimated delay change on c j due to mk
i . This

approximation is based on the fact that any perturbation to cell ci
will change the delay of ci, but also can impact the slacks of other
cells that share path(s) with ci, e.g., changing the Vt of ci can change
required arrival times (RATs) for its upstream cells, and change
actual arrival times (AATs) for its downstream cells. To account for
this, we introduce the factor

√
NPaths j, which reflects the number

of fanin and fanout cells of c j that are affected by the delay change
of c j . If this effect is not accounted for, particularly for cells that
are on critical paths, the impact on TNS will be underestimated. To

more accurately estimate the impact on TNS when we resize1 ci,
we must consider all cells in Ni, as changing the size will affect the
capacitive load on the common driver, which affects their arrival
(and transition) times. Following the empirical observation in [22],
we assume that the propagation of increased transition time can be
safely bounded to only the nearest neighbors.

We sort the changes by non-increasing sensitivity values and
commit them in order (Algorithm 1). Given that each single-cell
modification is evaluated assuming other cells are fixed, the inac-
curacies of sensitivity accumulate as multiple cells are changed.
Therefore, we only commit the first γ% of the modifications be-
tween two consecutive STA invocations. The variables power_
exponent 0 ≤ α ≤ 3.0 and commit_ratio 0 < γ ≤ 60% determine
specific multistart configurations. To effectively reduce the size of
the search space, we perform multilevel search (Figure 2). Fine-
grain search is performed on non-dominated configurations from
coarser search, but with finer steps and over smaller ranges.

3.2 Power Reduction with Feasible Timing
From the Global Timing Recovery (GT R) stage, we obtain a fea-

sible sizing solution with no timing, slew or max-capacitance vio-
lations. However, the solution can improve further since some cells
are oversized during the timing recovery stage. We reduce leak-
age power while maintaining timing feasibility by alternating (i)
sensitivity-guided greedy sizing (SGGS), (ii) slack legalization, and
(iii) speeding up bottleneck cells.
Sensitivity-guided greedy sizing (SGGS). SGGS downsizes cells
according to sensitivity while avoiding timing violations. Algo-
rithm 2 presents pseudocode of our SGGS procedure. In this al-
gorithm, ISTA(ci) is an incremental STA operation after cell ci is
changed. In ISTA(ci), we start timing and slack updates at the fanin
nodes of the changed cell. From the fanin nodes, transition times
and AATs are propagated in the forward direction, and RATs are
propagated in the backward direction.

The SGGS algorithm starts with STA and initializes all timing
nodes. Sensitivities are computed for all downsizable cells in Lines
3–14. We consider both gate downsizing and Vt upscaling for the
sensitivity calculation. We define five sensitivities (Table 1).

Acronyms Sensitivity functions
SF1 −∆leakage_power/∆delay
SF2 −∆leakage_power× slack
SF3 −∆leakage_power/(∆delay×#paths)
SF4 −∆leakage_power× slack/#paths
SF5 −∆leakage_power× slack/(∆delay×#paths)

Table 1: Sensitivity functions for SGGS. SF4 and SF5 appear
most successful (Table 4), and our metaheuristic produces bet-
ter results when using multiple functions. The slack and ∆delay
values are expected to be positive.

∆leakage_power and ∆delay represent leakage power and cell
delay changes after the downsizing of cell ci. The variable slack
represents the slack at the output pin, and #paths is the number of
timing paths that pass through the cell ci. The slack value is pos-
itive since the downsizing is applied to cells with positive slack.
#paths is calculated similarly to NPaths in Section 3.1, but includ-
ing positive-slack paths. SF1 and SF2 have been used in [8] [12]
and [11], respectively. We have added #paths into SF3 and SF4 to
favor cells with smaller impact on the slacks of other cells. SF5 is
a hybrid of SF1 and SF2; similar logic is used in [29], but with-
out considering #paths. In Lines 15–22, we select a cell ci with

1Vt -scaling does not affect the delays of neighboring cells.

Algorithm 2 Sensitivity-Guided Greedy Sizing (SGGS).

Procedure SGGS(N,S)
Input : sensitivity function SF , a feasible sizing solution S
Output : sizing solution S with reduced power

1. Run STA to initialize delay values for the given solution S;
2. M← /0

3. for all cell instances, ci in the netlist N do
4. if cell ci is downsizable then
5. mk.target← ci; mk.change← downsize;
6. mk.sensitivity←ComputeSensitivity(ci,downsize);
7. M←M∪{mk};
8. end if
9. if cell ci is not a HV T cell then

10. mk.target← ci; mk.change←Vt -upscaling;
11. mk.sensitivity←ComputeSensitivity(ci,upscale);
12. M←M∪{mk};
13. end if
14. end for
15. while M 6= /0 do
16. Pick a modification mk with maximum sensitivity in M;
17. S′← SaveState(S);
18. Commit mk.change;
19. M←M \ {mk};
20. ISTA(mk.target);
21. if !S. f easible() then
22. S← RestoreState(S′);
23. else
24. if cell mk.target is downsizable / not a HV T cell then
25. Recalculate mk.sensitivity;
26. M←M∪{mk};
27. end if
28. end if
29. end while

maximum sensitivity, and downsize ci or upscale its Vt . We per-
form incremental timing analysis and check for violations. If the
sizing step creates a timing, slew or max-capacitance violation, it
is undone. The loop continues until M becomes empty.
Slack legalization. ISTA achieves a significant speedup over full-
netlist STA through propagation of timing related to updated in-
stances. We achieve further speedup by blocking the propagation
when changes to timing are below a propagation_threshold.2 Due
to this limited accuracy, SGGS can overlook a small number of
timing violations. Instead of using GT R, we use a slack legaliza-
tion procedure to rectify small timing violations at a small leakage
power cost.

In slack legalization, we first collect cells which are in critical
(negative-slack) paths. These cells are sorted in decreasing order
of |∆delay| (delay improvement due to upsizing and Vt downscal-
ing) and are modified in this order. Unlike GT R, slack legalization
tracks slack changes after each cell modification, and ensures no
timing degradation. Let ∆slack(c) be the slack change on output
pin of cell c, and C f i(c) be set of fanin cells of cell c. After the
modification of cell ci, slack legalization restores the change if (i)
∆slack(ci)≤ 0, or (ii) ∆slack(ci)+Σc j∈C f i(ci)∆slack(c j)≤ 0. Slack
legalization repeats the sizing until all timing violations are fixed.
Speeding up bottleneck cells. During greedy sizing, we size gates
monotonically downward with lower-size or higher-Vt library cells,
but the resulting solution can be a local optimum. We observe
that a key obstacle is that we have no timing slack available to al-
low further gate downsizing. Therefore, to recover timing slack
with the least impact to power, we speed up bottleneck cells, i.e.,
cells that participate in many timing-critical paths. We identify

2By default, propagation_threshold is set to 0.1ps. Table 2 shows
that ISTA runs faster if a higher propagation_threshold is given.

-2.0e3

-1.5e3

-1.0e3

-5.0e2

0.0e0

 0 10 20 30 40 50 60 70

4.5e-1

5.0e-1

5.5e-1

6.0e-1

6.5e-1

7.0e-1

7.5e-1
T

o
ta

l
N

e
g
a
ti
v
e
 S

la
c
k
 (

p
s
)

L
e
a
k
a
g
e
 P

o
w

e
r

(W
)

Iterations

TNS

Leakage

Figure 3: Progression of Power Reduction with Feasible Tim-
ing (PRFT) on VGA_LCD_FAST. The start of PRFT is marked
with a vertical line; each bottleneck upsizing is marked with a
circle. Slack legalization may temporarily worsen timing viola-
tions (indicated by spikes).

these cells by a bottleneck analysis similar to that provided in EDA
tools [33]. We then perturb the converged solution by assigning
larger sizes or lower Vt cells, and then repeat the downsizing proce-
dure.3 To identify bottleneck cells, we estimate total slack changes
by ∆delay ·

√
#paths due to hypothetical cell upsizing (or Vt down-

scaling). We commit the first γ% of such modifications with largest
∆total_slack, then optimize leakage power with SGGS. Timing
violations created by speeding up bottleneck cells or SGGS are re-
moved by slack legalization. To define specific multistart configu-
rations, we sweep γ from 1% to 5% with a step size of 1%. The it-
erations (speeding up bottleneck cells + SGGS + slack legalization)
terminate when the solutions stop improving. Figure 3 illustrates
the progression of PRFT . Starting with a feasible solution from
GT R, PRFT iteratively reduces leakage power while maintaining
timing feasibility.

3.3 Handling Capacitance and Slew Violations
Each standard cell can drive a certain maximum capacitance load

defined in the library (e.g., based on the contest library, the max-
imum capacitance that can be driven by the smallest four-input
NAND gate with high Vt is 3.2 f F). If a cell is overloaded, its
output transition time slows down significantly, resulting in overall
degradation of slacks in its fanout cone. In our heuristic, we remove
max-capacitance and slew violations at every iteration of GT R (Al-
gorithm 1) by alternating backward- and forward-traversal repair
as necessary. During backward traversal, we visit cells in a re-
verse topological order and continue to upsize driving cells until
capacitance violations for the driving cells are removed or the driv-
ing cells reach their maximum sizes (whichever comes first). This
procedure resolves most of capacitance violations in the early itera-
tions of GT R when cell sizes are relatively small. However, at later
stages, cells on certain paths can be saturated at their maximum
sizes,4 and we must downsize some of their fanout cells. There-
fore, during forward traversal, we visit cells in a forward topolog-
ical order and continue to downsize fanout cells until capacitance
violations for the current cells are removed or all fanout cells shrink
to their minimum sizes (whichever comes first). Empirically, this
requires one to two iterations of backward and forward traversals.
As this happens, all output transitions become faster than the max-
imum slew allowed at the ISPD 2012 contest (300ps).
3This recalls the Large-Step Markov Chain approach [21].
4For instance, if one inverter is driving numerous large cells, even
a maximum-sized inverter cannot remove capacitance violations.

BENCHMARKS
FSTA ISTA (msec)
(sec) 0ps 0.1ps 0.5ps 1.0ps

DMA 0.233 1.495 0.845 0.620 0.508
PCI_BRIDGE32 0.271 0.982 0.717 0.388 0.348
DES_PERF 1.108 0.700 0.508 0.471 0.422
VGA_LCD 1.729 22.75 8.108 7.822 2.069
B19 2.435 5.460 2.717 2.115 1.833
LEON3MP 6.746 43.21 2.152 1.542 0.939
NETCARD 9.751 9.612 2.299 1.940 1.675
Geomean 924.58× 2.86× 1.00× 0.77× 0.54×

Table 2: Runtime comparisons of full-scale STA (sec) and in-
cremental STA (msec) after changing the size of one cell (av-
eraged over 100,000 randomly selected independent experi-
ments). ISTA is tested by varying propagation_threshold.

4. EMPIRICAL VALIDATION
Our implementation Trident is written in C++, compiled with

g++ 4.6.2 and validated on a 3.2GHz Intel Xeon E31230 Linux
workstation with 8GB of memory, using four CPU cores. We com-
pare it to the results of the ISPD 2012 Gate Sizing Contest on the
ISPD 2012 benchmark suite [23]. Timing violations are verified
by PrimeTime, and leakage-power values are read from the official
contest evaluation script [23]. In all experiments, we use the default
setting described in Section 3.

4.1 Analysis of Our Implementation
Trident is a stand-alone tool that includes a built-in static timer

and relies only on standard C++ libraries. Instead of analytical
model-fitting, the built-in timer is based on library table lookups,
linear interpolation, and timing propagation. With capacitive mod-
eling of wires used in the contest, the timer correlates to PrimeTime
within 10−3 ps precision but runs 60× faster on average. Table 2
compares the runtimes of ISTA and full-scale STA of our timer.

Running in 3-4 threads, Trident generates feasible solutions for
all 14 benchmarks in 83 hours using less than 6.0GB of memory.
Our implementation dynamically assigns multistart configurations
to available threads, and therefore it can readily issue more paral-
lel threads as memory allows. An example runtime breakdown on
the NETCARD_SLOW benchmark is as follows. GT R takes 31.3%
(6.2% coarse search, 25.1% fine-grain search) of total runtime, of
which 53% is spent in full-scale STA, 20% in TNS estimation,
and 12% is spent in FixCapViolation. PRFT takes 68.5% (45.4%
SGGS, 23.0% perturbing iterations), of which 87.6% is in ISTA.
I/O takes 0.2% of runtime.

4.2 Comparisons to the State of the Art
Table 3 compares Trident to top contestants at the ISPD 2012

Gate Sizing Contest. Performance results5 for individual teams are
quoted from [23]. Trident has found feasible sizing solutions for
all circuits in the ISPD 2012 benchmark suite. Compared to the top
three teams, Trident achieves the lowest leakage power for 13 out
of 14 circuits (no parameter tuning to specific benchmarks has been
employed). On average, Trident obtains leakage power improve-
ment of 43%, 16%, 52% versus NTUgs (National Taiwan Univer-
sity), UFRGS-Brazil (Universidade Federal do Rio Grande do Sul),
and PowerValve (National Tsing Hua University and Missouri Uni-
versity of S&T), respectively. Geometric means are calculated ex-
cluding infeasible benchmarks, which underrepresents the impact
of our proposed techniques. All of our runs are finished within the
corresponding hard runtime limits [23]. For further analysis, we
provide the best parameter values found by our metaheuristics for
individual benchmarks in Table 4.
5The contest considered only leakage and not dynamic power.

ISPD 2012 contest results (leakage power) Trident
BENCHMARKS (# OF CELLS) NTUgs UFRGS-Brazil PowerValve Best Leakage power Wallclock

after GT R after PRFT time
DMA_FAST (25.3K) 0.511 0.323 0.312 0.312 0.650 0.299 13.9
DMA_SLOW (25.3K) 0.205 0.158 0.147 0.147 0.211 0.145 9.9
PCI_BRIDGE32_FAST (33.2K) 0.512 0.168 0.226 0.168 0.348 0.183 13.0
PCI_BRIDGE32_SLOW (33.2K) 0.203 0.115 0.116 0.115 0.185 0.111 10.2
DES_PERF_FAST (111K) 2.390 3.520 2.320 2.320 7.157 1.842 82.7
DES_PERF_SLOW (111K) 0.674 0.884 0.697 0.674 0.922 0.614 70.1
VGA_LCD_FAST (165K) 0.758 0.580 0.773 0.580 0.685 0.471 45.6
VGA_LCD_SLOW (165K) 0.415 0.378 0.391 0.378 0.454 0.351 87.5
B19_FAST (219K) 2.7l0 – 4.490 1.040 1.377 0.771 206.5
B19_SLOW (219K) 0.627 0.614 0.736 0.614 0.718 0.583 213.9
LEON3MP_FAST (649K) – – 4.940 2.020 1.989 1.487 1323.2 ∗
LEON3MP_SLOW (649K) 1.420 1.790 2.960 1.420 1.422 1.341 1274.0
NETCARD_FAST (959K) 2.010 2.300 2.970 2.010 1.997 1.861 1096.9
NETCARD_SLOW (959K) 1.770 1.970 1.940 1.770 1.818 1.770 299.9

GEOMETRIC MEAN 1.43× 1.16× 1.52× 1.11× 1.53× 1.00×

Table 3: Leakage power (W) and wall clock time (in minutes) on ISPD 2012 benchmarks. Experiments have been performed on a
3.2GHz Intel Xeon E31230 Linux workstation with 8GB of memory, using four CPU cores (and four threads). The sizing solutions are
verified by PrimeTime and the official contest evaluation script [23]. Geometric means are calculated excluding infeasible solutions,
which are marked with “–”. Results of LEON3MP_FAST(∗) are reported before completing the perturbing (upsizing) iterations in
PRFT due to runtime limitations imposed by the ISPD 2012 experimental protocol.

Comparing our approach to [22], we note the following.
• The winners of the contest (NTUgs) have implemented algo-

rithms in [22] with additional improvements, and we include
their contest results in Table 3.

• Intel released their results for five benchmarks (out of 14 to-
tal), where they observed significant room for improvement com-
pared to the best contest results. Of these five benchmarks, we
outperform [23] on four, and are slightly behind on one.

Hence, our optimizer appears competitive.

4.3 Comparison to Minimum-Leakage Solutions
In addition to reporting achievable results, we estimate available

room for further improvement. Starting with minimum-leakage
configurations for each cell instance, we heuristically fix slew and
max-capacitance violations while increasing leakage power by 5.8%
(NETCARD) to 53.5% (DMA). In other words, we estimate the leak-
age cost of achieving electrical feasibility with respect to only load
and slew constraints (ignoring timing). The ratio of total leakage
power of our timing-feasible configurations to that in solutions con-
structed as just described gives an indication of the additional leak-
age penalty needed to fix timing violations. Table 5 shows that

BENCHMARKS
GT R PRFT

α γ (%) SF# γ (%)
DMA_FAST 0.91 24.5 SF5 1.0
DMA_SLOW 1.00 10.0 SF5 5.0
PCI_BRIDGE32_FAST 0.91 34.0 SF4 4.0
PCI_BRIDGE32_SLOW 1.11 36.0 SF5 4.0
DES_PERF_FAST 0.85 46.5 SF5 1.0
DES_PERF_SLOW 0.83 8.5 SF2 3.0
VGA_LCD_FAST 0.70 17.5 SF5 4.0
VGA_LCD_SLOW 1.00 10.0 SF4 3.0
B19_FAST 1.33 16.5 SF2 4.0
B19_SLOW 1.50 7.5 SF5 1.0
LEON3MP_FAST 0.71 7.0 SF4 1.0
LEON3MP_SLOW 0.89 4.0 SF4 2.0
NETCARD_FAST 0.57 4.0 SF3 1.0
NETCARD_SLOW 2.67 4.0 SF3 1.0

Table 4: Parameters for GT R and PRFT associated with the
best solutions found. This parameter sweep is included in re-
ported runtimes. SF1-SF5 are described in Table 1.

for the largest benchmarks the penalty is very small, and our so-
lutions likely cannot be improved by more than several percent.
Benchmarks with tighter timing constraints (“fast”) require greater
leakage penalty to achieve timing feasibility, and this is especially
true for smaller benchmarks. This suggests that the availability of
a strong gate-sizer could allow the tightening of timing constraints
for larger circuits. Based on leakage power in Table 3, the last col-
umn in Table 5 approximates the amount of total negative slack
that can be removed by each doubling of leakage power from the
electrically feasible solutions that we have constructed.

5. CONCLUSIONS
Thirty years of research on gate sizing have generated a large

number of interesting ideas, but leave unclear how to write a com-
petitive gate-sizer. Significant improvements made by recent indus-
try tools [22] suggest that newer, more powerful optimization meth-
ods could find even better power-performance tradeoffs in practice.
This possibility has been confirmed at the ISPD 2012 Gate Siz-
ing Contest, organized by researchers from Intel [23], where none
of the contestants dominated on the entire benchmark set. Each
team excelled on a small subset of benchmarks, and the best results

BENCHMARKS Min. leak. Ratio ∆T NS
log2Ratio (µs)

DMA_FAST 0.073 4.08 1.92
PCI_BRIDGE32_FAST 0.063 2.89 1.95
DES_PERF_FAST 0.268 6.88 1.31
VGA_LCD_FAST 0.303 1.54 31.2
B19_FAST 0.522 1.48 11.0
LEON3MP_FAST 1.311 1.15 148
NETCARD_FAST 1.766 1.06 216
DMA_SLOW 0.073 1.98 3.40
PCI_BRIDGE32_SLOW 0.063 1.75 3.25
DES_PERF_SLOW 0.268 2.29 2.58
VGA_LCD_SLOW 0.303 1.16 77.4
B19_SLOW 0.522 1.12 24.2
LEON3MP_SLOW 1.311 1.02 643
NETCARD_SLOW 1.766 1.002 2290

Table 5: Leakage power ratios of electrically feasible solutions
to our best solutions. Since our solutions are (timing) feasible,
∆T NS equals TNS of electrically feasible solutions.

on some benchmarks have been produced by teams not in the top
three. These data reflect the importance and complexities of the
(discrete) gate-sizing problem, as well as the amount of room for
further improvement, despite significant recent progress.

The most sophisticated published techniques for gate sizing are
analytical in nature and assume continuous sizing and/or Vt assign-
ment, and sometimes implicitly assume convexity in their optimiza-
tion approach. These techniques can be frustrated by the combina-
torial nature of discrete sizing and by the nonconvexity of circuit
delay caused by side capacitance and tabular delay lookups. Com-
binatorial techniques can also be found in the literature, but either
do not scale to large circuits (e.g., branch-and-bound) or remain
limited to greedy optimization, which can become stuck in local
optima due to the nonconvexity of delay. Significant progress has
been recently achieved using dynamic programming, e.g., by some
ISPD 2012 contestants [22]. However, these techniques may be
less efficient on circuits with significant reconvergence, and may
require long runtimes for large circuits or libraries.

In this work, we observe that gate sizing retains some aspects of
convexity in the global sense, and that carefully prioritized greedy
optimization can bring significant improvement. To this end, we
develop several insights into (i) the sensitivity functions that lead
to effective prioritization of gate upsizing and (ii) how these func-
tions can be implemented efficiently. The best configurations of
sensitivity functions apparently depend on circuit structure (depth,
width, number of paths, etc.). Therefore, we parameterize the space
of sensitivity functions, and develop metaheuristics that traverse
this space by independently invoking lower-level heuristics at indi-
vidual points. This optimization leverages sequential importance
sampling from statistical physics [9], in the form of the go-with-
the-winners (GWTW) metaheuristic that was previously analyzed
in [1] and shown to perform on par with simulated annealing. To
make this approach practical, we develop high-performance imple-
mentations of individual heuristics.

Empirical results on ISPD 2012 benchmarks, following the ISPD
2012 contest protocol, show that our implementation outperforms
the best results recorded at the contest for all but one benchmark.
Our implementation outperforms each individual contestant by a
large margin, but by no means does it give the last word on the
subject. Rather, many opportunities opened by our research remain
unexplored, and we foresee that empirical performance can be im-
proved further. Such improvements, as well as the ones reported in
our work, will significantly enhance the power-performance trade-
offs in future generations of integrated circuits.

6. REFERENCES
[1] D. Aldous and U. Vazirani, “‘Go with the Winners’ Algorithms”,

Proc. FOCS, 1994, pp. 492–501.
[2] M. R. C. M. Berkelaar and J. A. G. Jess, “Gate Sizing in MOS

Digital Circuits with Linear Programming”, Proc. EURO-DAC, 1990,
pp. 217–221.

[3] K. D. Boese, A. B. Kahng and S. Muddu, “A New Adaptive
Multi-Start Technique for Combinatorial Global Optimizations”,
Operations Research Letters 16(2) (1994), pp. 101–113.

[4] C.-P. Chen, C. Chu and D. F. Wong, “Fast and Exact Simultaneous
Gate and Wire Sizing by Lagrangian Relaxation”, IEEE Trans. on
CAD 18(7) (1999), pp. 1014–1025.

[5] D. G. Chinnery and K. Keutzer, “Linear Programming for Sizing, Vth
and Vdd Assignment”, Proc. ISLPED, 2005, pp. 149–154.

[6] H. Chou, Y.-H. Wang, and C. C.-P. Chen, “Fast and Effective Gate
Sizing with Multiple-Vt Assignment Using Generalized Lagrangian
Relaxation”, Proc. ASP-DAC, 2005, pp. 381–386.

[7] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area
Optimization”, IEEE Trans. on VLSI Systems 5(4) (1997), pp.
465–472.

[8] J. P. Fishburn and A. E. Dunlop, “Tilos: A Posynomial Programming
Approach to Transistor Sizing”, Proc. ICCAD, 1985, pp. 326–328.

[9] T. F. Gonzalez (editor), Handbook of Approximation Algorithms and
Metaheuristics, Chapman and Hall/CRC 2007.

[10] P. Grassberger, “Go with the Winners: A General Monte Carlo
Strategy”,
http://arxiv.org/pdf/cond-mat/0201313v1.pdf.

[11] P. Gupta, A. B. Kahng, P. Sharma and D. Sylvester, “Selective
Gate-Length Biasing for Cost-Effective Runtime Leakage Control”,
Proc. DAC, 2004, pp. 327–330.

[12] P. Gupta, A. B. Kahng and P. Sharma, “A Practical Transistor-Level
Dual Threshold Voltage Assignment Methodology”, Proc. ISQED,
2005, pp. 421–426.

[13] P. Gupta, A. B. Kahng, P. Sharma and D. Sylvester, “Gate-Length
Biasing for Runtime-Leakage Control”, IEEE Trans. on CAD 25(8)
(2006), pp. 1475–1485.

[14] S. Held, “Gate Sizing for Large Cell-Based Designs”, Proc. DATE,
2009, pp. 827–832.

[15] S. Hu, M. Ketkar and J. Hu, “Gate Sizing for Cell-Library-Based
Designs”, IEEE Trans. on CAD 28(6) (2009), pp. 818–825.

[16] IWLS 2005 Benchmarks,
http://iwls.org/iwls2005/benchmarks.html

[17] K. Jeong, A. B. Kahng and H. Yao, “Revisiting the Linear
Programming Framework for Leakage Power vs. Performance
Optimization”, Proc. ISQED, 2009, pp. 127–134.

[18] W. N. Li, “Strongly NP-Hard Discrete Gate-Sizing Problems”, IEEE
Trans. on CAD 13(8) (1994), pp. 1045–1051.

[19] Y. Liu and J. Hu, “A New Algorithm for Simultaneous Gate Sizing
and Threshold Voltage Assignment”, IEEE Trans. on CAD 29(2)
(2010), pp. 223-234.

[20] N. D. MacDonald, “Timing Closure in Deep Submicron Designs”,
DAC Knowledge Center Article, 2010.

[21] O. Martin, S. W. Otto and E. W. Felten, “Large-Step Markov Chains
for the Traveling Salesman Problem”, Complex Systems 5(3) (1991),
pp. 299–326.

[22] M. M. Ozdal, S. Burns and J. Hu, “Gate Sizing and Device
Technology Selection Algorithms for High-Performance Industrial
Designs”, Proc. ICCAD, 2011, pp. 724–731.

[23] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo,
“ISPD-2012 Discrete Cell Sizing Contest and Benchmark Suite”,
Proc. ISPD, 2012, pp. 161–164.
http://archive.sigda.org/ispd/contests/12/ispd2012_contest.html

[24] M. Rahman, H. Tennakoon and C. Sechen, “Power Reduction via
Near-Optimal Library-Based Cell-Size Selection”, Proc. DATE,
2011, pp. 867–870.

[25] H. Ren and S. Dutt, “A Network-Flow Based Cell Sizing Algorithm”,
Proc. IWLS, 2008, pp. 7–14.

[26] S. Roy, W. Chen, C. C.-P. Chen and Y. H. Hu, “Numerically Convex
Forms and Their Application in Gate Sizing”, IEEE Trans. on CAD
26(9) (2007), pp. 1637–1647.

[27] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya and S.-M. Kang, “An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using
Convex Optimization”, IEEE Trans. on CAD 12(11) (1993), pp.
1621–1634.

[28] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw and V.
Zolotov, “Discrete Vt Assignment and Gate Sizing Using a
Self-Snapping Continuous Formulation”, Proc. ICCAD, 2005, pp.
704–711.

[29] A. Srivastava, D. Sylvester and D. Blaauw, “Power Minimization
Using Simultaneous Gate Sizing, Dual-Vdd and Dual-Vth
Assignment”, Proc. DAC, 2004, pp. 783–787.

[30] H. Tennakoon and C. Sechen, “Gate Sizing Using Lagrangian
Relaxation Combined with a Fast Gradient-Based Pre-Processing
Step”, Proc. ICCAD, 2002, pp. 395–402.

[31] J. Wang, D. Das and H. Zhou, “Gate Sizing by Lagrangian
Relaxation Revisited”, IEEE Trans. on CAD 28(7) (2009), pp.
1071–1084.

[32] L. Wei, K. Roy and C. Koh, “Power Minimization by Simultaneous
Dual-Vth Assignment and Gate-Sizing”, Proc. CICC, 2000, pp.
413–416.

[33] Synopsys PrimeTime User’s Manual, http://www.synopsys.com.

