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Abstract—We propose a self-contained, flat, force-

directed algorithm for global placement that is simpler
than existing placers and easier to integrate into timing-
closure flows. It maintains lower-bound and upper-bound
placements that converge to a final solution. The upper-
bound placement is produced by a novel rough legaliza-
tion algorithm. Our placer SimPL outperforms mPL6,
NTUPlace3, FastPlace3, APlace2 and Capo simultane-
ously in runtime and solution quality, running 6.4 times
faster than mPL6 and reducing wirelength by 2% on the
ISPD 2005 benchmark suite.

I. INTRODUCTION

Global placement currently remains at the core of

physical design and is a gating factor for downstream

optimizations during timing closure [2]. Despite im-

pressive improvements reported by researchers [15]

and industry software in the last five years, state-of-

the-art algorithms and tools for placement suffer sev-

eral key shortcomings which are becoming more pro-

nounced at recent technology nodes. These shortcom-

ings fall into four categories: (i) speed, (ii) solution

quality, (iii) simplicity and integration with other op-

timizations, (iv) support for multithreaded execution.

We propose the SimPL algorithm that simultaneously

improves results in the first three categories and lends

itself naturally to parallelism on multicore CPUs.

State-of-the-art algorithms for global placement

form two families: (i) force-directed placers, such

as Kraftwerk2 [20], FastPlace3 [22] and RQL [23],

and (ii) non-linear optimization techniques, such as

APlace2 [12], NTUPlace3 [7] and mPL6 [6]. Force-

directed algorithms model total net length by a

quadratic function of cell locations and minimize it

by solving a large sparse system of linear equations.

To discourage cell overlap, forces are added pulling

cells away from high-density areas. These forces are

modeled by pseudopins and pseudonets, which ex-

tend the original quadratic function [11]. They are

updated after each linear-system solve until iterations

converge. Non-linear optimization models net length

by more sophisticated differentiable functions with

linear asymptotic behavior which are then minimized

by advanced numerical analysis techniques [12]. Cell

density is modeled by functional terms, which are more

accurate than forces, but also require updates after

each change to placement [7], [12]. Algorithms in both

categories are directly used in the industry or closely

resemble those in industry placers.

Tools based on non-linear optimization achieve the

best results reported for academic implementations [7]

and EDA vendor tools, but are significantly slower,

which is problematic for modern flat SoC placement

instances with tens of millions of movable objects.

To scale the basic non-linear optimization framework,

all tools in this family employ netlist clustering and

multilevel extensions, sometimes at the cost of solution

quality. Such multilevel placers perform many sequen-

tial steps, obstructing efficient parallelization. More-

over, clustering and refinement do not fully benefit

from modern multicore CPUs. Due to their complexity,

multilevel placers are also harder to maintain, improve,

and combine with other physical-design techniques. In

particular, clustered netlists complicate accurate static

timing analysis, congestion maps and physical syn-

thesis, such as performance-driven buffering, gate siz-

ing, fanin/fanout optimization, cloning, etc [2]. Hence,

timing-closure flows often repeat global placement 3-

4 times, alternating it with timing analysis, physical

synthesis and congestion improvement.

State-of-the-art force-directed placers tend to run

many times faster than non-linear optimization, but

also use multilevel extensions in their most compet-

itive configurations. Their solution quality is mixed.

FastPlace3 underperforms mPL6 and NTUPlace3 [7],

but the industry tool RQL closely related to FastPlace

slightly outperforms these two non-linear placers.

Kraftwerk2 is the only competitive flat placer (i.e., it

does not use clustering) and rivals other force-directed

placers in speed. However, it lags behind in solution

quality. Its implementation poses several challenges,

such as quickly solving Poisson’s equation, ensuring

the convergence of iterations and avoiding halos over

macros. Our experience indicates that the performance

of Kraftwerk2 can be uneven, and stability can only

be achieved with some loss of solution quality [13].

State-of-the-art placers are described in the book [15]

and recent journal papers [3], [7], [20].

In this work, we develop a new, self-contained

technique for global placement that ranks as a flat

force-directed placement algorithm. It maintains lower-

bound and upper-bound placements that converge to

a final solution. The upper-bound placement is pro-

duced by a novel rough legalization algorithm based

on geometric top-down partitioning and non-linear

scaling. Our implementation outperforms published



placers simultaneously in solution quality and speed

on standard benchmarks. Our algorithm is simpler, and

our attempts to improve overall results using additional

modules and extensions from existing placers (such as

netlist clustering [6], [12], [22], iterative local refine-

ment (ILR) [22], and median-improvement (BoxPlace)

[13]) were unsuccessful.

In the remainder of this paper, Section II describes

the building blocks from which our algorithm was

assembled. Section III introduces our key ideas and

articulates our solution of the force modulation prob-

lem. The SimPL algorithm is presented in Section IV.

Extensions and the use of parallelism are discussed in

Section V. Empirical validation is described in Section

VI, and Section VII summarizes our results.

II. ESSENTIAL CONCEPTS AND BUILDING BLOCKS

Given a netlist N = (E, V ) with nets E and

nodes (cells) V, global placement seeks node loca-

tions (xi, yi) such that the area of nodes within any

rectangular region does not exceed the area of (cell

sites in) that region.1 Some locations of cells may be

given initially and fixed. The interconnect objective

optimized by global placement is the Half-Perimeter

WireLength (HPWL). For node locations ~x = {xi} and
~y = {yi}, HPWLN (~x,~y)= HPWLN (~x)+HPWLN (~y),
where

HPWLN (~x) = Σe∈E [max
i∈e

xi − min
i∈e

xi] (1)

Efficient optimization algorithms often approximate

HPWLN by differentiable functions, as illustrated next.

Quadratic optimization. Consider a graph G =
(EG , V ) with edges EG , vertices V and edge weights

wij > 0 for all edges eij ∈ EG . The quadratic

objective ΦG is defined as

ΦG(~x,~y) = Σi,jwi,j [(xi − xj)
2 + (yi − yj)

2] (2)

Its x & y components are cast in matrix form [3], [20]

ΦG(~x) =
1

2
~xT Qx~x +~cT

x~x + const (3)

The Hessian matrix Qx captures connections between

pairs of movable vertices, while vector ~cx captures

connections between movable and fixed vertices. When

Qx is non-degenerate, ΦG(~x) is a strictly convex func-

tion with a unique minimum, which can be found by

solving the system of linear equations Qx~x = −~cx.

Solutions can be quickly approximated by iterative

Krylov-subspace techniques, such as the Conjugate

Gradient (CG) method and its variants [19]. Since

Qx is symmetric positive definite, CG iterations prov-

ably minimize the residual norm. The convergence is

monotonic [21], but its rate depends on the spectral

properties of Qx, which can be enhanced by precondi-

tioning. In other words, we solve the equivalent system

1In practice, this constraint is enforced for bins of a regular grid.

P−1Qx = −P−1~cx for a nondegenerate matrix P ,

such that P−1 is an easy-to-compute approximation of

Q−1
x . Given that Qx is diagonally dominant, we chose

P to be its diagonal, also known as the Jacobi pre-

conditioner. Our placement algorithm (Section IV-C)

deliberately enhances diagonal dominance in Qx.

The Bound2Bound net model [20]. To represent the

HPWL objective by the quadratic objective, the netlist

N is transformed in two graphs, Gx and Gy , that

preserve the node set V and represent each two-pin

net by a single edge with weight 1/length. Larger nets
are decomposed depending on the relative placement

of vertices — for each p-pin net, the extreme nodes

(min and max) are connected to each other and to each

internal node by edges, with the following weight

wB2B
x,ij =

1

(p − 1)|xi − xj |
(4)

For example, 3-pin nets are decomposed into cliques

with edge weight 1/2l, where l is the length of a

given edge. In general, this quadratic objective and

the Bound2Bound (B2B) net decomposition capture

the HPWL objective exactly, but only for the given

placement. As locations change, the error may grow,

necessitating multiple updates throughout the place-

ment algorithm.

Most quadratic placers use the placement-

independent star or clique decompositions, so as

not to rebuild Qx and Qy many times [3], [22], [23].

Yet, the B2B model uses fewer edges than cliques

(p > 3), avoids new variables used in stars, and is

more accurate than both stars and cliques [20].

III. KEY IDEAS IN OUR WORK

Analytic placement techniques first minimize a func-

tion of interconnect length, neglecting overlaps be-

tween standard cells, macros, etc. This initial step

places many cells in densely populated regions, typ-

ically around the center of the layout. Cell locations

are then gradually spread through a series of placement

iterations, during which interconnect length slowly

increases, converging to a final overlap-free placement

(a small amount of overlap is often allowed and later

resolved during detailed placement).

Our algorithm also starts with pure interconnect

minimization, but its next step is unusual — most

overlaps are removed using a fast rough legalizer

based on top-down geometric partitioning and non-

linear scaling. Locations of movable objects in the

legalized placement serve as anchors to coerce the

initial locations into a configuration with less overlap,

by adding pseudonets to baseline force-directed place-

ment [11]. Each subsequent iteration of our algorithm

produces (i) an illegal placement that underestimates

the final result — through linear system solver, and (ii)
an almost-legal placement that overestimates the final



result — through rough legalization. The gap between

the lower and upper bounds helps monitor convergence

(Section IV-C).

Solving the force-modulation problem. A key inno-

vation in SimPL is the interaction between the lower-

bound and the upper-bound placements — it ensures

convergence to a no-overlap solution while optimizing

interconnect length. It solves two well-known chal-

lenges in analytic placement: (1) finding directions in

which to spread the locations (force orientation), and

(2) determining the appropriate amount of spreading

(force modulation) [13], [23]. This is unlike previous

work, where spreading directions are typically based

on local information, e.g., placers based on non-linear

optimization use gradient information and require a

large number of expensive iterations. Kraftwerk2 [20]

orients spreading forces according to solutions of

Poisson’s equation, providing a global perspective and

speeding up convergence. However, this approach does

not solve the force-modulation problem, as articulated

in [13].2 The authors of RQL [23], which can be

viewed as an improvement on FastPlace, revisit the

force-modulation problem and address it by a some-

what ad hoc limit on the magnitude of spreading

forces. In our work, the rough legalization algorithm

(Section IV-B), invoked at each iteration, determines

both the direction and the magnitude of spreading

forces. It is global in nature, accounts for fixed obsta-

cles, and preserves relative placement to ensure inter-

connect optimization and convergence. Our placement

algorithm does not require exotic components, such as

a Poisson-equation solver used by Kraftwerk; our C++

implementation is self-contained.

Global placement with look-ahead. The legalized

upper-bound placements constructed at every iteration

of our placer can be viewed as look-ahead. They pull

cell locations in lower-bound placements not just away

from dense regions, but also toward the regions where

space is available. Such area look-ahead is particularly

useful around fixed obstacles, where local information

does not offer sufficient guidance. While not explored

in this paper, similar congestion look-ahead and tim-

ing look-ahead based on legalized placements can be

used to integrate our placement algorithm into modern

timing-closure flows.

IV. OUR GLOBAL PLACEMENT ALGORITHM

Our placement technique consists of three phases:

initial placement, global placement iterations and post-

global placement (Figure 1). Initial placement, de-

scribed next, is mostly an exercise in judicious appli-

cation of known components. Our main innovation is

in the global placement phase. Post-global placement

is straightforward, given current state of the art.

2The work in [13] performs force modulation with line search but
is not currently competitive with state of the art.

Fig. 1. The SimPL algorithm uses placement-dependent B2B
net model, which is updated on every iteration. Gap refers to the
difference between upper and lower bounds.

A. Initial Placement

Our initial-placement step is conceptually similar to

those of other force-directed placers [20], [22], [23]

— it entirely ignores cell areas and overlaps, so as to

minimize a quadratic approximation of total intercon-

nect length. We found that this step notably impacts

the final result. Therefore, unlike FastPlace3 [22] and

RQL [23], we use the more accurate BoundingBox net

model from [20] reviewed in Section II. After the first

quadratic solve, we rebuild the circuit graph because

the B2B net model is placement-dependent. We then

alternate quadratic solves and graph rebuilding until

HPWL stops improving. In practice, this requires a

small number of iterations (5-7), regardless of bench-

mark size, because the relative ordering of locations

stabilizes quickly.

B. Rough Legalization

Consider a set of cell locations with a significant

amount of overlap as measured using bins of a regular

grid. Rough legalization changes the global positioning

of those locations, seeking to remove most of the

overlap (with respect to the grid) while preserving

the relative ordering. This task can be formulated at

different geometric scales by varying the grid. The

quality of rough legalization is measured by its impact

on the entire placement flow. Our rough legalization

is based on top-down recursive geometric partitioning

and non-linear scaling, as outlined in Algorithm 1.



Algorithm 1 Rough Legalization by Top-down Geo-

metric Partitioning and Non-linear Scaling

Maximum allowed density γ, where 0 < γ < 1
Floorplan with obstacles
Placement of cells
Queue of rectangles Q = ∅

1: Identify γ-overfilled bins and cluster them // Fig. 2(a)
2: foreach cluster c do

3: Find a minimal rectangular region R ⊃ c with density(R) ≤ γ
4: Q.enqueue(R)
5: while !Q.empty() do
6: B=Q.dequeue()
7: M={movable cells in B}
8: Find axis-aligned cutline Cc to evenly split cell area in M
9: Find axis-aligned cutline Cb to evenly partition B
10: (S0, S1)={two sub-regions of B created by cutline Cc}
11: M0={movable cells in S0}
12: M1={movable cells in S1}
13: Perform NON-LINEAR SCALING on M0 ⊥ to Cb // Fig. 3
14: Perform NON-LINEAR SCALING on M1 ⊥ to Cb // Fig. 3
15: if Area(B) > 0.001·LayoutArea then
16: (B0, B1)={two sub-regions of B created by cutline Cb}
17: Q.enqueue(B0)
18: Q.enqueue(B1)
19: end if

20: end while

21: end foreach

Handling density constraints. For each grid bin of a

given regular grid, we calculate the total area of con-

tained cells A− and the total available area of cell sites

A+. A bin is γ-overfilled if its cell density A−/A+

exceeds given density limit 0 < γ < 1. Adjacent γ-
overfilled bins are clustered by Breadth-First Search

(BFS), and rough legalization is performed on such

clusters. For each cluster, we find a minimal containing

rectangular region with density ≤ γ (these regions

can also be referred to as “clusters”). A key insight

is that overlap removal in a region, that is filled to

capacity, is more straightforward because the absence

of whitespace leaves less flexibility for interconnect

optimization. If relative placement must be preserved,

overlap can be reduced by means of x- and y-sorting
with subsequent greedy packing. The next step, non-

(a) (b)

Fig. 2. Clustering of overfilled bins in Algorithm 1 and adjustment
of cell-area to region-area median by non-linear scaling (also see
Figure 3). Movable cells are shown in blue, obstacles in solid gray.

Fig. 3. Non-linear scaling in a region with obstacles (I): the
formation of Cb-aligned stripes (II), cell sorting by distance from
Cb (III), greedy cell positioning (IV).

linear scaling, implements this intuition, but relies on

cell-area cutline Cc chosen in Algorithm 1 and shifts

it toward the median of available area Cb, so as to

equalize densities in the two sub-regions (Figure 2).

Non-linear scaling in one direction is illustrated in

Figure 3, where a new region was created by a ver-

tical cutline Cb during rough legalization. This region

is further subdivided into vertical stripes parallel to

Cb. First, cutlines are drawn along the boundaries of

obstacles present in this region. Each vertical stripe

created in this process is further subdivided (by up

to 10 evenly distributed cutlines) if its width exceeds

1/10 of the region’s width. Movable cells in the region

are then sorted by their distance from Cb and greedily

packed into the stripes in that order. For each stripe, we

calculate the available site area A+ and consider the

stripe filled when the area of assigned cells reaches

γA+. Cell locations within each stripe are linearly

scaled from current locations (non-linearity arises from

different scaling in different stripes).

Rough legalization applies non-linear scaling in al-

ternating directions, as illustrated in Figure 4 on one of

ISPD 2005 benchmarks. Here, a region R is selected

that contains overfilled bins, but is wide enough to

facilitate overlap removal. R is first partitioned by a

vertical cutline, after which non-linear scaling is ap-

plied in the two new sub-regions. Subsequently, rough

legalization (Algorithm 1) considers each sub-region

individually and selects different horizontal cutlines.

Four rounds of non-linear scaling follow, spreading
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Fig. 4. Non-linear scaling after the first vertical cut and two
subsequent horizontal cuts (ADAPTEC1) from intermediate steps
between iterations 0 and 1 in Figure 7.



Fig. 5. An anchor with a pseudonet.

cells over the region’s expanse (Figure 4).

Despite a superficial similarity to cell-shifting in

FastPlace [22], our non-linear scaling does not use cell

locations to define bins/ranges, or map ranges onto a

uniform grid.

Cutline shifting. Median-based cutlines are neither

necessary nor sufficient for good solution quality. We

therefore adopt a fast cutline positioning technique

from [17]. When obstacles cover <20% of a region’s

area, we find a cutline position Cc to minimize net

cut, with <55% of cell area per partition. We record

the ratio ρ of cell areas in the two partitions and adjust

the region’s Cb cutline to the position that partitions

the region’s area with the same ratio ρ.

C. Global Placement Iterations

Using legalized locations as anchors. Solving an

unconstrained linear system results in a placement

with significant amount of overlap. To pull cells away

from their initial positions, we gradually perturb the

linear system. As explained in Section IV-B, at each

iteration of our global placement, top-down geometric

partitioning and scaling generates a roughly legalized

solution. We use these legalized locations as fixed,

zero-area anchors connected to their original cells with

artificial two-pin pseudonets. Furthermore, following

the discussion in Section II, we note that connections to

fixed locations do not increase the size of the Hessian

matrix Q, and only contribute to its diagonal ele-

ments. This enhances diagonal dominance, condition

number of P−1Q, and the convergence rate of Jacobi-

preconditioned CG.

In addition to weights given by the B2B net model

on pseudonets, we control cell movement and iteration

convergence by multiplying each pseudonet weight

by an additional factor α > 0 computed as α =
0.01 · (1 + iterationNumber). At early iterations,

small α values weaken spreading forces, giving greater

significance to interconnect and more freedom to the

linear system solver. As the relative ordering of cells

stabilizes, increasing α values boost the pull toward

the anchors and accelerate the convergence of lower

bounds and upper bounds.

Grid resizing. To identify γ-overfilled bins, we overlay
a uniform grid over the entire layout. The grid size

is initially set to Sinit = 200 × 200 to accelerate
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Fig. 6. Lower and upper bounds for HPWL, the amount of overlap
at each iteration & HPWL of the legal placement (ADAPTEC1).

the rough legalization. However, in order to accurately

capture the amount of overlap, the grid size decreases

by β = 1.06 at each iteration of global placement

until it reaches 2× the average movable cell size. Grid

resizing also affects the clustering of γ-overfilled bins

during rough legalization (Section IV-B) effectively

limiting the amount of cell movement and encouraging

convergence at later iterations. A progression of global

placement is annotated with HPWL values in Figure

7. The upper-bound placements on the right appear

blocky in the first iteration, but gradually refine with

grid resizing.

Convergence criteria. A convergence criterion similar

to that in Section IV-A can be adopted in global place-

ment. We alternate (1) rough legalization, (2) updates

to anchors and the B2B net model, and (3) solution

of the linear system, until HPWL of solutions gener-

ated by rough legalization stops improving. Unlike in

the initial placement step, however, HPWL values of

upper-bound solutions oscillate during the first 5-10

iterations, as illustrated in Figure 6. To prevent pre-

mature convergence, we monitor the gap between the

lower and upper bounds. Global placement continues

until the gap is reduced and stops improving. On the

ISPD 2005 benchmark suite, this convergence criterion

entails 26-35 iterations of global placement. The final

set of locations (global placement) is produced by the

last rough legalization as indicated in Figure 1.

V. EXTENSIONS AND IMPROVEMENTS

The algorithm in Section IV can be improved in

terms of runtime and solution quality.

A. Selecting Windows for Rough Legalization

During early global iterations, most movable cells of

the lower-bound placement reside near the center of the

layout region (Figure 7). In such cases, there is usually

one expanded minimal rectangular region (cluster) that

will encompass most of γ-overfilled bins. However,

as global iterations progress, γ-overfilled bins will
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Fig. 7. A progression of global placement snapshots from dif-
ferent iterations and algorithm steps (adpatec1). IP=Initial Place-
ment, RL=Rough Legalization, LSS=Linear System Solver. Left-
side placements show lower bounds and right-side placements show
upper bounds.

be scattered around the layout region, and multiple

clusters of bins may exist. In our implementation,

we process γ-overfilled bins in the decreasing order

of density. Each expansion stops when the cluster’s

density drops to γ or the cluster abuts the boundaries

of previously processed clusters. This strategy may

generate incompletely expanded clusters, especially in

mid-stages of global placement iterations. However, as

the densest bins are processed first, the number of

regions with peak density is guaranteed to decrease

at every iteration except when the peak density itself

decreases. At each iteration of global placement, rough

legalization is repeated up to ten times until maximal

density is decreased below γ.

B. Speeding up Placement Using Parallelism

Further speed-up is possible for SimPL on worksta-

tions with multicore CPUs. Runtime bottlenecks in

the sequential variant of the SimPL algorithm (Section

VI-A) — updates to the B2B net model and the CG

solver — can be parallelized. Given that the B2B net

model is separable, we process the x and y cases in

parallel. When more than two cores are available, we

split the nets of the netlist into equal groups that can

be processed by multiple threads. To parallelize the

CG solver, we applied a coarse-grain row partitioning

[10] scheme to the Hessian Matrix Q, where different

blocks of rows are assigned to different threads. A crit-

ical kernel operation in CG is the Sparse Matrix-Vector

multiply (SpMxV). Memory bandwidth is a known

performance bottleneck in a uniprocessor environment

[9], and its impact is likely to aggravate when multiple

cores access the main memory through a common bus.

We reduce memory bandwidth demand of SpMxV by

using the CSR (Compressed Sparse Row) [19] memory

layout for the Hessian matrix Q.

As part of our empirical validation, we ran SimPL

on an 8-core AMD-based system with four dual-core

CPUs. Single-thread execution was compared to eight-

thread execution. Solution quality did not appreciably

change, but memory usage increased by 50% whereas

runtime of global placement iterations was reduced by

2-3 times. The initial placement stage was accelerated

by about 4 times. While CG remained the runtime

bottleneck of SimPL on 8 cores, rough legalization,

which we have not yet parallelized, became a close sec-

ond (> 20%). In addition to thread-level parallelism,

our implementation makes use of SSE instructions

(through g++ intrinsics) that perform several floating-

point operations at once. However, the speed-up they

provided to global placement was only several percent

and not worth the development effort. The overall

speed-up due to parallelism varies between different

hardware systems, as it depends on the relation be-

tween CPU speed and memory bandwidth.

VI. EMPIRICAL VALIDATION

Our implementation was written in C++ and com-

piled with g++ 4.4.0. Unless indicated otherwise,

benchmark runs were performed on an Intel Core

i7 Quad CPU Q660 Linux workstation running at

3.2GHz, using only one CPU core. We compared

SimPL to other academic placers on the ISPD 2005

placement contest benchmark suite. Focusing on global

placement, we delegate final legalization (into rows and

sites) and detailed placement to FastPlace-DP [16], but

post-process it by a greedy cell-flipping algorithm from

Capo [5]. HPWL of solutions produced by each placer

is computed by the GSRC Bookshelf Evaluator [1].

A. Analysis of Our Implementation

The SimPL global placer is a stand-alone tool that

includes I/O, initial placement and global placement it-

erations. Living up to its name, it consists of fewer than

5,000 lines of C++ code and relies only on standard

C++ libraries. There are four command-line parameters

that affect performance — two for grid resizing (initial

and step), and two for pseudonet weighting (initial



Benchmark APLACE2.0 CAPO10.5 FASTPLACE3.0 MPL6 SIMPL
size (#cells) HPWL Runtime HPWL Runtime HPWL Runtime HPWL Runtime HPWL Runtime

ADAPTEC1 211K 78.35 35.02 88.14 25.95 78.16 2.50 77.93 18.36 77.73 2.27

ADAPTEC2 255K 95.70 50.57 100.25 36.06 93.56 3.66 92.04 19.91 90.36 3.48

ADAPTEC3 452K 218.52 119.53 276.80 78.19 213.85 8.48 214.16 58.92 208.95 7.04

ADAPTEC4 496K 209.28 131.57 231.30 79.32 198.17 7.10 193.89 55.95 187.40 5.30
BIGBLUE1 278K 100.02 44.91 110.92 41.78 96.32 3.77 96.80 22.82 97.42 4.01
BIGBLUE2 558K 153.75 100.96 162.81 80.55 154.91 9.62 152.34 61.55 145.78 8.28

BIGBLUE3 1.10M 411.59 209.24 405.40 182.94 365.59 21.59 344.10 85.23 339.78 13.79
BIGBLUE4 2.18M 871.29 489.05 1016.19 567.15 834.19 40.93 829.44 189.83 808.22 35.80

Average 1.09× 14.77× 1.22× 13.65× 1.04× 1.22× 1.02× 6.41× 1.00× 1.00×

TABLE I
LEGAL HPWL (×10E6) AND TOTAL RUNTIME (MINUTES) COMPARISON ON THE ISPD 2005 BENCHMARK SUITE. EACH PLACER RAN

AS A SINGLE THREAD ON A 3.2GHZ LINUX WORKSTATION. HPWL WAS COMPUTED BY THE GSRC BOOKSHELF EVALUATOR [1].

and step). In all experiments we used default values

described in Section IV.

Running in a single thread, SimPL completes the

entire ISPD 2005 benchmark suite in 1 hour 20 min-

utes, placing the largest benchmark, BIGBLUE4 (2.18M

cells), in 36 minutes using 2.1GB of memory. We

report the runtime breakdown on BIGBLUE4 according

to Figure 1, excluding 1.4% runtime for I/O.

Initial placement takes 5.2% of total runtime, of

which 3.9% is spent in CG, and 1.3% in build-

ing B2B net models and sparse matrices for CG.

Global placement iterations take 36.2%, of which

18% is in the CG solver, and 7.9% is in sparse

matrix construction and B2B net modeling. Inserting

pseudonets takes 1.3%, and rough legalization 9%.

Post-global placement takes 57.2%, predominantly in

detailed placement. Greedy orientation improvement

and HPWL evaluation were almost instantaneous.

B. Comparisons to State-of-the-art Placers

We compared SimPL to other placers whose binaries

are available to us. Our requests for NTUPlace3 bina-

ries went unanswered, but NTUPlace3 results [7] are

very similar to mPL6, which we compare to SimPL.

We run each available placer,3 including SimPL, in

default mode and show results in Table I. The HPWL

results reported by APlace2 [12], Capo10.5 [18] and

mPL6 [6] were confirmed by the GSRC Bookshelf

Evaluator. However, FastPlace3 [22] reported lower

HPWL by 0.25% to 0.95%. For consistency, we report

the readings of the GSRC Bookshelf evaluator.

SimPL found placements with the lowest HPWL for

seven out of eight circuits in the ISPD 2005 bench-

mark suite (no parameter tuning to specific bench-

marks was employed). On average, SimPL obtains

wirelength improvement of 8.26%, 18.70%, 3.85%,

and 1.96% versus APlace2, Capo10.5, FastPlace3 and

mPL6, respectively. SimPL was also the fastest among

the placers on seven out of eight circuits, as well as

on average. It is 6.4 times faster than mPL6, which

appears to be the strongest pre-existing placer. SimPL

3The KraftWerk2 binary we obtained did not run on our system.

is 1.22 times faster than FastPlace3.0, which has been

the fastest academic placer so far.

While we managed to obtain almost all best-

performing academic placers in binaries, RQL report-

edly outperforms mPL6 in HPWL by a small amount

[23]. Comparing our HWPL results to numbers in [23],

we observe four wins for SimPL and four losses. RQL

is 3.1 times faster than mPL6, making it more than

twice as slow as SimPL.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we developed a new, flat, force-directed

algorithm for global placement. Unlike other state-

of-the-art placers, it is rather simple, and our self-

contained implementation includes fewer than 5,000

lines of C++ code. The algorithm is iterative and

maintains two placements — one computes a lower

bound and one computes an upper bound on final

wirelength. These two placements interact, ensuring

stability and fast convergence of the algorithm. The

upper-bound placement is produced by a new rough

legalization algorithm, based on top-down geometric

partitioning and non-linear scaling, and converges to

final cell locations. In contrast, all analytic algorithms

we reviewed (both force-directed and non-linear) de-

rive their final solution from a lower-bound placement.

The use of upper-bound placements offers a solu-

tion to the force-modulation problem [13], [23] and

removes the need for the so-called hold forces used by

several force-directed placers. As discussed in Section

III, upper-bound placements perform an area look-

ahead4 that is instrumental in the handling of lay-

out obstacles. APlace2, NTUPlace3, mPL6, as well

as some force-directed placers, model obstacles by

additional smoothened penalty terms in the objective

function. Not only such terms introduce extra work,

but they also add imprecisions to modeling. For similar

reasons, SimPL avoids netlist clustering used by other

placers. We have implemented several other techniques

4The concept of area look-ahead was proposed in [8] for block-
packing by nested bisection, where it checks if a given bisection
admits a legal block packing in each partition. Area look-ahead was
not used in [8] to spread standard cells from dense regions.



essential to well-known placers, such as BoxPlace [13],

ILR [22], and ad hoc force modulation [23], but they

did not improve SimPL results.

SimPL is highly competitive on ISPD 2005 bench-

marks where it outperforms every placer available to

us in binary both by solution quality and runtime.

Additional empirical results (not included due to page

limitations) show that SimPL’s runtime and solution

quality advantages over FastPlace3 and mPL6 grow

on larger netlists. Asymptotic complexity analysis of

SimPL (not shown due to page limitations) suggests

that each iteration runs in O(n log2 n) time for a netlist

with n movable standard cells. The number of itera-

tions grows very slowly with n and does not exceed

40 in our experiments. Additionally, the algorithm can

be improved to run in O(n log n) time.

SimPL’s most compelling advantages over prior state

of the art deal with practical uses of placement in

modern timing-closure design flows: (1) the reduced

complexity of SimPL allows for fast implementation,

parallel processing, and effective software mainte-

nance; (2) the upper-bound placements facilitate tighter

integration of timing and congestion optimizations into

the global placement process, improving the speed and

efficacy of physical synthesis.

Attempting to explain theoretically the strong per-

formance of our placement algorithm, we have no-

ticed similarities to primal-dual algorithms for convex

[24] and combinatorial [4] optimization. Primal-dual

methods maintain lower and upper bounds, expressed

by primal and dual solutions that eventually converge

to an optimal feasible solution. The interpretation of

duality as swapping the problem’s constraints for the

objective function [24] is also consistent with our al-

gorithm — legalization corresponds to imposing a no-

overlap constraint while relaxing the linear constraints

that capture the global minimum of the quadratic

wirelength objective. The key to the success of primal-

dual algorithms [4], [24] is the observation that al-

ternating progress in primal and dual solutions, i.e.,

improving the cost of feasible solutions and tightening

the constraints for low-cost solutions, typically leads

to faster convergence compared to one-sided optimiza-

tions. This effect is empirically observed in Section VI

where SimPL is compared to pre-existing placement

algorithms, all of which are one-sided.

Strong empirical results for the SimPL algorithm

suggest further research on mixed-size, congestion-

driven and performance-driven placement.
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