
Automating Post-Silicon Debugging and Repair
Kai-hui Chang, Igor L. Markov, Valeria Bertacco

EECS Department, University of Michigan, Ann Arbor, MI 48109-2121
{changkh, imarkov, valeria}@umich.edu

ABSTRACT
Modern IC designs have reached unparalleled levels of complexity,
resulting in more and more bugs discovered after design tape-out
However, so far only very few EDA tools for post-silicon debug-
ging have been reported in the literature. In this work we develop a
methodology and new algorithms to automate this debugging pro-
cess. Key innovations in our technique include support for the phys-
ical constraints specific to post-silicon debugging and the ability to
repair functional errors through subtle modifications of an existing
layout. In addition, our proposed post-silicon debugging methodol-
ogy (FogClear) can repair some electrical errors while preserving
functional correctness. Thus, by automating this traditionally man-
ual debugging process, our contributions promise to reduce engi-
neers’ debugging effort. As our empirical results show, we can
automatically repair more than 70% of our benchmark designs.

1. INTRODUCTION
Due to the high complexity of modern designs and the increas-

ing pressure to reduce their time-to-market, errors are more likely
to escape verification and are only found after a chip has been man-
ufactured. Needless to say, such errors must be fixed before the In-
tegrated Circuits (ICs) can be shipped to customers, making post-
silicon debugging a crucial step in the design process. To this end,
a recent EE Times article quotes: “post-silicon debugging is a dirty
little secret that can cost $15 to $20 million and take six months
to complete” [15]. Indeed, post-silicon debugging has become one
of the most time-consuming parts, 35% on average, of the chip de-
sign cycle [2]. Given that the market window for many modern
products is only a few years long, the delay caused by respins can
dramatically impact revenues. Therefore, it is surprising that only
few EDA tools and algorithms address this problem [15].

Post-silicon debugging is becoming more important because sil-
icon ICs offer several advantages not available pre-silicon. One
is that manufacturing defects are becoming increasingly difficult
to simulate, including those caused by antenna, thermal and in-
ductive effects, as well as diffraction patterns. Non-deterministic
effects, such as manufacturing variability, pose even greater chal-
lenges. As a result, comprehensive validation of a chip can only
be performed after tape-out. In addition, silicon dies allow at-
speed testing, which is orders of magnitude faster than logic sim-
ulation and astronomically faster than electrically-accurate simula-
tion. If a sufficiently strong post-silicon debugging methodology is
available, more thorough post-silicon verification can be achieved,
enabling the distribution of more reliable designs. Unfortunately,
such a methodology is not yet available today.

Pre-silicon and post-silicon debugging differ in several signifi-
cant ways. First, conceptual bugs that require deep understanding
of the chip’s functionality often appear in pre-silicon stages only,
and such bugs may not be fixable by automatic tools. On the other
hand, post-silicon functional bugs are often subtle errors that only
affect the output responses of a few input vectors, and their fixes
can usually be implemented with very few gates. However, find-
ing such fixes requires the analysis of detailed layout information,
making it a highly tedious and error-prone task. As we will show

later, our work can automate this process. Second, errors found
post-silicon typically include functional and electrical problems, as
well as those related to manufacturability and yield. However, is-
sues identified pre-silicon are predominantly related to functional
and timing errors.1 Problems that manage to evade pre-silicon val-
idation are often difficult to simulate, analyze and even duplicate.
Third, the observability of the internal signals in a silicon die is ex-
tremely limited. Most internal signals cannot be directly observed,
even in designs with built-in scan chains [5], which enable access
to sequential elements. Fourth, verifying the correctness of a fix is
challenging because it is difficult to physically implement a fix in
a chip that has already been manufactured. Although techniques
such as Focused Ion Beam (FIB) exist [19], they typically can only
change metal layers of the chip and cannot create any new transis-
tors (this process is often called metal fix).2 Finally, it is especially
important to minimize the layout area affected by each change in
post-silicon debugging because smaller changes are easier to imple-
ment with good FIB techniques, and there is a smaller risk of un-
expected side effects. Due to these unusual circumstances and con-
straints, most debugging techniques prevalent in early design stages
cannot be applied post-silicon. In particular, conventional physical
synthesis and Engineering Change Order (ECO) techniques affect
too many cells or wire segments to be useful in post-silicon debug-
ging. As illustrated in Figure 1(b), a small modification in the lay-
out that sizes up a gate requires changes in all transistor masks and
refabrication of the chip. To this end, our SafeResynth technique
[10] only selects netlist modifications that require minimal physi-
cal changes. This philosophy is adopted in our work to handle the
unusual constraints of post-silicon debugging.

(a) (b) (c)
Figure 1: Post-silicon error-repair example. (a) The original
buggy layout with a weak driver (INV). (b) A traditional resyn-
thesis technique finds a “simple” fix that sizes up the driv-
ing gate, but it requires expensive remanufacturing of the sil-
icon die to change the transistors. (c) Our physically-aware
techniques find a more “complex” fix using symmetry-based
rewiring, and the fix can be implemented simply with a metal
fix and has smaller physical impact.

Existing techniques for post-silicon debugging strive to provide
more visibility and controllability of the silicon die [2]. Although
1Post-silicon timing violations are often caused by electrical prob-
lems and are only symptoms of such errors.
2Despite the impressive success of the FIB technique at recent fab-
rication technology nodes, the use of FIB is projected to become
more problematic at future nodes due to increasingly difficult ac-
cess to lower metal layers, limiting how extensive changes can be
and further complicating post-silicon debugging.

such techniques are great aids to engineers, they do not automate
the debugging process itself. To address this problem, we propose
new algorithms and a methodology that facilitate the automation
of post-silicon debugging. These techniques can benefit from ex-
isting Design-For-Debugging (DFD) constructs but can also work
well without them. Key innovations in our techniques include the
support for the unusual physical constraints of post-silicon debug-
ging and the ability to repair errors by subtle modifications of an
existing layout. As illustrated in Figure 1(c), our techniques are
aware of the physical constraints of the design and can repair er-
rors with minimal layout and routing changes. To achieve these
goals, we develop algorithms to identify as many candidate fixes as
practically possible, in terms of netlist and layout transformations.
This is important in post-silicon debugging because often only a
few transformations can satisfy all the physical constraints. On the
other hand, we also utilize these constraints in our algorithms be-
cause they can prune the search space effectively due to their highly
restrictive nature. The main contributions of our work include: (1)
a post-silicon debugging methodology, called FogClear, that auto-
mates the debugging process; (2) the PARSyn resynthesis algorithm
that searches for netlist transformations which can be implemented
with limited physical resources; (3) the PAFER framework that au-
tomatically diagnoses and repairs logic errors with minimal per-
turbation to the layout; and (4) the adaptation of symmetry-based
rewiring [8, 12] and SafeResynth [10] for post-silicon debugging
to find layout transformations that can repair electrical errors. Em-
pirical results show that our techniques are effective in repairing
design errors and can greatly reduce engineers’ debugging efforts.

In addition to post-silicon debugging, FogClear can also be ap-
plied to reduce the cost of respins. As the data in [4] suggest, masks
for active device layers contribute about 68% of the total mask cost
at the 100nm technology node. With mask costs approaching 10
million dollars per set at the 45 nm node (see Figure 2) [26], being
able to reuse transistor masks greatly reduces the cost of a respin.
This can be achieved using FogClear because the layout transfor-
mations it produces only involve changes in the metal layers and
allow the reuse of the transistor masks. In addition, FogClear can
accelerate the post-silicon debugging process and reduce the loss
in revenue caused by delayed market entry.

Figure 2: Estimated mask set costs at different technology
nodes [25]. The transformations produced by FogClear allow
the reuse of transistor masks and thus reduce respin costs.

The rest of the paper is organized as follows. In Section 2 we
describe the current post-silicon debugging methodology and re-
view some DFD techniques. The debugging process using our
automated FogClear methodology is discussed in Section 3. The
components of FogClear, that is, the functional and electrical error
repair techniques, are explained in detail in Section 4 and Section
5, respectively. Experimental results are shown in Section 6, while
Section 7 concludes this paper.

2. CURRENT POST-SILICON DEBUGGING
METHODOLOGY

Josephson documented the major silicon failure mechanisms in
microprocessors in [16], where the most common failures (exclud-
ing dynamic logic) are drive strength (9%), logic errors (9%), race
conditions (8%), unexpected capacitive coupling (7%), and drive
fights (7%). Another important problem at the latest technology
nodes are antenna effects, which can damage a circuit during its
manufacturing or reduce its reliability. These problems often can
only be identified in post-silicon debugging.

Figure 3 shows the current post-silicon debugging methodology.
To verify the correctness of a silicon die, engineers apply a large
number of test vectors to the die and then check their output re-
sponses. If the responses are correct for all the applied test vectors,
then the die passes verification. If not, then the test vectors that
expose the design errors become the bug trace that can be used to
diagnose and correct the errors. The trace will then be diagnosed
to identify the root causes of the errors. Typically, there are three
types of errors: functional, electrical, and manufacturing/yield. In
this work we only focus on the first two types.

Figure 3: Mainstream post-silicon debugging methodology. In
contrast, our proposed FogClear methodology automates the
debugging process, and it is shown in Figure 4.

After errors are diagnosed, the layout is modified to correct them,
and the repaired layout must be verified again. This process is re-
peated until no more errors are exposed. In post-silicon debugging,
however, it is often unnecessary to fix all the errors because re-
pairing a fraction of the errors may be sufficient to enable further
verification. For example, a processor may contain a bug in its
ALU and another one in its branch predictor. If fixing the bug in
the ALU is sufficient to enable further testing, then the fix in the
branch predictor can be postponed to the next respin.

In the following subsections we first describe two DFD tech-
niques that can be used to facilitate post-silicon debugging. We
then describe two important steps in the current debugging method-
ology, functional error repair and electrical error repair.

2.1 Design For Debugging
Without special constructs, only the values of a design’s primary

inputs and outputs can be observed in a chip, making its debugging
extremely difficult. As a result, most modern designs incorporate
a technique called scan test [5] into their chips. This technique
allows engineers to observe the values of internal registers and can
greatly improve the internal signals’ observability.

In order to change the logic in a silicon die, additional spare cells
are often scattered throughout a design to enable metal fix [17]. The
number of spare cells depends on the methodology, as well as the
expectation for respins and future steppings, and this number can
reach 1% of all cells in mass-produced microprocessor designs. Al-
ternatively, Lin et al. [18] proposed the use of programmable logic
for this purpose. A recent start-up company [2, 27] provides a more

comprehensive solution that further improves the observability of
silicon dies and enables logic changes in the dies. In our work, we
assume that scan test technology is implemented in the design and
spare cells are available for metal fix.

2.2 Functional Error Repair
If an error is of functional nature, engineers can resort to current

logic error repair techniques, for instance, the work by Veneris et
al. [22], Yang et al. [24], and our own previous work [11]. These
techniques can automatically diagnose design errors in combina-
tional circuits and attempt to find resynthesized netlists to correct
the errors. These fixes can then be used to repair the layout, usu-
ally via metal fix. However, implementing the fixes in the layout
may not always be a viable solution because (1) there may be in-
sufficient spare cells to implement the resynthesized netlist; and
(2) the wires to reconnect the cells may be too long to be generated
by FIB. Although techniques that can generate various resynthe-
sized netlists exist [25], they do not take physical information into
consideration. To find fixes compatible with an existing layout, en-
gineers often generate alternative fixes by varying the parameters
of the resynthesis tools and then resort to trial-and-error. If every-
thing fails, the repaired netlist must be designed manually. This is
especially challenging because the automatically generated netlists
have probably undergone many iterations of optimizations. As a
result, it is difficult to interpret the starting netlist to be repaired.

Our solution to this problem is discussed in Section 4, and it
is based on our CoRé framework that was described in [11]. We
adopted CoRé because: (1) it uses an abstraction-refinement scheme,
which is more scalable than most existing techniques; (2) it only
needs input vectors, output responses and state values, which are
easily available in post-silicon debugging (through scan chain sam-
pling); and (3) it provides a highly flexible interface that can adopt
different resynthesis techniques. This is because CoRé operates on
signatures, which are essentially partial truth tables of the nodes in
the circuit. As a result, we can easily extend the framework to be
physically-aware by plugging in our new resynthesis technique.

The CoRé framework works as follows. Given certain test vec-
tors and their output responses, it first uses simulation to generate
signatures, which provide an abstraction of the design because sig-
natures are partial truth tables of the wires in the circuit. Next, er-
ror diagnosis and resynthesis are performed on the abstract model
to correct the errors. The repaired netlist is then verified. If veri-
fication fails, the returned bug traces are used to extend and enrich
the signatures to refine the abstraction. This flow is repeated until
verification passes.

2.3 Electrical Error Repair
Debugging electrical errors is often more challenging than de-

bugging functional errors because it does not allow the deploy-
ment of those logic debugging tools that designers are familiar
with. In addition, there are various reasons for electrical errors [16],
and analyzing them requires profound design and physical knowl-
edge. Although techniques to debug electrical errors exist (e.g.,
voltage-frequency Shmoo plots [3]), they are often heuristic in na-
ture and require abundant expertise and experience. Even if the
root causes of the errors can be identified, finding valid fixes may
still be challenging because most existing resynthesis techniques
require changes in transistor cells and do not allow metal fix. To
address this problem, techniques that allow post-silicon metal fix
have been developed recently, such as ECO routing [23]. However,
ECO routing can only repair a fraction of electrical errors because
it cannot find layout transformations involving logic changes. To
repair more difficult bugs, transformations that also utilize logic

information are required. For example, one way to repair a driv-
ing strength problem is to identify alternative signal sources that
also generate the same signal, and this can only be achieved by
considering logic information.

To this end, we proposed the concept of physical safeness in [9]
to measure how well physical parameters are preserved by a physi-
cal synthesis technique. In our definition of physical safeness, tech-
niques that do not perturb existing cells are physically safe; there-
fore, they can be used to repair electrical errors via metal fix. In
light of this, we adapt our SafeResynth technique for post-silicon
error repair. In addition, we develop a symmetry-based rewiring
technique, called SymWire, that is physically safe and can repair
electrical errors. Both techniques are able to find layout transfor-
mations involving netlist changes and are more powerful than ECO
routing alone. We describe them in Section 5.

3. FOGCLEAR METHODOLOGY
Figure 4 shows our FogClear methodology which automates post-

silicon debugging. When post-silicon verification fails, a bug trace
is produced. Since silicon dies offer simulation speeds orders of
magnitude faster than those provided by logic simulators, contrained-
random testing is used extensively, generating extremely long bug
traces. To simplify error diagnosis, we introduce a step called bug
trace minimization to reduce the complexity of the trace. To this
end, we observe that many existing bug trace minimization tech-
niques, such as the work by Safarpour et al. [21] or Pan et al. [20],
rely heavily on SAT analysis and lack the scalability to handle these
traces. On the other hand, our Butramin technique [7, 13] includes
several simulation-based bug trace minimization methods, which
are especially suitable for post-silicon debugging because simula-
tion and bug trace minimization can be performed using the silicon
die itself. As a result, in our FogClear methodology we adopt Bu-
tramin to minimize bug traces.

After a bug trace is simplified, we simulate the trace by a logic
simulator using the source netlist for the design layout. If simula-
tion exposes the error, then the error is functional, and PAFER is
used to generate a repaired layout; otherwise the error is electrical.
Currently, we still require manual error diagnosis to find the cause
of an electrical error. After the cause of the error is identified, we
check if the error can be repaired by ECO routing. If so, we apply
existing ECO routing tools such as those in [23]; otherwise we use
SymWire or SafeResynth to change the logic and wire connections
around the error spot in order to fix the problem. The layout gener-
ated by SymWire or SafeResynth is then routed by an ECO router
to produce the final repaired layout. This layout can be used to fix
the silicon die for further verification.

Figure 4: FogClear post-silicon debugging methodology.

In the following sections, we describe our functional and elec-
trical error repair techniques in detail, including PAFER, SymWire
and SafeResynth.

4. PHYSICALLY-AWARE
FUNCTIONAL ERROR REPAIR

In this section we describe our Physically-Aware Functional Er-
ror Repair (PAFER) framework that automatically diagnoses and
fixes logic errors in the layout by changing its combinational por-
tion. In this context, we assume that state values are available, and
we treat connections to the flip-flops as primary inputs and out-
puts. Our PAFER framework extends previous work in [11] which
was empirically validated in the CoRé framework and shown to
be scalable and flexible. To support the layout change required in
logic error repair, we also describe a Physically-Aware ReSynthesis
(PARSyn) algorithm.

4.1 The PAFER Framework
The algorithmic flow of our PAFER framework is outlined in

Figure 5. Our enhancements to make the CoRé framework [11]
physically-aware are marked in boldface. Note that unlike CoRé,
the circuits (ckterr, cktnew) in the PAFER framework now include
layout information.

framework PAFER(ckterr,vectorsp ,vectorse ,cktnew)
1 calculate ckterr ’s initial signatures using vectorsp and vectorse ;
2 f ixes← diagnose(ckterr ,vectorse);
3 foreach f ix ∈ f ixes
4 cktsnew ← PARSyn(fix,ckterr);
5 if (every circuit in cktsnew violates physical constraints)
6 continue;
7 cktnew ← the first circuit in cktsnew that does not violate

physical constraints;
8 counterexample← veri f y(cktnew);
9 if (counterexample is empty)

10 return (cktnew);
11 else
12 if (check(ckterr ,counterexample) fails)
13 f ixes← rediagnose(ckterr ,counterexample, f ixes);
14 simulate counterexample and update ckt’s signatures;
Figure 5: The algorithmic flow of the PAFER framework.

The inputs to the framework include the original circuit (ckterr)
and the test vectors (vectorsp , vectorse). The output of the frame-
work is a circuit (cktnew) that passes verification and does not vio-
late any physical constraints. In line 2 of the PAFER framework,
the error is diagnosed, and the fixes are returned in f ixes. Each
fix contains one or more wires that are responsible for the circuit’s
erroneous behavior and should be resynthesized. In line 4 of the
PAFER framework, PARSyn is used to generate a set of new resyn-
thesized circuits (cktnew), which will be described in the next sub-
section. These circuits are then checked to determine if any phys-
ical constraint is violated. For example, whether it is possible to
implement the change using metal fix. In lines 5-6, that no circuit
complies with the physical constraints means no valid implemen-
tation can be found for the current f ix. As a result, the f ix will be
abandoned and the next f ix will be tried. Otherwise, the first cir-
cuit that does not violate any physical constraints is selected in line
7, where the circuits in cktsnew can be pre-sorted using important
physical parameters such as timing, power consumption, or relia-
bility. The functional correctness of this circuit is then verified as
in the original CoRé framework. Please refer to [11, Section IV]
for more details on this part of the framework.

4.2 The PARSyn Algorithm
The resynthesis problem in post-silicon debugging is consider-

ably different from traditional ones because the numbers and types
of spare cells are often limited. As a result, traditional resynthe-
sis flows may not work because technology mapping the resyn-
thesis function using the limited number of cells can be difficult.

Even if the resynthesis function can be mapped, implementing the
mapped netlist may still be infeasible due to other physical limita-
tions. Therefore, it is desirable in post-silicon debugging that the
resynthesis technique can generate as many resynthesized netlists
as practically possible.

To support this requirement, our PARSyn algorithm exhaustively
tries all possible combinations of spare cells and input signals in or-
der to produce various resynthesized netlists. To reduce its search
space, we also develop several pruning techniques based on log-
ical and physical constraints. Although exhaustive in nature, our
PARSyn algorithm is still practical because the numbers of spare
cells and possible inputs to the resynthesized netlists are often small
in post-silicon debugging, resulting in a significantly smaller search
space than traditional resynthesis problems.

Our PARSyn algorithm is illustrated in Figure 6, which tries to
resynthesize every wire (wiret) in the given f ix. In line 2 of the
algorithm, getSpareCell searches for spare cells within RANGE
and returns the results in spareCells, where RANGE is a distance
parameter given by the engineer. This parameter limits the search
of spare cells to those within RANGE starting from wiret’s driver.
One way to determine RANGE is to use the maximum length of
a wire that FIB can produce. A subcircuit, cktlocal , is then ex-
tracted by extractSubCkt in line 3. This subcircuit contains the
cells which generate the signals that are allowed to be used as new
inputs for the resynthesized netlists. A set of resynthesized netlists
(resynNetsnew) is then generated by exhaustiveSearch in line 4.
The cells in those netlists are then “placed” using spare cells in
the layout to produce new circuits (cktsnew), which are returned in
line 6.

function PARSyn(f ix,ckt)
1 foreach wiret ∈ f ix
2 spareCells← getSpareCell(wiret ,ckt,RANGE);
3 cktlocal ← extractSubCkt(wiret ,ckt,RANGE);
4 resynNetsnew ← exhaustiveSearch(1,spareCells,cktlocal);
5 cktsnew ← placeResynNetlist(ckt, resynNetsnew);
6 return (cktsnew);

Figure 6: The PARSyn algorithm.

To place the cells in a resynthesized netlist, we first sort spare
cells according to their distances to wiret ’s driver. Next, we map
each cell in the resynthesized netlist, the one closer to the netlist’s
output first, to the spare cell closest to wiret ’s driver. The reason
behind this is that we assume the original driver is placed at a rel-
atively good location. Since our resynthesized netlist will replace
the original driver, we want to place the cell that generates the out-
put signal of the resynthesized netlist as close to that location as
possible. The rest of the cells in the resynthesized netlist are then
placed using the spare cells around that cell.

The exhaustiveSearch function called in the PARSyn algorithm
is given in Figure 7. This function exhaustively tries combinations
of different cell types and input signals in order to generate resyn-
thesized netlists. The inputs to the function include the current
logic level (logic), available spare cells (spareCells), and a sub-
circuit (cktlocal) whose cells can be used to generate new inputs to
the resynthesized netlists. The function returns valid resynthesized
netlists in netlistsnew.

In the function, MAXLEVEL is the maximum depth of logic
allowed to be used by the resynthesized netlists. So when level
equals to MAXLEVEL, no further search is allowed, and all the
cells in cktlocal are returned (lines 1-2). In line 3, the search starts
branching by trying every valid cell type, and the search is bounded
if no spare cells are available for that cell type (lines 4-5). If a
cell is available for resynthesis, it is deducted from the spareCells
repository in line 6. In line 7 the algorithm recursively generates

function exhaustiveSearch(level,spareCells,cktlocal)
1 if (level = MAXLEVEL)
2 return all cells in cktlocal ;
3 foreach cellType ∈ validCellTypes
4 if (checkSpareCell(spareCells,cellType) fails)
5 continue;
6 spareCells[cellType].count- -;
7 netlistssub ← exhaustiveSearch(level +1,spareCells,cktlocal);
8 netlistsn ← generateNewCkts(cellType,netlistssub);
9 netlistsn ← checkNetlist(netlistsn ,spareCells);

10 netlistsnew ← netlistsnew ∪netlistsn ;
11 if (level = 1)
12 removeIncorrect(netlistsnew);
13 return netlistsnew ;

Figure 7: The exhaustiveSearch function.

sub-netlists for the next logic level, and the results are saved in
netlistsub. New netlists (netlistsn) for this logic level are then pro-
duced by generateNewCkts. This function produces new netlists
using a cell with type=cellType and inputs from combinations of
sub-netlists from the next logic level. In line 9 checkNetlist checks
all the netlists in netlistn and removes those that cannot be imple-
mented using the available spare cells. All the netlists that can be
implemented are then added to a set of netlists called netlistsnew.
If level is 1, the logic correctness of the netlists in netlistsnew is
checked by removeIncorrect, and the netlists that cannot generate
the correct resynthesis functions will be removed. The rest of the
netlists will then be returned in line 13. Note that BUFFER should
always be one of the valid cell types in order to generate resynthe-
sized netlists whose logic levels are smaller than MAXLEVEL. The
BUFFERs in a resynthesized netlist can be implemented by con-
necting their fanouts to their inputs without using any spare cells.

To bound the search in exhaustiveSearch, we implemented the
logic pruning techniques described in our GDS algorithm [11]. To
further reduce the resynthesis runtime, we use netlist connectivity
to remove unpromising cells from our search pool, e.g., cells that
are too far away from the erroneous wire. In addition, cells in the
fanout cone of the erroneous wire are also removed to avoid the
formation of combinational loops.

5. AUTOMATING ELECTRICAL ERROR
REPAIR

The electrical errors found post-silicon are usually unlikely to
happen in any given region of a circuit, but become statistically
significant in large chips. To this end, a slight modification of the
affected wires has a high probability to successfully repair the prob-
lem. However, being able to check this by performing accurate sim-
ulation and comparing several alternative fixes increases the chance
of a successful repair even further. In this section we first describe
two techniques that can automatically find a variety of electrical
error repair options, including SymWire and SafeResynth. These
techniques are able to generate layout transformations that modify
the erroneous wires without affecting the circuit’s functional cor-
rectness. Next, we study three cases to show how our techniques
can be used to repair electrical errors.

5.1 The SymWire Rewiring Technique
Symmetry-based rewiring changes the connections between gates

using symmetries. An example is illustrated in Figure 1(c), where
the inputs to the AND cells are symmetric and thus can be recon-
nected without changing the circuit’s functionality. The change in
connections modifies the electrical characteristics of the affected
wires and can be used to fix electrical errors. Since this rewiring
technique does not perturb any cells, it is especially suitable for
post-silicon debugging. In light of this, we propose an electri-
cal error repair technique using symmetry-based rewiring, called

SymWire, which is outlined in Figure 8. The input to the algorithm
is the wire (w) that has electrical errors, and this algorithm changes
the connections to the wire using symmetries. In line 1, we extract
various sub-circuits (subCircuits) from the original circuit, where
each sub-circuit has at least one input connecting to w. Currently,
we extract sub-circuits composed of 1-7 cells in the fanout cone
of w using breadth-first-search and depth-first-search. For each ex-
tracted sub-circuit, which is saved in ckt, we detect as many sym-
metries as possible using function symmetryDetect (line 3). If any
of the symmetries involve a permutation of w with another input,
we swap the connections to change the electrical characteristics of
w. In our implementation, we adopt the symmetry-detection tech-
nique we introduced in [8, 12] because this technique can detect
a large number of symmetries and supports a variety of cell types.
However, the layout modifications generated by FogClear are very
different from those in [8, 12].

Function SymWire(w)
1 extract subCircuits with w as one of the inputs;
2 foreach ckt ∈ subCircuits
3 sym← symmetryDetect(ckt);
4 if (sym involves permutation of w with another input)
5 reconnect wires in ckt using sym;

Figure 8: The SymWire algorithm.

5.2 Adapting SafeResynth to Perform
Metal Fix

Some electrical errors cannot be fixed by modifying a small num-
ber of wires, and a more aggressive technique is required. We ob-
serve that our SafeResynth technique described in [10] can find al-
ternative sources to generate a signal using an additional cell. Fur-
thermore, this technique does not perturb existing cells. Therefore,
we adapt SafeResynth to fix electrical errors as follows. Assume
that the error is caused by wire w or the cell g that drives w. We first
use Sa f eResynth to find an alternative way to generate the same
signal that drives w. In this work, however, we only rely on the
spare cells that are embedded into the design but not connected to
other cells. Therefore, we do not need to insert new cells, which
would be impossible to implement with metal fix. Next, we drive
a portion or all of w’s fanouts using the new cell. Since a differ-
ent cell can also be used to drive w, we can change the electrical
characteristics of both g and w in order to fix the error. Note that
SafeResynth subsumes cell relocation; therefore, it can also find
layout transformations involving replacements of cells.

5.3 Case Studies
In this subsection we show how our techniques can repair drive

strength and coupling problems, as well as avoid the harm caused
by the antenna effect. Note that these case studies only serve as
examples, and our techniques can also be applied to repair many
other errors.

Drive strength problems occur when a cell is too small to prop-
agate its signal to all the fanouts within the designed timing budget.
Our SafeResynth technique solves this problem by finding an alter-
native source to generate the same signal. As illustrated in Figure
9(a), the new source can be used to drive a fraction of the fanouts
of the problematic cell, reducing its required driving capability.

Coupling between long parallel wires that are next to each other
can result in delayed signal transitions under some conditions and
also introduces unexpected signal noise. Our SafeResynth tech-
nique can prevent these undesirable phenomena by replacing the
driver for one of the wires with an alternative signal source. Since
the cell that generates the new signal will be at a different location,

(a)

(b)
Figure 9: Case studies. (a) g1 has insufficient driving strength,
and SafeResynth uses a new cell, gnew, to drive a fraction of g1’s
fanouts. (b) SymWire reduces coupling between parallel long
wires by changing their connections using symmetries, which
also changes metal layers and can alleviate the antenna effect.

the wire topology can be changed. Alternatively, SymWire can also
be used to solve the coupling problem. As shown in Figure 9(b),
the affected wires no longer travel in parallel for long distances af-
ter rewiring, which can greatly reduce their coupling effects.

Antenna effects are caused by the charge accumulated during
semiconductor manufacturing in partially-connected wire segments.
This charge can damage and permanently disable transistors con-
nected to such wire segments. In less severe situations, it changes
the transistors’ behavior gradually and reduces the reliability of the
circuit. Because the charge accumulated in a metal layer will be
eliminated when the next layer is processed, it is possible to split
the total charge with another layer by breaking a long wire and
going up or down one layer through vias. Based on this observa-
tion, metal jumpers [14] have been used to alleviate the antenna ef-
fect, where vias are intentionally inserted to change layers for long
wires. However, the new vias will increase the resistivity of the nets
and slow down the signals. To this end, our SymWire technique can
find transformations that change the metal layers of several wires to
reduce their antenna effects. In addition, it allows simultaneous op-
timization of other parameters, such as the coupling between wires,
as shown in Figure 9(b).

6. EXPERIMENTAL RESULTS
To measure the effectiveness of the components in our FogClear

methodology, we conducted two experiments. In the first experi-
ment we apply PAFER to repair functional errors in a layout; while
the second experiment evaluates the effectiveness of SymWire and
SafeResynth in finding potential electrical fixes. To facilitate metal
fix, we pre-placed spare cells uniformly using the whitespace in
the layouts, and they occupied about 70% of each layout’s white-
space. These spare cells included INVERTERs, as well as two-
input AND, OR, XOR, NAND, and NOR gates. In the PAFER
framework, we set the RANGE parameter to 50µm and MAXLEVEL
to 2. Under these circumstances, around 45 spare cells (on av-
erage) are available when resynthesizing each signal. All the ex-
periments were conducted on an AMD Opteron 880 workstation
running Linux. The benchmarks were selected from OpenCores
[28] except DLX, Alpha, and EXU ECL. DLX and Alpha were in-
ternally developed benchmarks, while EXU ECL was the control
unit of OpenSparc’s EXU block [29]. Our benchmarks are repre-
sentative because they cover various categories of modern circuits,
and their characteristics are summarized in Table 1. In the table,
“#FFs” is the number of flip-flops and “#Cells” is the cell count
of each benchmark. To produce the layouts for our experiments,
we first synthesized the RTL designs with Cadence RTL Compiler
4.10 using a cell library based on the 0.18µm technology node. We

Benchmark Description #FFs #Cells
Stepper Stepper Motor Drive 25 226
SASC Simple Asynchronous Serial 117 549

Controller
EXU ECL OpenSparc EXU control unit 351 1460
Pre norm Part of FPU 71 1877
MiniRISC MiniRISC full chip 887 6402
AC97 ctrl WISHBONE AC 97 Controller 2199 11855
USB funct USB function core 1746 12808
MD5 MD5 full chip 910 13311
DLX 5-stage pipeline CPU running 2062 14725

MIPS-Lite ISA
PCI bridge32 PCI bridge 3359 16816
AES core AES Cipher 530 20795
WB conmax WISHBONE Conmax IP Core 770 29034
Alpha 5-stage pipeline CPU running 2917 38299

Alpha ISA
Ethernet Ethernet IP core 10544 46771
DES perf DES core 8808 98341

Table 1: Characteristics of benchmarks.

then placed the synthesized netlists with Capo 10.2 [6] and routed
them with Cadence NanoRoute 4.10.

6.1 Functional Error Repair
To evaluate our PAFER framework, we chose several bench-

marks and injected functional errors at either the gate level or the
RTL. At the gate level we injected bugs that complied with Abadir’s
error model [1], while those injected at the RTL were more com-
plex functional errors (DLX contained real bugs). We collected
input patterns for the benchmarks from several traces generated by
verification (some of the traces were reduced by Butramin), and
a golden model was used to generate the correct output responses
and state values for error diagnosis and correction. Note that the
golden model can be a high-level behavior model because we do
not need the simulation values for the internal signals of the circuit.
The goal of this experiment was to fix the layout of each bench-
mark so that the circuit produces correct output responses for the
given input patterns. This is similar to the situation described in
Section 2 where fixing the observed errors allows the silicon die
to be used for further verification. If the repaired die fails further
verification, new counterexamples will be used to refine the fix as
described in the PAFER framework. The results are summarized in
Table 2, where “#Patterns” is the number of input patterns used in
each benchmark, and “#Resyn. cells” is the number of cells used
by the resynthesized netlist. In order to measure the effects of our
fix on important circuit parameters, we also report the changes in
via count (“#Vias”), wirelength (“WL”), and maximum delay (“De-
lay”) after the layout is repaired. These numbers were collected af-
ter running NanoRoute in its ECO mode, and then they were com-
pared to those obtained from the original layout. The maximum
delay was reported by NanoRoute’s timing analyzer.

The results in Table 2 show that our techniques can successfully
repair logic errors for more than 70% of the benchmarks. In cases
when repair failed, cells that provided required signals were lo-
cated too far away from the repair sites and were therefore not con-
sidered by PAFER. In such situations, metal fix is insufficient for
bug-fixing. The results also show that our error-repair techniques
may change physical parameters such as via count, wirelength, and
maximum delay. For example, the wirelength of SASC(GL1) in-
creased by more than 1% after the layout was repaired. However,
it is also possible that the fix we performed will actually improve
these parameters. For example, the via count, wirelength, and
maximum delay were all improved in DLX(GL2). In general, the
changes in these physical parameters are typically small, showing
that our error-repair techniques have few side effects.

Benchmark Bug description #Patterns #Resyn. Changes after repair Runtime
cells #Vias WL Delay (sec)

SASC(GL1) Missing wire 90 2 0.29% 1.27% -0.13% 9.9
SASC(GL2) Incorrect gate 66 1 0.13% 0.33% 0.00% 4.4
EXU ECL(GL1) Incorrect gate 90 No valid fix was found 158.71
EXU ECL(GL2) Wrong wire 74 0 0.01% 0.03% 0.00% 145.3
Pre norm(GL1) Incorrect wire 46 2 0.10% 0.24% -0.05% 38.92
DLX(GL1) Incorrect gate 46 0 0.38% 0.02% 0.00% 17245
DLX(GL2) Additional wire 33 0 -0.13% -0.04% -0.15% 12778
Pre norm(RTL1) Reduced OR replaced by reduced AND 672 3 0.19% 0.38% 0.57% 76.24
MD5(RTL1) Incorrect state transition 201 3 0.02% 0.03% -0.02% 29794
DLX(RTL1) SLTIU inst. selects the wrong ALU operation 2208 No valid fix was found 12546
DLX(RTL2) JAL inst. leads to incorrect bypass from MEM stage 1536 0 0.00% 0.00% 0.03% 8495
DLX(RTL3) Incorrect forwarding for ALU+IMM inst. 1794 0 0.00% 0.00% 0.03% 13807
DLX(RTL4) Does not write to reg31 1600 No valid fix was found 7723
DLX(RTL5) If RT = 7 memory write is incorrect 992 0 0.00% 0.00% 0.00% 5771

Table 2: Functional error repair results. The bugs in the upper half were injected at the gate level, while those in the lower half were
injected at the RTL. Some errors can be repaired by simply reconnecting wires and do not require the use of any spare cell, as shown
in Column 4.

Benchmark SymWire SafeResynth
#Repaired Metal segments affected Runtime #Repaired Metal segments affected Runtime

Min Max Mean (sec) Min Max Mean (sec)
Stepper 81 6 33 15.7 0.03 79 14 53 28.3 4.68
SASC 50 8 49 19.8 0.79 41 2 48 27.8 3.32
EXU ECL 68 7 42 15.0 1.13 71 14 831 119.1 23.02
MiniRISC 58 4 29 13.7 1.65 57 14 50 28.1 166
AC97 ctrl 52 9 26 13.9 3.26 56 14 53 31.9 68.02
USB funct 70 7 36 16.4 1.84 58 16 74 32.4 157.52
MD5 82 7 30 15.0 1.83 79 13 102 37.9 2630
DLX 64 6 49 15.8 11.00 67 13 97 40.2 8257
PCI bridge32 42 8 42 16.6 6.04 32 15 54 31.2 211.28
AES core 83 5 32 15.0 2.53 83 12 64 31.4 285.58
WB conmax 84 7 35 16.0 2.96 46 19 71 35.2 317.50
Alpha 67 9 41 16.3 12.32 55 11 101 36.9 85104
Ethernet 36 7 22 13.4 45.01 18 18 104 46.6 3714
DES perf 91 7 1020 36.7 4.86 76 10 60 29.0 585.34

Table 3: Results of electrical error repair. 100 wires were randomly selected to be erroneous, and “#Repaired” is the number of
errors that could be repaired by each technique. The number of metal segments affected by each technique is also shown.

6.2 Electrical Error Repair
We currently do not have access to tools that can identify electri-

cal errors in a layout. Therefore, in this experiment we evaluate the
effectiveness of our electrical error repair techniques by computing
the percentages of wires where at least one valid transformation can
be found. To this end, we selected 100 random wires from each
benchmark and assumed that the wires contained electrical errors.
Next, we applied SymWire and SafeResynth to find layout trans-
formations that could modify the wires to repair the errors. The
results are summarized in Table 3. In the table, “#Repaired” is the
number of wires that could be modified, and “Runtime” is the total
runtime of analyzing all 100 wires. We also report the minimum,
maximum and average numbers of metal segments affected by our
error-repair techniques. These numbers include the segments re-
moved and inserted due to the layout changes.

From the results, we observe that both SymWire and SafeResynth
were able to alter more than half of the wires for most benchmarks,
suggesting that they can effectively find layout transformations that
change the electrical characteristics of the erroneous wires. In ad-
dition, the number of affected metal segments is often small, which
indicates that both techniques have little physical impact on the
chip, and the layout modifications can be implemented easily by
FIB. The runtime comparison between these techniques shows that
SymWire runs significantly faster than SafeResynth because sym-
metry detection for small sub-circuits is significantly faster than
equivalence checking. However, SafeResynth is able to find and

implement more aggressive layout changes for more difficult er-
rors: as the results suggest, SafeResynth typically affects more
metal segments than SymWire, producing more aggressive physi-
cal modifications. We also observe that SymWire seems to perform
especially well for arithmetic cores such as MD5, AES core, and
DES perf, possibly due to the large numbers of logic operations
used in these cores. Since many basic logic operations are sym-
metric (such as AND, OR, XOR), SymWire is able to find many
repair opportunities. On the other hand, SymWire seems to per-
form poorly for benchmarks which have high percentages of flip-
flops, such as SASC, PCI bridge32, and Ethernet. The reason is
that SymWire is not able to find symmetries in flip-flops. As a re-
sult, if many wires only fanout to flip-flops, it will not be able to
find fixes for those wires.

7. CONCLUSIONS
Due to the aggressive increase in design complexity, more and

more errors are escaping pre-silicon verification and are discovered
post-silicon. While most steps in the IC design flow have been
highly automated, little effort has been devoted to the post-silicon
debugging process, making it difficult and ad hoc. To address this
problem, we propose the FogClear methodology, that systemati-
cally automates the post-silicon debugging process, and it is pow-
ered by our new techniques enhancing key steps in post-silicon
debugging. The integration of logical, spatial and electrical con-
siderations in these techniques facilitates the generation of netlists

and layout transformations to fix the bug, and is complemented by
search pruning methods for more scalable processing. These ideas
form the foundation of our PAFER and PARSyn algorithms that
correct functional errors, as well as the SymWire and SafeResynth
methods to repair electrical errors. Our empirical results show that
these techniques can repair a substantial number of errors in most
benchmarks, demonstrating their effectiveness for post-silicon de-
bugging. FogClear can also reduce the costs of respins: fixes gen-
erated by FogClear only impact metal layers, hence enabling the
reuse of transistor masks. The accelerated post-silicon debugging
process also promises to shorten the time to the next respin.
Acknowledgments. This work was partially funded by the NSF
under Award 0448189.

8. REFERENCES
[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic

Verification via Test Generation”, IEEE TCAD, pp. 138-148,
Jan. 1988.

[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G.
Memmi and D. Miller, “A Reconfigurable Design-for-Debug
Infrastructure for SoCs”, DAC’06, pp. 7-12.

[3] K. Baker and J. V. Beers, “Shmoo Plotting: The Black Art of
IC Testing”, IEEE Design and Test of Computers, Vol. 14,
No. 3, pp. 90-97, 1997.

[4] A. Balasinski, “Optimization of Sub-100-nm Designs for
Mask Cost Reduction”, Journal of Microlithography,
Microfabrication, and Microsystems, Vol. 3, NO. 2, pp.
322-331, Apr. 2004.

[5] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic
Testing, Kluwer, Boston, 2000.

[6] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can
Recursive Bisection Alone Produce Routable Placements?”
DAC’00, pp. 693-698.

[7] K.-H. Chang, V. Bertacco and I. L. Markov,
“Simulation-based Bug Trace Minimization with
BMC-based Refinement”, ICCAD’05, pp. 1045-1051.

[8] K.-H. Chang, I. L. Markov and V. Bertacco, “Post-Placement
Rewiring and Rebuffering by Exhaustive Search For
Functional Symmetries”, ICCAD’05, pp. 56-63.

[9] K.-H. Chang, I. L. Markov and V. Bertacco, “Keeping
Physical Synthesis Safe and Sound”, IWLS’06, pp. 86-93.

[10] K.-H. Chang, I. L. Markov and V. Bertacco, “Safe Delay
Optimization for Physical Synthesis”, ASPDAC’07, pp.
628-633.

[11] K.-H. Chang, I. L. Markov and V. Bertacco, “Fixing Design
Errors with Counterexamples and Resynthesis”,
ASPDAC’07, pp. 944-949.

[12] K.-H. Chang, I. L. Markov and V. Bertacco, “Postplacement
Rewiring by Exhaustive Search For Functional Symmetries”,
ACM TODAES’07, Vol. 12, No. 3, Article 32,
DOI=10.1145/1255456.1255469

[13] K.-H. Chang, V. Bertacco and I. L. Markov,
“Simulation-based Bug Trace Minimization with
BMC-based Refinement”, IEEE TCAD, Vol. 26, No. 1, pp.
152-165, Jan. 2007.

[14] J. Ferguson, “Turning Up the Yield”, IEE Electronics
Systems and Software, pp. 12-15, June/July 2003.

[15] R. Goering, “Post-Silicon Debugging Worth a Second
Look”, EETimes, Feb. 05, 2007.

[16] D. Josephson, “The Manic Depression of Microprocessor
Debug”, ITC’02, pp. 657-663.

[17] D. Josephson, “The Good, the Bad, and the Ugly of Silicon
Debug”, DAC’06, pp. 3-6.

[18] C.-H. Lin, Y.-C. Huang, S.-C. Chang, and W.-B. Jone,
“Design and Design Automation of Rectification Logic for
Engineering Change”, ASPDAC’05, pp. 1006-1009.

[19] J. Melngailis, L. W. Swanson and W. Thompson, “Focused
Ion Beams in Semiconductor Manufacturing”, Wiley
Encyclopedia of Electrical and Electronics Engineering,
Dec. 1999.

[20] S.-J. Pan, K.-T. Cheng, J. Moondanos, and Z. Hanna,
“Generation of Shorter Sequences for High Resolution Error
Diagnosis Using Sequential SAT”, ASPDAC’06, pp. 25-29.

[21] S. Safarpour, A. Veneris, and H. Mangassarian, “Trace
Compaction using SAT-based Reachability Analysis”,
ASPDAC’07, pp. 932-937.

[22] A. Veneris and I. N. Hajj, “Design Error Diagnosis and
Correction via Test Vector Simulation”, IEEE TCAD, pp.
1803-1816, Dec. 1999.

[23] H. Xiang, L.-D. Huang, K.-Y. Chao, and M. D. F. Wong, “An
ECO Algorithm for Resolving OPC and Coupling
Capacitance Violations”, ASICON’05, pp. 784-787.

[24] Y.-S. Yang, S. Sinha, A. Veneris and R. E. Brayton,
“Automating Logic Rectification by Approximate SPFDs”,
ASPDAC’07, pp. 402-407.

[25] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton, and M.
Chrzanowska-Jeske, “Simulation and Satisfiability in Logic
Synthesis”, Proc. IWLS’05, pp. 161-168

[26] International Technology Roadmap for Semiconductors 2005
Edition, http://www.itrs.net

[27] http://www.dafca.com/
[28] http://www.opencores.com/
[29] http://opensparc-t1.sunsource.net/

